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Abstract—Needle-based procedures are commonly per-
formed during minimally invasive surgery for treatment
and diagnosis. Accurate needle tip placement is important for
the success of the procedures. Misplacement of the needle tip
might cause unsuccessful treatment or misdiagnosis. Robot-
assisted needle insertion systems have been developed in
order to steer flexible bevel-tipped needles. However, current
systems depend on the information of maximum needle
curvature, which is estimated by performing prior insertions.
This work presents a new three-dimensional flexible needle
steering system which integrates an optimal steering control,
ultrasound-based needle tracking system, needle deflection
model, online needle curvature estimation and offline curva-
ture estimation based on biomechanics properties. The online
and the offline curvature estimations are used to update the
steering control in real time. The system is evaluated by
experiments in gelatin phantoms and biological tissues
(chicken breast tissues). The average targeting error in
gelatin phantoms is 0.42 ± 0.17 mm, and in biological tissues
is 1.63 ± 0.29 mm. The system is able to accurately steer a
flexible needle in multi-layer phantoms and biological tissues
without performing prior insertions to estimate the maxi-
mum needle curvature.

Keywords—Minimally invasive surgery, Needle steering,

Needle-tissue interaction model, Flexible needle deflection,

Needle curvature estimation.

INTRODUCTION

Conventional open surgeries are being replaced by
minimally invasive surgeries in order to reduce patient
trauma and the overall costs.30 Among the existing min-

imally invasive surgical techniques, needle-based proce-
dures appear as the most common clinical intervention.3

Needle-based procedures are used for treatment and
diagnosis purposes, such as biopsy, brachytherapy,
ablation, and neurosurgery.23 The success rate of these
interventions depends on the needle tip placement accu-
racy.Misdiagnosis or unsuccessful treatmentmightoccur
due to misplacement of the needle tip. Needle deflection,
unexpected tissue deformation and difficulty accessing
targets due to anatomical obstacles are common factors
that affect the targeting accuracy. Currently, most of the
needles used in percutaneous procedures are relatively
stiff, and have an asymmetric tip to cut and penetrate the
tissue. However, those needles may cause tissue damage
and have limited steerability.

The use of thin and flexible needles can reduce the
undesired tissue deformation and increase needle steer-
ability. Bevel-tipped flexible needles naturally bend
when they are inserted through the tissue. The enhanced
steerability of flexible needles allows the clinician to
maneuver around obstacles towards areas that are
unreachable by rigid needles. Several clinical applica-
tions can benefit from the use of flexible needles such as
delivery of systemic agents into the brain, ablation in the
liver, transperineal prostate biopsy and many other
possibilities.However, it is challenging tomanually steer
flexible needles. Robotic systems have been developed to
assist clinicians in steering flexible needles towards a
desired target.8 These systems require a steering control
algorithm, a needle tip tracking system and an accurate
needle deflection model. Kinematic models for flexible
needles with asymmetric tip have been developed
assuming that the needle follows a circular path. These
models have the maximum needle curvature as a model
parameter. In current methods for flexible needle
steering, the maximum curvature is determined by
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pre-operative needle insertions. However, performing
additional needle insertions to estimate the maximum
curvature contradicts the idea of minimally invasive
surgery. Additionally, those models consider the tissue
as a homogeneous environment, but biological tissues
are usually inhomogeneous. Therefore, it is important to
design a steeringmethod capable of performing accurate
needle tip placement in inhomogeneous tissues. The
method should be able to accurately estimate the needle
curvature using online needle tracking information and
patient-specific biomechanics-based needle-tissue
interaction model.

Related Work

Robot-assisted needle insertion has been an active
research topic in the last decade.8 Needle steering
methods using base motions outside the tissue to guide
the needle towards a target were presented by DiMaio
and Salcudean,9 and Glozman and Shoham.14 The type
of needles used in these experiments and the base
manipulation may produce tissue damage and target
motion. This target motion can lead to needle tip mis-
placement. In order to cope with tissue damage and
deformation, several research groups have been study-
ing the use of thin and flexible needles. Thin and flexible
steerable needles induce less target motion and their
steerability is higher than conventional needles.1 Bevel-
tipped flexible needles naturally bend when they are in-
serted through the tissue and can be steered by rotating
their base along the insertion axis during the insertion.

It is of major importance to understand how the
needle deflects in order to steer a bevel-tipped flexible
needle. A kinematic model for bevel-tipped flexible
needles based on the nonholonomic unicycle model was
developed by Webster et al.29 The model predicts the
needle deflection assuming that the needle always fol-
lows a circular path with constant curvature. The kine-
matic model proposed byWebster et al.wasmodified by
Minhas et al.16 in order to achieve paths with different
curvatures. A steering system using the duty cycling
technique that was first proposed by Engh et al.11 The
duty cycling technique is based on the idea of inserting
and rotating the needle simultaneously providing dif-
ferent needle curvatures during the insertion. Flexible
needle steering using duty-cycled rotations have been
used in two dimensional6 (2D) and three dimensional22

(3D) insertions.Recently, Abayazid et al.have proposed
a flexible needle steering based on a kinematic deflection
model using US images to track the needle in real time.1

A similar algorithm was implemented in 3D using a
US-based needle tracking systems.2 All these kinematic
models and steering methods are based on the assump-
tion that the maximum needle curvature is known. In
these previous works, the maximum curvatures were

estimated by prior insertions, which is undesirable in
minimally invasive surgery. Additionally, the models
also consider a constant curvature throughout the
insertion. Unfortunately, in biological tissues constant
curvatures are unlikely. The experimental results pre-
sented by Robert et al.24 show that the deflections of
needles inserted into soft tissues are not constant during
the insertion. Sadjadi et al.26 presented a simulation
study of combining electromagnetic trackers and needle
deflection model using Kalman filtering techniques to
estimate the needle curvature. An online curvature
estimationof flexible needles inserted into biological soft
tissues was proposed by Moreira et al.19 However, only
the presentedonline curvature estimationmaynot be the
best solution if the needle undergoes a straight path. In
these cases, the solution of the curvature fitting might
not be guaranteed due to the low rank of the datamatrix
used in the least square problem. A more robust esti-
mation can be achieved merging online estimation and
biomechanics-based needle-tissue model.

Biomechanics-based needle-tissue models can also
be used to determine the needle tip motion during an
insertion procedure. Misra et al.18 proposed a
mechanics-based model to predict needle tip motion in
planar insertions. Later, Roesthuis et al.25 extended the
model to predict 3D needle deflections. The model
incorporates the needle tip force, distributed load and
elastic foundation stiffness, which were also estimated
during prior insertions. The deflection model proposed
by Asadian et al.5 estimates the amount of needle
deflection by combining the beam theory with virtual
springs used to represent the tissue resistance. More-
over, several works based on finite element (FE)
methods have been presented. DiMaio and Salcudean9

presented a FE model to simulate insertions of rigid
needles. Chun et al.7 presented a study of needle-tissue
interaction forces on breast tissues and compared the
experimental results to FE simulations. Although
accurate, the computational time required for FE-based
models limits the use of such models in real time nee-
dle insertion systems. Analytical models have also
been proposed to determine needle-tissue interaction
forces.17 These interaction forces can be used to predict
and estimate the needle curvature during the inser-
tion.4

An experimental study to evaluate the interaction
forces and needle curvature in in vivo and ex vivo tis-
sues was presented by Majewicz et al.15 The results
show that the needle deflection is more pronounced in
ex vivo tissues than in in vivo tissues due to their
increased stiffness. Although several works about
needle-tissue interaction have been presented,17 the
direct relationship between tissue properties and needle
curvature has not been presented. This work proposes
a novel steering algorithm that merges online curvature
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estimation and the relationship between tissue’s
Young’s modulus and needle curvature.

Contributions

This paper presents a novel three-dimensional (3D)
flexible needle steering system which integrates an opti-
mal steering control, ultrasound (US)-based needle
tracking system, needle deflection model, online needle
curvature estimation and offline curvature estimation
based on biomechanics needle-tissue model. The goal of
this work is to demonstrate the feasibility of combining
the optimal steering control, the online and the offline
curvature estimation to increase the insertion accuracy.
In order to avoid invasive pre-operative procedures, such
as performing prior needle insertions to estimate the
maximum curvature before each steering experiment, the
biomechanics-based model relates the tissue’s Young’s
modulus to themaximumneedle curvature. TheYoung’s
modulus is estimated by using acoustic radiation force
impulse (ARFI) imaging technique, which is a non-
invasive method. The needle curvature information pro-
vided by the offline estimation is fused with an online
curvature estimation. The main contributions of this
paper are: (1) a relationship between tissue Young’s
modulus and needle curvature using a non-invasive
method to define the needle curvature. (2) Combination
of online and offline needle curvature estimation. (3)
Steering algorithm using the estimated curvature to
define the best needle rotation that minimizes the tar-
geting error. Experiments steering a flexible needle to-
ward a real target on two-layer gelatin phantom and
biological tissues are presented in order to validate the
proposed method (Fig. 1). Experiments with virtual
moving targets are also presented to evaluate the target-
ing accuracy in the presence of physiological motions.

MATERIALS AND METHODS

This section describes the biomechanics model and
the offline estimation provided by the relationship
between Young’s modulus and needle curvature. The
kinematic deflection model, the needle steering control
and the online curvature estimation are also presented.

Biomechanics Model and Offline Curvature Estimation

Abevel-tipped flexible needle deflects when inserted in
a tissue due to the interaction between the bevel tip and
the tissue. Several aspects influence the magnitude of
needle deflection, such as insertion velocity, needle
material, bevel angle, needle diameter, and tissue prop-
erties. The needle properties and the insertion velocity are
definedprior to the insertionprocedure andcanbe chosen

by the clinician according to the type of procedure.27 On
the other hand, tissue properties vary depending on the
organs traversed by the needle during the insertion, and
cannot be controlled by the clinician.

Previous work suggests that the needle deflection is
closely dependent on the elasticity of the tissue. This
section presents a relationship between the tissue elas-
ticity (Young’s modulus) and the needle curvature. The
Young’s modulus of tissues is estimated by a noninva-
sive method known as ARFI imaging technique.

Young’s Modulus Estimation

The Young’s modulus of the phantoms are estimated
using a commercially available implementation of an
US-based ARFI imaging technique, known as Virtual
TouchTM Quantification, available on the Siemens
AcusonS2000 US machine (Siemens AG, Erlangen,
Germany). The technique measures the shear wave
velocity, which is used to calculate the Young’smodulus
of the phantom.The shearwave velocity (cT) is related to
the shear modulus (G) and density (q) by20

cT ¼
ffiffiffiffi

G

q

s

ð1Þ

The Young’s modulus (E) is given by

E ¼ 2Gð1þ lÞ ð2Þ

where l is the Poisson’s ratio. The gelatin phantoms
are considered as almost incompressible materials, i.e.,

Needle insertion device

Ultrasound positioning device

Biological phantom

Bevel tip

Needle tip

FIGURE 1. A robotic device inserts and axially rotates a
bevel-tipped flexible needle into a phantom composed by
gelatin and in vitro biological tissues (chicken breast). The
needle is steered towards a real target while avoiding a real
obstacle. An ultrasound-based needle tracker estimates the
needle tip pose.
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the Poisson’s ratio is assumed to be 0.49 for all
phantoms.12 Using Eq. (1) in (2), the Young’s modulus
is calculated as

E ¼ 2qc2Tð1þ lÞ ð3Þ

The shear wave is measured in ten different locations
of each phantom and the average of these values are
used to calculate the Young’s modulus.

Needle Curvature Estimation

The relationship between the Young’s modulus of
the tissue and the needle curvature is defined by per-
forming a series of insertions in gelatin phantoms with
known Young’s modulus. The database acquired in
these experiments is used to define the relationship
between the needle curvature and Young’s modulus. It
is important to notice that this analysis is performed
once. Then, this relationship is used to define the
needle curvature before each steering experiment pre-
sented in ‘‘Results’’ section. The Young’s modulus of
the phantoms is varied by changing the gelatin con-
centration. The insertions are performed using the
insertion device presented in Fig. 1. The needle is a
Nitinol wire (E = 75 GPa) with a diameter of 0.5 mm
and bevel angle of 30�. The needle insertion is per-
formed without any axial rotation and the tip position
is estimated by the US-based tracking system presented
in ‘‘Ultrasound-based needle tracking and offline path
planning’’ section. The needle curvature is estimated
by fitting a circle to the set of 3D needle tip positions.
Ten 50 mm insertions are perform on six phantoms
with different Young’s modulus. The needle curvature
information is then related to the Young’s modulus of
each phantom.

Needle Curvature Vs. Young’s Modulus

The radius of curvature estimated for each phantom
and the Young’s modulus of the phantom is used to
find the function that relates the Young’s modulus and
the radius of curvature. The relationship is defined by
fitting a power function to the experimental data. The
experimental results and the fitted function are plotted
in Fig. 2. The radius of curvature is then given by

r ¼ 17900E�0:49 þ 25:98 ð4Þ

where r is the radius of curvature and E is the Young’s
modulus. The fitted function (4) is then used to per-
form the offline curvature estimation based on the
Young’s modulus information that can be pre-opera-
tively estimated using the ARFI imaging technique.
The function given by Eq. (4) is valid for the charac-
teristics of the needle used in this work. However, the
technique presented in this section can be replicated to
define the relationship between Young’s modulus and
needle deflection with other needle properties. The
needle steering control uses (4) to improve the
robustness and accuracy of the curvature estimation.

Needle Steering Control

In this subsection the method used in the steering con-
trol is presented. First, the US-based tracking is presented
followed by the needle deflection model, the optimal
steering algorithm and the online curvature estimation.

Ultrasound-Based Needle Tracking and Offline Path
Planning

The 3D needle tip pose (position and orientation) is
estimated using a 2D US transducer. The transducer is
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FIGURE 2. Radius of curvature vs. Young’s modulus. The red dots are the experimental results of curvature estimation and its
standard deviation defined by 10 insertions at each Young’s modulus value. The blue line is the fitted function given by
r 5 17900E20.49 + 25.98, where r is the radius of curvature and E is the Young’s modulus of the phantom.
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placed perpendicular to the needle to measure the tip
position.28 During the needle insertion, the transducer
is repositioned to track the needle tip. The transducer
is driven by a robotic device, that uses the insertion
velocity corrected by tip velocities to determine out-of-
plane motion. An image processing algorithm is used
to estimate the needle tip position from the US image
applying basic image processing techniques such as,
median filtering, thresholding, erosion, and dilation.
Using the information about the transducer location
provided by the robotic device and the location of the
needle tip on the US image, it is possible to determine
the 3D needle tip pose.28 The needle tracking runs in a
frequency of 25 Hz and the maximum mean errors in
the estimated needle tip positions are 0.64, 0.25, and
0.27 mm along the x-, y-, and z-axes, respectively.

The US tracking system is also used to scan the
phantom before each experiment in order to define the
obstacle and target locations. The desired needle path is
then computed offline using the obstacle and target
location. The path is calculated by an algorithm that uses
splines to find a path that goes from the insertion point to

the target location, while avoiding the obstacle. The path
is composed by a sequence of points with a 1.2 mm
interval, that is used by the optimal steering algorithm.

Needle Tip Prediction Model

The needle deflection model predicts the needle tip
position based on the needle rotation and insertion. The
predicted needle tip position p̂0tipðkþ 1Þ in the reference
frame (H0) is the sum of the current tip position p̂0tipðkÞ
plus an incremental 3D tip motion (Fig. 3), where k is
the discrete index. This incremental motion is a result of
the needle insertion and deflection. The incremental
motion with respect to the needle tip frame depends on
the insertion velocity (vins) and the radius of needle
curvature r(k). Assuming that this motion is a circular
path,29 the 3D incremental tip motion is defined as

rðkÞ2 ¼ ðxincðkÞ � aÞ2 þ ðyincðkÞ � bÞ2 þ ðzincðkÞ � cÞ2

ð5Þ

where (a, b, c) is the center of the circular motion, r(k)
is the radius and xinc(k), yinc(k), and zinc(k) are the

(a)

(b)

FIGURE 3. Needle defection. (a) The bevel-tipped flexible needle bends in a circular motion due to the interaction forces between
the bevel tip and the tissue. (b) The needle deflection model predicts the needle tip position p̂0

tipðk þ 1Þ
� �

by calculating the
incremental tip motion and using the rotation matrix (R(k)) from the needle tip frame ðHtÞ to the initial reference frame ðH0Þ. The
needle axial rotation (a(k)) is an input for the needle deflection model. The components of the incremental tip motion (xinc(k), yinc(k),
zinc(k)) are calculated by a trigonometric relation between the insertion step length (xins), the radius of the circular motion (r) and
the angle (n).
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components of the incremental tip motion. This
incremental motion, in the tip coordinate frame ðHtÞ,
is always an arc in the xzt-plane since the needle bends
in the direction of the bevel tip orientation (Fig. 3a) if
it is not rotated. The center of the circular incremental
motion in the tip coordinate frame ðHtÞ is
(a, b, c) = (0, 0, 2r(k)). Using Eq. (5) we have

x2incðkÞ þ z2incðkÞ þ 2rðkÞzincðkÞ ¼ 0 ð6Þ

The incremental motion in the xt-direction (xinc(k))
is given by the following trigonometric relationship
(Fig. 3b):

xincðkÞ ¼ rðkÞ sin Tvins
rðkÞ

� �

ð7Þ

where vins and T are the insertion velocity and the
discrete time period of the insertion, respectively.
Using Eqs. (6) and (7), the incremental needle tip
motion p̂tincðkÞ

� �

in the needle tip frame ðHtÞ is written
as

p̂tincðkÞ ¼
xinc
yinc
zinc

2

4

3

5 ¼
rðtÞ sin Tvins

rðkÞ

� �

0

rðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðkÞ � x2incðkÞ
q

2

6

4

3

7

5

ð8Þ

The incremental tip motion is transformed from the
tip frame ðHtÞ to the reference frame ðH0Þ using a
rotation matrix RðkÞ (Fig. 3b). The rotation matrix
ðRðkÞÞ is given by RðkÞ ¼ RtipðkÞRaðkÞ; where RaðkÞ is
a rotation matrix around the xt-axis of the needle tip
frame by the rotation angle defined by the steering
algorithm (a(k)) and RtipðkÞ is the current needle tip
orientation estimated by the US-based tracking sys-
tem. Thus, using Eq. (8), the needle tip position pre-
dicted by the deflection model is written as

p̂0tipðkþ 1Þ ¼ p̂0tipðkÞ þ RðkÞp̂tincðkÞ ð9Þ

This needle deflection model is used in the steering
algorithm to predict the needle tip motion and define
the best rotation that has to be applied.

Steering Algorithm

The steering algorithm defines the needle rotation to
be performed about the insertion axis. The rotations
orient the needle to follow the desired path and to
reach the target. The needle rotation can be calculated
by aligning the current tip pose towards the next point
on the desired path. However, when the needle steering
algorithm only takes into account the next path point,
the needle might arrive the path point with a tip pose
that makes the subsequent path point unreachable.
This problem can be solved implementing a steering
algorithm that always looks to two path points ahead.

We propose a steering algorithm that computes the
best rotations to minimize the path tracking error in
the next two path points (Fig. 4). This computation
uses an optimization technique and the deflection
model to predict the needle tip motion. The optimi-
zation algorithm based on the golden search method is
implemented to minimize the function:

JðkÞ ¼ p̂0tipðkþ 1Þ � p0pathðkþ 1Þ þ p̂0tipðkþ 2Þ
	

	

	

�p0pathðkþ 2Þ
	

	

	
ð10Þ

where ppath is the desired path point. The steering
algorithm computes the best rotations to be applied at
the current step (k) and at the next step (k + 1),
however only the rotation at the step (k) is applied. At
step k + 1 a new pair of rotations are computed. The
algorithm is executed every 1.2 s. This period is enough
to compute the rotation and to perform the curvature
estimation without compromising the steering accu-
racy.19 Moreover, this period allows us to perform the
same online curvature estimation technique presented
and evaluated by Moreira et al.19

Path points Path points

FIGURE 4. The steering algorithm computes the best sequence of rotations to be applied on the instant k and k + 1 that minimize
the path tracking error, where k is the discrete index. The path tracking error is defined as p̂0

tipðk þ 1Þ � p0
pathðk þ 1Þ

� �

þ
p̂0

tipðk þ 2Þ � p0
pathðk þ 2Þ

� �

, where p̂0
tip is the predicted needle tip position and ppath is the path point. The needle deflection model is

used to predict the needle tip position at the subsequent steps. The rotation computed for the instant k is performed and in the next
instant a new pair of rotations is computed.
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Curvature Estimation

The needle deflection may vary during the needle
insertion. This variation occurs when the needle pen-
etrates different tissue layers and due to the tissue
inhomogeneity. The curvature estimation is performed
to update the needle deflection model used in the
steering algorithm. The technique combines the bio-
mechanics-based curvature estimation presented in the
previous subsection and online curvature estimation.

The online curvature estimation uses blocks of
needle tip poses to perform a least square curve fitting.
Each block is composed by the last 30 needle tip poses
estimated by the US-based needle tracking.19 The
curvature estimation is synchronized with the steering
algorithm to assure that in one block of needle tip pose
data, the needle is not rotated. Thus, the needle per-
forms a planar circular motion in the xzt-plane during
this period of time. The online estimation is performed
with the same frequency of the steering algorithm, i.e.,
every 1.2 s.

The online curvature estimation uses a principal
component analysis (PCA) algorithm to find the plane
where the deflection path is performed.19 The 2D
projected data is then applied in a least square algo-
rithm to find the radius of curvature. However, when
the needle path is similar to a straight line, i.e., the
needle is penetrating a soft tissue, the least square
solution might not be guaranteed. In order to improve
the robustness of the curvature estimation, the online
estimation is fused with the biomechanics-based cur-
vature estimation.

The data fusion is performed using an indirect feed
forward Kalman filter. The system diagram is pre-
sented Fig. 5. The Kalman filter is used to filter and
estimate the error between the online and the offline
estimations. This error between the two estimations is
modeled as a random walking process, and the Kal-
man states are the estimation error and its first deriv-
ative. The indirect Kalman filter is experimentally

tuned with system noise covariance of 0.01 and mea-
surement noise covariance of 0.1. The curvature esti-
mation and the steering algorithm are then evaluated
under experiments in inhomogeneous tissues.

RESULTS

In this section, we present the experimental setup
used to steer the flexible needle into gelatin phantoms
and biological tissues, the experimental cases, and the
final steering results.

Experimental Setup

The experimental setup, composed of the needle
insertion device and the US-based needle tracking
system, is shown in Fig. 1. The needle insertion device
has two degrees of freedom: translation along and
rotation about the insertion axis.1 The needle used in
the experiments is made of Nitinol (E = 75 GPa). It is
a solid wire with diameter of 0.5 mm and has a bevel
tip angle of 30�. The US-based needle tracking system
uses a 18 MHz high definition US transducer (Trans-
ducer 18L6HD, Siemens ACUSON S2000 US system,
Siemens AG, Erlangen, Germany) to estimate the
needle tip pose. The ARFI imaging technique is per-
formed using the same US system and the Young’s
modulus of each phantom is estimated as described in
the ‘‘Materials and methods’’ section.

Experimental Cases

Three experimental cases are used to evaluate the
needle steering algorithm, the needle tracking and the
curvature estimation. Phantoms are prepared for each
experimental case. A gelatin phantom and a biological
phantom are presented in Fig. 6. The experimental
cases are:

FIGURE 5. The indirect Kalman filter used to fuse the offline estimated radius of curvature (roff(k)) and the online estimated radius
curvature (ron(k)). The Kalman filter is used to filter the estimation error between the online and the offline estimations (e(k)), which
is used to correct the final radius of curvature (r(k)).
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� Case 1—Two layer phantom: The needle is
steered towards a real target in a two-layer
phantom while avoiding an real obstacle.

� Case 2—Biological phantom: The needle is
steered towards a real target inside an biological
tissue (ex vivo chicken breast) embedded in a
gelatin phantom while avoiding an real obsta-
cle.

� Case 3—Biological phantom with moving tar-
get: The needle is steered towards a moving
virtual target inside an biological tissue (ex vivo
chicken breast) embedded in a gelatin phantom
while avoiding an obstacle. The target move-
ment is a sinusoidal motion to represent dis-
turbances that might be caused by physiological
processes.

The ARFI imaging technique is used to estimate
Young’s modulus of each phantom layer. The first
layer of the two-layer phantom (Case 1) is prepared
with 90% water, 9% gelatin, and 1% silica, which
results in E ~ 25 kPa. The second layer has 80% water,
19% gelatin, 1% silica and E ~ 90 kPa. The silica
powder is added to all gelatin to simulate the acoustic
scattering of human tissue in ultrasound images. The
two-layer phantom has elasticity similar to a normal
fat tissue (E ~ 22 kPa) and a cancerous prostate
(E ~ 96 kPa).13 The phantoms for Case 2 and Case 3

are prepared embedding a chicken breast tissue in
gelatin prepared with 84% water, 15% gelatin, and 1%
silica. The targets of Case 1 and Case 2 are made of a
mixture of 80% water, 19.5% Polyvinyl alcohol (Sig-
maAldrich Chemie B.V., Zwijndrecht, The Nether-
lands). The targets are fabricated with a radius of
3 mm, which is within the range of the prostate
tumor.10 We use the function defined by Eq. (4) to
define the needle curvature for each phantom layer
based on the Young’s modulus estimated by the ARFI
imaging technique. The phantoms are prepared using
molds with pre-defined dimensions, which makes the
position of each layer known.

Before each experiment of Case 1 and Case 2, the
phantom is scanned by the US transducer to detect the
obstacle and target locations. This information is used
to calculate the desired needle path in order to reach
the target while avoiding the obstacle. In Case 3 only
the obstacle location is detected. The path is defined
based on the obstacle location and the initial position
of the virtual target.

Experimental Results

Five needle insertions are performed for each
experimental case. The needle is inserted with a con-
stant velocity of 1 mm/s. The insertion stops when the

Layer 2
Layer 1

Target
Obstacle

ARFI images

Target
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FIGURE 6. Representative figures of gelatin and biological phantoms used in the experiments. The phantom on the left has two
layers with different gelatin concentrations, a real obstacle and a real target are embedded inside the phantom. The phantom on the
right is composed of gelatin and biological tissue (ex vivo chicken breast tissue) and a real obstacle is embedded inside the
phantom. For Case 2 a real target is also embedded in the phantom, while in Case 3 a virtual moving target is used. The ultrasound-
based acoustic radiation force impulse (ARFI) imaging technique is used to calculate the Young’s modulus (E) of each layer of the
phantom by estimating the shear wave velocity (Vs).
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tracked needle tip position and the target positions in
the x-axis are the same. In Case 3 the target motion is
defined by xtar = 85.0 + 2.0 sin (pt), where xtar is the
target location in the x-axis and t is the time in sec-
onds. The target motion with a frequency of 0.5 Hz is
applied to represent a disturbance caused by respira-
tion.

The average of targeting error and the standard
deviation in five experiments of Case 1 is
0.42 ± 0.17 mm. In biological tissue, Case 2 has an
average of targeting error of 1.56 ± 0.52 mm, while in
Case 3 the average of targeting error is
1.63 ± 0.29 mm. The targeting error is calculated as
the Euclidian distance between the final needle tip
position and the center of the target. The targeting
errors for the three cases are in the range of the
smallest tumor that can be detected by US images
(2 mm). The results of Case 3 show that, even with
target motion in biological tissue, the system is able to
achieve a targeting error of 1.63 mm. One representa-
tive experimental result for each case is shown in
Fig. 7. In Case 1, the needle crosses the layer interface
at an insertion depth of 22 mm. In Case 2 and Case 3
the position of the layer interface varies due to the
irregular shape of the biological tissue and occurs
between 20 and 30 mm, depending on the phantom.
The evolution of the estimated radius of curvature is
presented in Fig. 8. It is also possible to notice that the
curvature stabilizes with a value different from the one
estimated using the biomechanics-based offline esti-
mation. This difference happens because the elastic
properties of the gelatin phantom might vary accord-

ing to its temperature.1 In Case 2 and Case 3 the var-
iation of the curvature is more pronounced when the
needle is inside the biological tissue due to the inho-
mogeneity of the tissue. The results of needle curvature
estimation demonstrate the importance of combining
the biomechanics-based offline estimation with the
online estimation.

DISCUSSION

This study presents a novel flexible needle steering
method combining optimal rotation control, biome-
chanics-based model and online curvature estimation.
The algorithm defines the best needle rotations that
minimize the path tracking error, hence minimizing the
targeting error. The curvature estimation is used to
update the steering algorithm in real time during the
insertion. Experiments are performed to evaluate the
targeting accuracy and the curvature estimation of the
proposed needle steering method. The average target-
ing errors ranges between 0.42 ± 0.17 and
1.63 ± 0.29 mm. During experiments in biological
tissues (Case 2 and Case 3), the needle tracking is
affected by the artifacts present in the US image of the
in vitro biological tissue. Recently, similar experiments
were performed by Patil et al.22 in biological tissues
with an average error ranging from 2.38 ± 1.02 to
3.60 ± 1.85 mm. Although the experimental condi-
tions are not the same, it is interesting to notice that
the targeting errors achieved by Patil et al.22 are sig-
nificant higher than the errors presented in this study.
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FIGURE 7. Representative experimental result for each experimental case. In Case 1 the bevel-tipped flexible needle is steered
towards a real target while avoiding a real obstacle in a two-layer gelatin phantom. In Case 2, the needle is steered towards a real
target while avoiding a real obstacle in a biological phantom. Moreover, in Case 3 the needle is steered the needle is steered
towards a virtual moving target while avoiding a real obstacle in a biological phantom. Please refer to the accompanying video that
demonstrates the experimental results.
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Additionally, in our previous work using only the
online curvature estimation, the targeting error is also
higher than the error reported in this paper, ranging
between 0.98 and 2.46 mm. It is also important to
highlight that in all experiments performed in this
study the targeting error is below 2 mm, which is the
size of the smallest lesion visible in US images.1 The
targeting error smaller than 2 mm and the validation
of the curvature estimation algorithm is an important
step towards a robot-assisted needle steering. How-
ever, there are some issues that have to be consider in
order to implement the presented technique in clinical
practice. Currently, the US-based needle tracking is
disturbed by tissue artifacts, which can increase the
tracking error. A redundant needle tracking system
might be necessary to guarantee that the needle tip will
be tracked during the entire procedure. Another clini-
cal aspect is that during in vivo insertion, the presence
of physiological process might affects the biomechan-
ical characteristics of some tissues. In those cases, the
Kalman filter used to fuse the offline and online esti-
mation has to be carefully tuned in order to guarantee
that changes in the needle curvature will be tracked by
the online estimation. Moreover, the interface between
the tissue layers in the human body might not be
clearly definable and a pre-operative scan of the region
might be needed in order to define the tissue layers.
Additionally, to increase the safety of robot-assisted
needle steering, the presented technique can be imple-
mented in a human-in-the-loop steering system.21

Future work will focus on enhancing the US-based
needle tracking to increase it robustness in biological
tissue. We plan to integrate the needle deflection model
into the tracking algorithm and to apply more
advanced image processing techniques to properly
detect the needle tip. We also plan use magnetic
trackers and develop a needle tracking algorithm able
to fuse the US-based and electromagnetic-based needle
tracking. Moreover, we plan to investigate needle
steering in a moving phantom. We are currently
adapting the experimental setup to provide a sinusoi-
dal motion to the phantom in the insertion axis in
order replicate the breathing motion. Our study has
demonstrated the feasibility and the benefits of merg-
ing online and offline curvature estimation to perform
flexible needle steering in biological tissues.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/s
10439-014-1203-5) contains supplementary material,
which is available to authorized users.
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