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Abstract— Passivity of virtual environments running in dis-
crete time is a sufficient condition for stability of the system.
The framework for passive sampled Port-Hamiltonian systems
allows multi-dimensional virtual environments exhibiting inter-
nal dynamic behavior to be computed on a discrete medium in a
passive manner. It is shown that a causality analysis is required
in the framework to detect if any of the model elements have, a
time dependent change of energy function in the energy balance
of the system. The Standard Linear Solid model, which is often
used to simulate the visco-elastic interaction with soft biological
tissue is used as an example. Simulated and experimental
results are provided to demonstrate the benefit of the described
framework. It is shown that using this approach a multi-
dimensional model which is passive in the continuous domain
remains passive in the discrete domain, whereas a standard
discretization approach can become non-passive.

I. INTRODUCTION

A haptic interface couples the user bidirectionally to a
virtual environment. The user can manipulate the objects
in the virtual environment by means of this interface. The
virtual environment conveys force information about this
interaction through the interface to the user. A major research
topic in haptics remains the stability of the coupled sys-
tem [7], composed of the user, the interface, and the virtual
environment.

Due to the bidirectional coupling, stability issues can arise.
A well known source for possible instability of the system is
the interconnection of the continuous and discrete domains
through the haptic interface. The sample and Zero Order
Hold (ZOH) operations used to connect these two domains
can lead to the generation of “virtual” energy. This “virtual”
energy can lead to instability of the system [1],[6].

As the generation of this “virtual” energy is a cause
for stability problems, a logical step is to apply a control
architecture that prevents this energy from being generated.
This works especially well for impedance type haptic in-
terfaces. An impedance type haptic interface has a velocity
as input and force/torque as output causality seen from the
viewpoint of the device. For this type of interface the energy
exchange between the continuous and discrete domains can
be exactly determined [14]. Such a system is depicted in
Fig. 1, where τ∗ indicates a force and q∗ indicates a position.
The subscript ∗ is u or r representing the user and actuators,
respectively.
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Fig. 1. User interacting with an impedance type haptic feedback system
(Freedom 6S [10]) in the continuous domain.

A realistic simulation of the haptic interaction with physi-
cal objects is desired. Most often this will involve a complex
multi-dimensional virtual environment, e.g. for the haptic
interaction with soft biological tissues. A multi-dimensional
system is defined as a system containing more than one
energy storing element. Energy exchange occurs between
the user and the virtual environment, and also between the
energy storing elements themselves. If we monitor these
energy flows we can determine precisely where, when, and
the quantity of “virtual” energy being generated and take
measures to ensure passivity of the system is retained.

Stramigioli et al. [15] introduced a framework for mon-
itoring these energy flows and presented a “bookkeeping”
algorithm to ensure passivity. This framework however has
sometimes been criticized in literature as being unclear on
how to deal with multi-dimensional virtual environments [9].
In this paper we show that the framework can accommo-
date such multi-dimensional systems. With respect to the
work presented by Franken et al. [3] a causality analysis
is included in the framework and model elements with
an admittance causality obtain a time dependent energetic
description.

The paper is organized as follows: Section II will place the
work into context with different passivity-based approaches.
Section III summarizes the theory behind Port-Hamiltonian
systems and the framework for sampled passivity. Section IV
shows how to handle multi-dimensional systems. Based on
an example it is shown that the formulation presented in [3]
poses a problem for models which include elements with
an admittance causality. For these elements an alternative
sample period dependent energetic formulation is presented.
Section V presents simulated and experimental results which
were obtained with the extended framework. The paper
concludes and provides directions for future work in Section
VI.

II. PASSIVITY BASED CONTROL ARCHITECTURES

In the previous section we introduced that the generation
of “virtual” energy is a possible source for stability problems.
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Preventing this “virtual” energy from being generated, or
taking adequate measures to dissipate it when it is being
generated will guarantee passivity, and therefore stability of
the system. A system is said to be passive when the following
energy balance holds∫ t1

t0

τu(t)q̇u(t)dt ≥ E(0), (1)

where q̇u(t) is the velocity of the user, τu(t) is the feedback
force applied by the system to the user, and E(0) is the
energy stored initially in the system. E(0) is assumed to
be zero. Due to mechanical friction some energy dissipation
is bound to occur in the interface. Gillespie et al. [6]
presented an analysis of the maximum stiffness that can
be implemented passively given a certain sample frequency
and the viscous friction in the device. Kim et al. [8] used a
similar principle to introduce an energy bounding algorithm
which determines the maximum allowable increase in the
feedback force at each sample instant in order to limit the
generated “virtual” energy to the energy dissipated in the
haptic interface and the human operator. In order to derive
to a less conservative implementation, they also included
an estimation of the damping of the operator’s arm in the
analysis.

For impedance type displays the energy which is ex-
changed between the continuous and discrete domains can
be determined precisely by a position measurement as [14]

∆HI(k) = −
∫ kT

(k−1)T

τr(t)q̇r(t)dt

= −τr(k)
∫ kT

(k−1)T

q̇r(t)dt (2)

= −τr(k)(qr(k)− qr(k − 1)),

where ∆HI(k) is the exchanged energy, and T is the sample
interval. The indices k and k refer to variables in the discrete
domain. Variables with index k are associated with the kth

sample instant and variables with index k are associated with
the time interval between sample instants k − 1 and k [3].
If we neglect the energy dissipation and inertial effects of
the haptic interface, since they are assumed to be small,
it is possible to reformulate (1) using (2) and piecewise
integration as ∫ nT

t0

τr(t)q̇r(t)dt ≥ 0

⇒
n∑

k=1

τr(k)
∫ kT

(k−1)T

q̇r(t)dt ≥ 0 (3)

⇒
n∑

k=1

τr(k)(qr(k)− qr(k − 1)) ≥ 0,

where n is the number of samples. Ryu et al. [12] used
(2) and (3) to implement a time domain passivity control
architecture that monitors the energy exchange between
the continuous and discrete domains. They used a viscous
damper, modulated by the amount of “virtual” energy gen-
erated, to enforce a neutral energy balance according to (3).

All three approaches listed above only take into account
the “virtual” energy generated by the sample and ZOH
operation. Virtual environments representing physical objects
will most likely contain dissipative elements. This means that
for those systems a stronger condition of passivity is desired
in order to accurately capture the energetic behavior of the
system. With respect to systems with internal dissipation we
would like to have

n∑
k=0

τr(k)(qr(k)− qr(k − 1)) ≥ HR, (4)

where HR is the dissipated energy inside the virtual envi-
ronment. Therefore, the approaches mentioned above, whilst
overall passivity is maintained, do not necessarily capture
the energetic behavior of the object being modeled by the
virtual environment.

III. PASSIVE SAMPLED PORT-HAMILTONIAN SYSTEMS

In the previous section it was discussed that in order to
accurately display the energetic behavior of the system we
need to monitor the flow of energy through the model. Port-
Hamiltonian modeling is centered around the conservation
of energy and shares many characteristics with bond graph
theory [11]. Every physical system can be described as a
combination of energy converting, energy storing, and/or
energy dissipating elements which are connected by means
of a power preserving structure. Each element is connected
to this structure by means of a power port through which
energy exchange can take place. This port is described
by two variables whose product is power, e.g. forces and
velocities for elements from the mechanical domain. The
behavior of each element is described by a constitutive
relation which relates the two power port variables to each
other. The causality of an element (which of the power port
variables is an input to the element and which acts as an
output) is defined by the collection of elements present in
the system and the manner in which they are connected. A
Port-Hamiltonian system is composed of a state manifold
χ, an energy function H : x → R which expresses the
total energy present in the system as function of the state
x, and a passive state dependant network structure D(x),
called a Dirac structure, which describes how the elements
are connected. A thorough explanation of Port-Hamiltonian
modeling can be found in [13].

It is well known that a direct discrete implementation of
the continuous domain description of models can lead to the
generation of “virtual” energy and that this is no different
for Port-Hamiltonian systems [15]. However, as the Port-
Hamiltonian framework is centered around energy exchange
it is possible to implement a passive version of such models
by taking the energy distribution into account. The approach
is that at each sample instant the energy exchange between
the continuous and discrete domains is determined according
to (2). This exchanged energy, the previous state of the
model, and the Dirac structure are then used to determine
the new energy distribution and thus a new state. It should
be noted that this redistribution of energy is performed
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a posteriori. The updated energy distribution is eventually
used to determine the appropriate force for the next sample
interval based on the model structure.

As an energy based connection is used between the con-
tinuous and discrete domain, the state of the system on either
side of this connection can differ as otherwise the connection
would not be passive. This is an important aspect of passive
sampled Port-Hamiltonian systems. As an illustration we will
consider a pure linear spring as virtual environment. Assume
that this spring is compressed to state x(i−1) and as a result
an opposing force F = −kSx(i − 1) is applied to the user.
The user then further compresses the spring by an amount
∆q. As given by (2) the user has injected the following
amount of energy, ∆HI , into the virtual environment

∆HI = kSx(i− 1)∆q (5)

This energy is then added to the energy, HS(i− 1) already
stored in the spring

HS(i) = HS(i− 1) + ∆HI (6)

The new state x(i) of the spring follows from the storage
function of the spring

x(i) =

√
2HS(i)
kS

(7)

The state jump that has occured in the discrete system is thus

∆x(i) = x(i)− x(i− 1)

=
√
x(i− 1)2 + 2x(i− 1)∆q − x(i− 1) (8)

6= ∆q

At first glance it might be assumed that contact between
the user and the virtual spring can be lost if the discrete
state jump is not equal to the physical displacement of the
user. In the framework of passive sampled Port-Hamiltonian
systems however the state of the virtual spring relates not to
a physical position, but to its energetic content. As long as
energy is present in the virtual spring in the example above,
the connection between the user and the virtual spring is
maintained. As energetic interaction is at the center of this
framework, the system will be initially in a deadlock situation
as no energy is exchanged. How to handle such a deadlock
situation is described in [15], [3] and in Section V-A.1.

The key aspect to this approach is to regard a discrete
domain Port-Hamiltonian system as a continuous domain
Port-Hamiltonian system in which the efforts, e.g. forces
for mechanical systems are kept constant during the sample
periods and afterwards compute the new energy distribution.
This corresponds to the causality of the impedance type
haptic interface. This framework was first introduced in
[15]. Franken et al. [3] showed that for the well-known
Voight contact model [5], the dissipated energy was handled
incorrectly. In the original algorithm the dissipated energy
was fixed a priori and a new state x was computed based
on the resulting change in stored energy. The alteration
introduced by Franken et al. [3] was to make the dissipated
energy dependent on the state jump ∆x of the energy storing

S1

S2

B1

User interaction point

q̇(t) F (t)

Fig. 2. The Standard Linear Solid (SLS) model.

element and compute the state jump that satisfies the passive
energy balance. A further refinement however is needed in
order to implement arbitrary multi-dimensional systems. This
will be explained in the next section.

IV. MULTI-DIMENSIONAL SYSTEMS

As mentioned in Section I, virtual environments that
describe physical objects in a realistic manner are usually
multi-dimensional systems. A multi-dimensional system is
a system containing more than one energy storing element,
e.g. in the mechanical domain either an inertia or a spring.
An example of such a multi-dimensional system is shown
in Fig. 2. This represents the Standard Linear Solid (SLS)
model in the continuous domain, which is often used to
describe the visco-elastic response of soft biological tis-
sue [5]. It consists of a spring S1 with stiffness k1 parallel
to a spring S2 with stiffness k2. S2 is in series with a
viscous damper B1 with damping coefficient b1. Multi-
dimensional systems can usually exhibit internal dynamic
behavior. For the SLS model, this is the relaxation effect,
which means that when a contant strain is applied to the
model, the corresponding stresses inside the model decrease
over time [5]. This demonstrates that even when the user and
the virtual environment are not exchanging energy, energy
can be exchanged between the model elements.

Multi-dimensional Port-Hamiltonian systems can be re-
garded as a collection of Port-Hamiltonian subsystems which
are connected by means of a power bond. The SLS for in-
stance can be seen as a spring parallel to a Port-Hamiltonian
subsystem. This second Port-Hamiltonian subsystem consists
of a spring in series with a damper, Fig. 3. Based on the state
of the system a certain amount of energy will be exchanged
between the various subsystems. These connecting power
bonds will therefore be part of the energy balance of each
subsystem. For instance, assume that based on the state of
a particular subsystem some amount of energy is sent to a
different subsystem. The energy balance of that second sub-
system determines how the incoming energy is distributed.
Note that the energy balance of this second subsystem can
also contain a power bond connecting it to yet another
subsystem. Therefore, implementing multi-dimensional Port-
Hamiltonian systems comes down to finding the hierarchy
in which the various energy balances will have to be solved.
As the energy exchange between the user and the virtual
environment is known the energy balance of the subsystem to
which the user is connected is the first to be evaluated. Then
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the energy balances of the subsystems which are connected
to the first subsystem are solved and so on. We will show in
the following that there can exist elements and even whole
collections of elements for which the energy balance is only
a function of the state of the model and the duration of the
sample period. The SLS will be used as an example to show
that the algorithm discussed in [3] needs to be extended to
account for those model elements and to display the correct
behavior of the virtual environment. For this, we will first
follow the steps in the discrete domain as listed in [3].

Assume again that the user has pushed the haptic interface
a distance ∆q(k) against an opposing force F (k) during the
sample interval k. The force F (k) consists of a force F1(k),
due to spring S1, and F2(k) due to spring S2, and damper
B1. By doing so the user has injected an amount of energy
∆HI(k)

∆HI(k) = −F (k)∆q(k), (9)

into the virtual environment. Part of the energy ∆HI(k)
is stored in S1, but also some energy will flow into the
second branch. Spring S1 will exhibit a discrete state jump
of ∆xS1(k) associated with the increase of its stored energy
∆HS1(k). It is important to note that ∆q(k) 6= ∆xS1(k) due
to the fact that we use an energetic description for spring S1.

As spring S1 and the second branch move in parallel, the
discrete displacement over the power port connecting the
second branch to the user interaction point will be equal to
the discrete state jump ∆xS1(k). Therefore the energy that
flows into the second branch, ∆H2(k), will be

∆H2(k) = −F2(k)∆xS1(k). (10)

The increase, ∆HS1(k) of energy stored in spring S1 is
linked to its state, xS1(k), and the discrete state jump,
∆xS1(k) as

HS1(k) =
1
2
k1(xS1(k))2

HS1(k + 1) =
1
2
k1(xS1(k) + ∆xS1(k))2.

⇒ ∆HS1(k) = HS1(k + 1)−HS1(k) (11)

=
1
2
k1(∆xS1(k))2 + k1xS1(k)∆xS1(k),

where HS1(k) is the potential energy storage function of a
linear spring. ∆HS1(k) is also defined by the distribution of
∆HI(k) over ∆H2(k) and ∆HS1(k) as

∆HS1(k) = ∆HI(k)−∆H2(k). (12)

Combining (11) and (12), and substituting (10) results in a
second order equation which can be solved for ∆xS1(k).
This is graphically depicted in Fig. 3.

The energy ∆H2(k) now needs to be distributed in the
second branch. According to [3] the dissipated energy is a
function of the force exerted by the damper during the sample
period multiplied by the displacement associated with its
power port assuming a constant velocity. For damper B1 the
constant velocity vB1(k) of its power port can be expressed

∆HI(k)

{

F2(k)

∆HS1(k) ∆H2(k)
∆H2(k)

∆xS1(k)∆xS1(k) {

Fig. 3. A multi-dimensional system, consisting of two storage elements,
represented as an interconnection of two subsystems.

in terms of the discrete state jumps of springs S1, ∆xS1(k)
and S2, ∆xS2(k) as

vB1(k) =
∆xS1(k)−∆xS2(k)

T
. (13)

Using (13) the energy dissipated by damper B1, ∆HB1(k)
can be expressed as

∆HB1(k) = −F2(k)vB1(k)T
= −F2(k)(∆xS1(k)−∆xS2(k)). (14)

As for spring S1, an energy balance can be composed in the
form of a second order equation. The increase, ∆HS2(k) of
the energy stored in spring S2 can be written in the forms
of (11) and (12) as

∆HS2(k) =
1
2
k2(∆xS2(k))2 + k2xS2(k)∆xS2(k), (15)

and
∆HS2(k) = ∆H2(k)−∆HB1(k). (16)

However, the combination of (14) and (16) results in

∆HS2(k) = −F2(k)∆xS2(k). (17)

Combining (15) and (17) and simplifying with respect to
∆xS2(k) results in

1
2
k2(∆xS2(k))2 + (k2xS2(k) + F2(k))∆xS2(k) = 0. (18)

Further
F2(k) = −k2xS2(k). (19)

Substituting (19) into (18) it always follows that

∆xS2(k) = 0. (20)

By applying the definition proposed in [3] for the energy
dissipated by damper B1, spring S2 is effectively removed
from the model, as shown by (20).

In order to find the source of this problem we explicitely
derive the continuous domain Port-Hamiltonian description
of the system. We first write down the energy function H(t)
as

H(t) =
1
2
k1xS1(t)2 +

1
2
k2xS2(t)2 (21)

The forces exerted by springs S1 and S2 are given by
∂H(t)
∂xS1

and ∂H(t)
∂xS2

, respectively. Recall that each element is
connected in the model to the network structure by means
of a power port. One of the variables of this power port acts
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Fig. 4. Bond graph of the Standard Linear Solid (SLS) model showing an
admittance causality for damper B1.

as an input and the other as an output to the network. The
network structure specifies how the input of each element
is connected to the outputs of the other elements. If we
represent damper B1 as a power port of which FB1 indicates
the force and vB1 the velocity, the system is fully described
by the following structure using (21) as

ẋS1

ẋS2

FB1

F

 =


0 0 0 1
0 0 −1 1
0 1 0 0
−1 −1 0 0




∂H
∂xS1
∂H

∂xS2

vB1

q̇

 , (22)

where we have dropped the time dependency for notational
simplicity. The equivalent bond graph is depicted in Fig. 4.
At a “1”-junction the efforts are additive and the flow
constant, and at a “0”-junction this is opposite. The direction
of the causal stroke on each power bond gives the direction
of the effort variable, e.g. a causal stroke at the element side
of a power bond means that the effort is the input and the
element computes the resulting flow.

Both the Port-Hamiltonian description given in (22) and
Fig. 4 show that damper B1 has an admittance causality.
The force imposed on it by spring S2 will result in a certain
velocity with which the damper is pushed away. Recall that
due to the impedance causality of the interface we defined a
discrete-time Port-Hamiltonian system as a continuous-time
system in which the forces were fixed during the time period
between two sample instants. The energy dissipated by the
damper will therefore have to be a function of the duration
of the sample period. Using this admittance causality, the
constitutive relation of a viscous damper, and the duration of
the sample period the dissipated energy can be expressed as

FB1(k) =
∂H(k)
∂xS2

(k)

= k2xS2(k)

vB1(k) =
FB1(k)
b1

(23)

∆HB1(k) = FB1(k)vB1(k)T

=
(FB1(k))2T

b1
.

This time dependency will occur in all parts of the model
that have an admittance causality, e.g. the increase in kinetic
energy of a mass on which a force is imposed is a function
of time.

To summarize, the following steps need to be undertaken
to implement an arbitrary passive sampled Port-Hamiltonian
system:

• Derive the continuous time Port-Hamiltonian system.
• Perform a causality analysis of each element.
• Define a ”change of energy” function for each element.

Elements with an admittance causality obtain a time
dependent function.

• Define the appropriate energy balances to compute the
energy which is stored, dissipated and/or exchanged
with other subsystems through a power port.

• Define the hierarchy in which the various energy bal-
ances need to be evaluated.

• Monitor the energy flows and implement a strategy to
dissipate generated “virtual” energy

V. AN EXAMPLE: PASSIVE INTERACTION WITH A
VISCO-ELASTIC MATERIAL

As an example to illustrate the theory explained in the
previous section we will consider a single degree of freedom
interaction with a piece of virtual material characterized by
a SLS model as depicted in Fig. 2. First the various steps
of the algorithm with respect to deadlock, energy exchange,
and passivity recovery are described, and then simulated and
experimental results are presented.
A. Virtual Environment

When the user comes into contact with the virtual wall
this is indicated by the condition

q(k) < qw, (24)

where q(k) is the measured position of the haptic interface,
and qw is the initial undeformed position of the virtual wall.
The user is touching the material with the haptic interface
and can therefore only push against the material and not pull
on it. This determines the condition at which the contact
between the user and the virtual environment is broken as it
means that spring S1 cannot be elongated. When no energy
is stored in S1, the contact is broken.

1) Deadlock:
The system is initially in a deadlock situation meaning

that no energy is stored inside the springs and as such no
energy exchange occurs between the user and the virtual
environment. When the system is in a deadlock situation, a
fraction α of the penetration into the virtual wall is taken as
the state change of both the springs and as a result an amount
of “virtual” energy ∆Hdis is generated (25). This generated
energy is to be dissipated by the bookkeeping algorithm of
Section V-A.3.

∆xS1(k) = α(qr(k)− qw)
xS1(k + 1) = ∆xS1(k)
xS2(k + 1) = ∆xS1(k) (25)

∆Hdis(k) =
1
2
k1(∆xS1(k))2 +

1
2
k2(∆xS2(k))2

Another deadlock situation arises due to the time depen-
dency of the dissipation in the system as given in (23). Each
iteration, energy is dissipated from spring S2 so the stored
energy can be depleted and another deadlock situation for S2

is obtained. In such a situation the state change ∆xS2(k) is
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TABLE I
PARAMETER VALUES OF THE SIMULATION AND EXPERIMENT

Parameter Simulation Experiment
k1 500 N/m 50 N/m
k2 50 N/m 50 N/m
b1 100 Ns/m 40 Ns/m
qw -0.2 m -0.11 m

chosen equal to ∆xS1(k) and the generated “virtual” energy
is added to the bookkeeping, similar to (25). The sign of
∆xS1(k) determines if S2 is being compressed or elongated,
which defines the direction of the force that S2 exerts.

2) Energy exchange algorithm:
When energy is being exchanged between the continuous
and discrete domains the energy exchange algorithm can be
used. The state jump for spring S1 can be computed using
(9), (10), (11) and (12). The state jump for spring S2 can
be computed by combining the computed H2(k) with (15),
(16) and (23). The computation of the discrete state jumps
are quadratic problems and have therefore two solutions. The
solution with the smallest magnitude is chosen as this results
in a new state which has the smallest Eucledian distance to
the previous state.

It is possible under certain conditions that there exists no
exact solution to the quadratic problem to compute ∆xS1(k).
Usually this is the case when the user is extracting energy
from the virtual environment and a small amount of energy is
stored in the system. As discussed in [3] this is a consequence
of the ZOH operation. It is possible in these cases to
use an approximate solution where the state jump of the
previous sample, ∆xS1(k−1) is used to determine the energy
∆H2(k). (26) shows how to compute ∆xS1(k) in such a
case.

∆H2(k) = −F2∆xS1(k − 1)
∆HS1(k) = ∆HI(k)−∆H2(k)

HS1(k + 1) = HS1(k) + ∆HS1(k) (26)

xS1(k + 1) = −
√

2HS1(k + 1)
k1

This approximate solution given by (26) is used until the
energy stored in spring S1 is depleted or an exact solution
to the quadratic problem to compute ∆xS1(k) exists.

3) Passivity recovery:
Section V-A.1 discussed where ”virtual” energy is generated
in the algorithm. The exact amount is recorded by the
bookkeeping algorithm and steps need to be undertaken in
order to regain passivity according to (4). The same switched
damping structure as used in [3] will be applied in this
example. This approach is similar to the Passivity Controller
part of the algorithm described by Ryu et al. [12]. An
additional dissipative force is added to the force computed
by the virtual environment to extract additional energy from
the user to compensate for the generated “virtual” energy.

B. Results

Both simulations and experiments were carried out for the
example of Section V-A using the simulation environment
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Fig. 5. Simulation of repetitive contacts: Plots depict the position,
computed force and energy exchanged between the user and the virtual
environment.

20-sim [2]. In order to compare the performance also a con-
tinuous domain model and a regular Euler discretized model
were implemented. In the simulations a sinusoidal motion
is applied to each model. The amplitude and frequency of
the trajectory are 0.21 m and 0.5 Hz. The values of the
parameters of the virtual environment are listed in Table I.
These parameters are chosen for illustrative purposes and
do not necessarily reflect any physical material. Different
parameters for the simulations and experiments are chosen
as our experimental setup cannot generate high forces and a
virtual environment with a higher stiffness better illustrates
the differences between the various models.

Fig. 5 shows the force responses of the three models and
the exchanged energy when the discrete models are run at a
sample frequency of 1 kHz. It is visible that whereas the
continuous domain model and the passively implemented
model are both dissipative, the Euler discretized model is non
passive. A difference with respect to dissipated energy exists
between the continuous and passively implemented model
due to the fixed time step dissipation of (23). As the sample
period goes to zero both models converge.

In the experiment we show that the passive implementation
of the model can display the relaxation effect. The experi-
ment was performed with a Freedom 6S haptic interface [10].
The virtual environment was run in 20sim with a soft real
time sample frequency of 100 Hz. The forces that can be
rendered by the Freedom 6S and the workspace are limited so
the parameters were changed with respect to the simulations
as listed in Table I. Fig. 6 shows the relaxation curve of
the virtual environment, the force applied to the user as
computed by the virtual environment, and the various energy
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Fig. 6. Experimental data showing the relaxation effect in the virtual
environment: HI is the energy exchanged between the user and the virtual
environments, HS1 and HS2 are the energy stored in springs S1 and S2,
and HB1 is the accumulated dissipated energy by damper B1. The energy
stored in spring S2 (HS2 ) is smoothly dissipated by damper B1.

functions of the model elements. The energy injected by
the user into the virtual environment is given by HI , the
energy stored in springs S1 and S2 by HS1 and HS2 , and
the accumulated dissipated energy by damper B1 by HB1 .
Initially, both spring S1 and S2 are compressed, but the
energy stored in S2 is slowly dissipated by damper B1. As a
result the force required to sustain this deformation decreases
and the relaxation effect is noticeable. Eventually the energy
injected by the user equals the energy stored in spring S1 plus
the energy dissipated by damper B1, which corresponds to
the definition of passivity as given in (4).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that it is possible to imple-
ment sampled multi-dimensional Port-Hamiltonian systems
in a passive manner. To this end we needed to introduce
a causality analysis of the network and showed that due
to the impedance type nature of the virtual environment
all network elements with an admittance causality become
time dependent. Simulations and experiments with a visco-
elastic virtual environment showed that it is possible to
implement multi-dimensional virtual environments with in-
ternal dynamic behavior with this framework. The framework
guarantees the passivity of the virtual environment and also
takes the internally dissipated energy into account, whereas
a regular discretized model can become non passive.

In the example treated in this paper the multi-dimensional
system has been broken down into separate subsystems
to compute the energy distribution. Future work will look
into the possibility to formulate the computations into a

compact form allowing for a more efficient implementation.
Several application areas will be explored using the described
framework. A first application of the framework will be the
simulation of the haptic interaction with complex virtual
environments representative of actual biological tissue. A
second application will be in the area of multiple degrees
of freedom virtual environments, e.g. the manipulation of
a virtual environment with two haptic interfaces. In that
scenario, energy is injected into the virtual environment
from two interaction points, but the approach to solving the
energy balances, according to Section IV is unaltered. The
framework can also be applied in telemanipulation schemes.
For instance in the algorithm described by Franken et al. [4]
where a two layer approach is introduced to separate the
passivity and transparency properties of a telemanipulation
chain. In [4] the user is interacting with a local model of the
remote environment. The result of this paper can be used
to implement that local model in a passive manner. In all
of these applications benchmark tests will be performed to
compare the performance of this framework to that of other
existing approaches with respect to transparency, contact
stability, and robustness to parameter variations.
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