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Abstract

Background Surgical simulation systems can be used to estimate soft tissue
deformation during pre- and intra-operative planning. Such systems require a
model that can accurately predict the deformation in real time. In this study,
we present a back-propagation neural network for predicting three-dimensional
(3D) deformation of a phantom that incorporates the anatomy of the male pelvic
region, i.e. the prostate and surrounding structures that support it.

Method In the experiments and simulations, a needle guide is used to deform
the rectal wall. The neural network predicts the deformation based on the
relation between the undeformed and deformed shapes of the phantom. Training
data are generated using a validated finite element (FE) model of the prostate
and its surrounding structures. The FE model is developed from anatomically
accuratemagnetic resonance (MR) images. An ultrasound-based acoustic radiation
force impulse imaging technique is used to measure in situ the shear wave
velocity in soft tissue. The velocity is utilized to calculate the elasticities of the
phantom. In the simulation study, the displacement and angle of the needle
guide are varied. The neural network then predicts 3D phantom deformation
for a given input displacement.

Results The results of the simulation study show that the maximum absolute
linear and angular errors of the nodal displacement and orientation between
neural network and FE predicted deformation are 0.03mmand 0.01�, respectively.

Conclusions This study shows that a back-propagation neural network can be
used to predict prostate deformation. Further, it is also demonstrated that a
combination of ultrasound data, MR images and a neural network can be used
as a framework for accurately predicting 3D prostate deformation in real time.
Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

Surgical simulation systems offer a safe and effective method for training and for
pre- and intra-operative planning. Such simulation systems can be used for
percutaneous surgeries such as prostate biopsy and brachytherapy. The prostate
is located within the pelvic cavity and surrounded by critical structures, such as
nerve bundles and blood vessels. Moreover, the volume of the prostate is small
(approximately 40 mm� 20 mm� 20 mm) (1). Thus, inexperienced physicians
generally require hours of training in order to be competent in performing the
percutaneous surgeries. Planning is also essential for preventing misplacement
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of the needle tip during the procedure. Errors in needle tip
placement result in surgical complications such as tissue
trauma or urinary incontinence (2).

Misplacement of the tip can be caused by several reasons.
The interactions between surgical instruments and soft
tissue during the procedure, physiological processes and
patient motion often lead to prostate deformation and,
subsequently, to motion of the suspected lesion. An accurate
patient-specific biomechanical model can aid physicians by
predicting prostate deformation in real time during pre-
and intra-operative planning. Usage of such a model will
reduce errors in the needle tip placement. Moreover, a
model that is able to predict soft tissue deformation in real
time can also be utilized as a control input for robotic
systems in order to accurately target the suspected lesion (3).

One of themethods used to predict soft tissue deformation
is finite element (FE) analysis (4–8). The FE model utilizes
knowledge about soft tissue, such as elasticity, organ
geometry and boundary conditions. This information can
be obtained from in vivo measurements in order to
accurately predict soft tissue deformation. The drawback
of the FE analysis for surgical simulation systems is that
it is known to be computationally intensive. Several
techniques are available to reduce the computational cost
of the FE analysis, e.g. scalable parallel solution algorithm
and model reduction technique (9,10). The GPU-based
implementation of the FE analysis can also be used to
significantly reduce the computational time of the FE
analysis (11). Nevertheless, the use of a three-dimensional
(3D) FE-based model remains a challenge for accurate
and real-time simulation systems.

An alternative method for simulation systems is to use
statistical modelling-based techniques. These techniques
can be utilized to parametrize the statistical properties of
training samples with known deformations, and subse-
quently to predict soft tissue deformation (12). Davatzikos
et al. used principal mode of co-variation between anatomy
and deformation to estimate the two-dimensional (2D)
deformation of simplified ellipsoid shapes (13). A neural
network can also be used to analyse and obtain properties
of the statistical data.Morooka et al. presented the possibility
of a neural network for predicting the relation between
external force and 3D deformed liver-shape (14). However,
in their study, the 3D neural network-predicted liver
deformations differ from the results of the FE analysis.

Moreover, Zhong et al. showed that a neural network can
also be used to predict material deformation based on the
theory of conservation of energy (15). In their paper, the
potential energy stored in the elastic body is propagated
through mass points by the cellular neural network activity.
However, this method is not a physics-based approach,
since an analogy has to be drawn between the force applied
and the equivalent electric energy at the contact point.
Previous work by De et al. also showed that a radial basis
function network can be used to reconstruct the deforma-
tion fields of a human stomach and a Penrose drain model
(16). However, their training data for the neural network
was generated using a non-validated FE model. Further, a
neural network has also been used to simulate the inter-
action forces between tool and tissue, i.e. cutting or haptic
force feedback (17–19).

In this paper, we demonstrate that a back-propagation
neural network can accurately predict the 3D deformed
shape of a prostate phantom with both anatomical details
and material properties of the prostate and its surrounding
structures. The neural network is used to estimate the
relationship between the undeformed and deformed shapes
of the phantom. The phantom is developed from a series of
anatomically accurate magnetic resonance (MR) images of
the prostate and its surrounding structures. Further, the
FE model is validated with experimental results (Figure 1).
The FE model is populated with linear elastic material
properties that are estimated based on the shear wave
velocity in the phantom. The velocity is measured in situ
using an ultrasound-based acoustic radiation force impulse
(ARFI) imaging technique (20). Subsequently, the validated
FE model is used to generate training data for the neural
network. Previous work by Misra et al. presented that the
deformation response of soft tissue when subjected to
displacement is dominated by its geometry and boundary
conditions, rather than its properties (8). Further, the
experimental study performed by Op den Buijs et al. showed
that a linear elastic FE model can be used to predict
target displacements under various loading and boundary
conditions (21). Hence, a linear elastic FE model with
geometrical non-linearity is used in this study to predict soft
tissue deformation.

In comparison to previous studies, we demonstrate that
a combination of known medical imaging modalities
(ultrasound data and MR images) and a neural network

Figure 1. The experimental set-up used to validate the results of the finite element analysis: 1, needle guide; 2, camera; 3, gelatin
phantom; 4, experimental table; 5, guide block; 6, markers. Dashed line shows the outline of the prostate.
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can be used as a framework to develop accurate surgical
simulation of the MR-guided prostate biopsy procedure.
Training data for the neural network is generated using
a validated FE model that incorporates both the prostate
and surrounding structures that support it. Moreover,
the results of this study also show that a back-propagation
neural network can predict the 3D deformation of a
phantom with both anatomical details and material
properties of the prostate and its surrounding structures.

In this study, a needle guide is utilized to deform the
phantom. Such a guide is routinely used prior to needle
insertion during the transrectal MR-guided biopsy procedure.
Previous work has shown that needle insertion causes
prostate deformation (4,7). De Silva et al. showed that
lateral tissue motion due to needle insertion is up to
1.5 mm (22). The usage of a needle guide also results in
movement and deformation of the prostate (23,24). In
our recent work, it is noted that a needle guide can deform
the prostate up to 6mm, or 10% of the longest length of the
undeformed prostate (25). Previous work by Karnik et al.
showed that the needle tip has to be positioned within
a spherical radius of 2.5 mm from the suspected lesion
for a conclusive biopsy (26). Since the needle guide
significantly deforms the prostate during the procedure,
this study aims model the deformation for accurate surgical
simulation systems.

This paper is organized as follows: the experimental
set-up, FE analysis and theory of back-propagation neural

network are presented in Section 2. Section 3 discusses
the results of the simulation study. Section 4 concludes
with a discussion and directions for future work.

Materials and methods

First, details of the experimental set-up are presented.
Subsequently, the FE model, and contact and boundary
conditions used in the FE analysis are described. Finally, the
theory of a back-propagation neural network is explained.

Experimental set-up

Figure 1 presents the experimental set-up, consisting of a
one degree-of-freedom (DOF) translational device and a
needle guide (item 1). In the experiments, the guide is
displaced along its axis using a Misumi translation stage
(Misumi Group Inc., Tokyo, Japan) and a Maxon Motor
(Maxon Motor AG, Sachseln, Switzerland) (27). An Elmo
Whistle 2.5/60 Digital Servo Drive (Elmo Motion Control
Ltd, Petach-Tikva, Israel) controls themotor (28). The set-up
is used to deform a phantom that incorporates the anatomy
of the male pelvic region, i.e. prostate and surrounding
structures that support it.

The 3D model of the phantom is developed from a
series of anatomically accurate MR images (Figure 2a, left),
and using a commercial software ScanIP (Simpleware,

(a)

(b)

Figure 2. (a) Anatomically accurate magnetic resonance images are used to develop a sequential mould (right). (b) The phantom that
incorporates the anatomyof themale pelvic region, i.e. the prostate and surrounding structures that support it. The phantom is fabricated
using the sequential mould shown in (a). In (b), the anatomy of the male pelvic region incorporated in the phantom are coloured for
clarity: 1, spine; 2, adipose tissue; 3, rectal wall; 4, urinary bladder; 5, prostate; 6, markers; 7, pubic bone. Further, inset in (b) presents
the finite element model of the prostate and surrounding adipose tissue. Dashed line shows the outline of the prostate, and red dots
represent the nodeswhose locations correspond to the positions of themarker centroids in the phantom.Markers are shownby green squares.
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Exeter, UK). Subsequently, a sequential mould (Figure 2a,
right) is designed to fabricate the phantom (Figure 2b),
using SolidWorks 3D computer-aided design (CAD) software
(Dassault Systémes SolidWorks Corp., Concord, USA).
The mould is printed using an Objet Eden2503D printer
(Objet Geometries, Billerica, USA). In the experiments, the
needle guide is pushed against the rectal wall (item 3,
Figure 2b) at a translational speed of 1 mm/s and an angle
of �10� to 10� with a resolution of 5� (Figure 3). Further,
the maximum displacement of the needle guide is 5 mm.
The number of experimental cases used to validate the
FE model is 5.

The phantom is made using a gelatin mixture (Dr August
Oetker KG, Bielefeld, Germany) and it incorporates the
anatomy of the male pelvic region. The anatomy includes
the prostate and surrounding structures that support it, i.e.
pubic bone, rectal wall, adipose tissue and urinary bladder.
The compositional percentage of gelatin in the mixture
is varied to produce a phantom with linear elastic and
homogeneous material properties. The properties are
estimated based on the shear wave velocity in the phantom.
This velocity is measured in situ using a commercially avail-
able implementation of an ARFI imaging technique, known
as Virtual TouchTM Quantification, installed on a Siemens
AcusonS2000 ultrasound machine (Siemens AG, Erlangen,
Germany) (28). The elasticities calculated for the prostate
and its surrounding tissue are presented in Table 1. The
spine and pubic bone (items 1 and 6, Figure 2b, respectively)
aremade using VeroWhite-FullCure830 (Objet Geometries).

During the experiments, prostate deformation is tracked
with the aid of green markers that are embedded at the
surface of the phantom (item 6, Figure 1). A camera is used
to track the centroids of these markers. The total number of
markers on the prostate is eight. For validation, displace-
ments of the centroids are correlated with the nodal

displacements obtained from FE analysis. The locations of
the nodes correspond to the positions of the centroids in
the phantom (inset, Figure 2b).

The marker tracking algorithm is based on colour
thresholding and blob detection, and developed using the
OpenCV library (29). The prostate surface deformation is
recorded at 30 frames/s via a Sony XCD-710CR charge-
coupled device (CCD) camera (item 2, Figure 1) (Sony,
Tokyo, Japan), located 71 mm above the needle guide
(item 1, Figure 1). The resolution of the camera is 1024 �
768 pixels. The accuracy of the marker tracking algorithm
obtained from an evaluation study is 0.2 mm. The experi-
mental results are used to validate the FE model, which is
subsequently utilized to generate training data for the
neural network.

Finite element model

Previous work by Misra et al. showed that the deformation
response of soft tissue when subjected to displacement is
dominated by its geometry and boundary conditions, rather
than its properties (8). Moreover, Op den Buijs et al.
presented an experimental study and their results showed
that a linear FE model can be used to predict target
displacements under various loading and boundary
conditions (21). Thus, isotropic and linear elastic material
properties are used in the FE analysis to predict 3D
deformation of the phantom.

The FE model is developed using anatomically accurate
MR images, and populated with elasticities calculated using
the shear wave velocity in the phantom. The velocity is
measured in situ using the implementation of ARFI imaging
technique. Young’s modulus (E) is related to the shear wave
velocity in the phantom (20):

E ¼ 2 1þ mð Þυ2s r; (1)

where υs is the shear wave velocity, and r is the density of
the phantom. In the simulations, m is assumed to be 0.495
for a nearly incompressible phantom. Mean υs for the
adipose tissue, prostate, urinary bladder and rectal wall
are 1.89, 5.03, 6.08 and 7.59 m/s, respectively. The
average density of the phantom is 1008 kg/m3.

The FE analysis is performed using ANSYS (Canonburgh,
USA)mechanical software. The FEmesh consists of 10-node
tetrahedral elements with a minimum and maximum

Figure 3. In the experiments and simulations, displacement
(Xdisp) and the angle (b) of the needle guide are varied.
For all experiments, the maximum displacement of the
guide is 5 mm. Further, b is varied from �10� to 10� with a
resolution of 5�. Five experimental cases are used to validate
the finite element model. The direction and angle of the
displacement of the guide are shown by red arrows.

Table 1. Elasticities of the prostate and its surrounding tissue

Tissue EL (kPa) Eexp (kPa)

Adipose tissue (fat) 10.24 10.63
Rectal wall 191.72 172.61
Prostate 60.50 65.89
Urinary bladder 96.87 100.38
Spine and pubic bone 1.82 � 106 2.50 � 103

EL represents the elasticities of various soft tissue obtained from the
literature (8,35,36). Eexp is calculated using equation (1). Shear wave
velocity in the phantom is measured using the ultrasound-based
acoustic radiation force impulse imaging technique. For the spine
and pubic bone, Eexp is the elasticity of Verowhite–Fullcure830.
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element edge length of 0.17 and 2 mm, respectively. A
mesh resolution study confirms that the maximum element
edge length of 2 mm produces consistent results. A further
reduction in the maximum edge length does not result
in an improvement in the results of the simulation study
(FE model validation). The total number of elements in
the FE model is 218,290.

Contact and boundary conditions

The anatomy of the male pelvic region incorporated in the
phantom is made using the sequential mould (Figure 2a,
right). During the manufacturing process, the phantom is
allowed to bond during solidification. Thus, the internal
contact between the anatomy incorporated in the phantom
is modelled as bonded. Moreover, during experiments, the
phantom rests on the experimental table (item 4, Figure 1)
and lubricant is applied between the phantom and table.
This allows free sliding at the interface and prevents the
phantom from rupturing when the needle guide is pushed
against it. Hence, the contact between the phantom and
table is assumed to be frictionless.

At the beginning of the experiment, the needle guide is
positioned using a guide block (item 5, Figure 1), such that
the tip of the guide just touches the rectal wall. The needle
guide is constrained to move only along its cylindrical axis
(Figure 3). In the FE model, translational and rotational
constraints are also applied to the spine and pubic bone
(items 1 and 7, Figure 2b). In the experiments, both the
spine and pubic bone are fixed to the experimental table.
The results of FE analysis are validated using experiments
and subsequently the FE model is utilized to generate
training data for the neural network.

Neural network model

A neural network usually consists of input, hidden and
output layers (Figure 4) and it can be used to estimate a
function for the given input and output training data (30).
The output of the neural network depends on the type of
activation functions chosen.One of the algorithmsused to train
a neural network is the back-propagation algorithm (31).
This training process can also be seen as an optimization
process of a cost function. The back-propagation algorithm
works bymodifying theweights of the neural network, such
that the sum of the squares for the errors between the
desired and estimated outputs of the entire training data
set (cost function) is minimized. Further, a gradient descent
method is used in the optimization process (32).

The time required to train the neural network depends
on the number of input and output neurons, and hidden
layers. In this study, the displacement and angle of the
needle guide serve as inputs to the neural network. The
network is trained to predict nodal displacements of the 3D
FE model (218,290 nodes). In order to decrease the number
of output neurons, principal component analysis (PCA) is
utilized (33). After PCA, the original 218,290 elements
of output are reduced to 16 elements. Thus, each of the
training data (input–output pair) consists of two and 16

components of input and output, respectively. Previous
work by Shuxiang et al. showed that the optimal number
of hidden layers is given by the ratio of the total number of
training patterns to the dimensions of the input elements
(34). Thus, the total number of hidden layers in our neural
network is 60. Subsequently, for a simulation study, the
neural network predicts the 3D deformed shape of the
phantom for a given input displacement.

Results

This section presents the results of the simulation studies
(FE model validation and prostate deformation prediction).
First, the discrepancy between the results of experiments
and FE analysis (FE model validation) is presented. Then,
the errors between the results of neural network-based
simulation and FE analysis (prostate deformation prediction)
are shown.

Finite element model validation

In order to validate the results of FE analysis with experi-
ments, the centroids of the markers are tracked and their
linear and angular displacements are calculated. The total
number ofmarkers (item 6, Figure 2b) located on the surface
of the prostate is eight. The experimental results are then
compared to the nodal linear and angular displacements
obtained from FE analysis. The locations of these nodes

Figure 4. A sketch of the backprogation neural network used in
this study. Xdisp and b are the displacement and angle of the needle
guide, respectively, and they serve as the input to the neural
network (Xin). The network predicts nodal displacements of the
3D FE model (218,290 nodes). Principal component analysis
(PCA) is used to decrease the number of output neurons (34). After
PCA, the original 218,290 elements of output (Xout) are reduced
to 16 elements (Y1, Y2, . . ., Y16). Thus, each of the training data
(input–output pair) consists of two and 16 components of input
and output, respectively. i, j, k represent neurons in the input,
hiddenandoutput layers, respectively. Further, vji andwkj represent
theweight between input and hidden neurons, and between hidden
and output neurons, respectively. In our neural network, the
number of hidden layers is 60, and the number of neurons for input
and output are 2 and 16, respectively.
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correspond to the positions of the centroids in the phantom.
Linear and angular errors are calculated as themaximum ab-
solute distance and angle between the results of experiments
and FE analysis, respectively. The linear and angular errors
for the five validation cases are presented inTable 2. It is seen
that the maximum absolute linear error for the marker
position between the results of the experiments and FE
analysis is 0.29 mm, and it is noted for case 4 (Table 2). On
the other hand, the maximum angular error for the marker
orientation is 8.62� (case 5).

Prostate deformation prediction

In this study, the neural network is used to predict nodal
displacements of the FE model in 3D space. These displace-
ment data for 218,290 nodes of the FE model are
regenerated from the 16 components of neural network
output by reversing the PCA transformation. The training
data for the neural network are generated using the
validated 3D FE model. For generating variability in the
patterns of the training data, the angle at which the guide
deforms the rectal wall is varied from �10� to 10�, with a
resolution of 1�. Further, the guide is displaced in steps of
0.25 mm and for a displacement up to 10 mm. Given that
the variations in the displacement and angle of the needle
guide result in 40 and 21 patterns, respectively, the total
number of training data is 840 input–output pairs.

In order to compare the results of neural network-based
simulation with FE analysis, we choose the “leave-one-out
method” (37). We randomly choose five patterns as test
samples and leave these out from the original 840 input–
output pairs generated for the training data. This reduces
the total number of training data used to train the neural
network to 835 input–output pairs. Further, the test
samples have different sets of displacement and angles of
the needle guide (Table 3) and, hence, they represent
distinct initial conditions. The training of the neural
network is completed in 38.5 min. Subsequently, for each
of the test samples, we compare the nodal displacements
predicted by the neural network with the results of
FE analysis.

Linear and angular errors are defined as the maximum
absolute distance and angle between the results of neural
network-based simulation and FE analysis, respectively.
These errors are calculated for the 218,290 nodes of the
FEmodel, and themaximum errors for the five test samples
are presented inTable 3. Further, Figure 5 shows the outline
of the neural network-predicted prostate deformation
overlaid on the corresponding result of the finite element
analysis for representative test sample 1 (Table 3). We also
calculate relative errors for nodal displacements predicted
by the neural network and FE analysis. The relative error
(er) is given by:

er ¼ eik k
max

j yj
�
�

�
�
� 100% with ei ¼ yi � ŷ i (2)

where yi and ŷi R218,290 are the 218,290 components of the
results of the neural network output after reversing PCA
transformation and FE analysis, respectively. Themaximum
relative errors for the five test samples are also presented
in Table 3.

Qualitatively, it can be seen that the neural network is
capable of accurately predicting the 3D deformation of
the phantom (Figure 5). Quantitatively, it is observed that
the maximum absolute linear and angular errors of the
nodal displacement and orientation between neural
network- and FE-based predictions are 0.03 mm and
0.01�, respectively (Table 3). The mean time taken for
the neural network to predict 3D deformation of the
phantom for a given input displacement is 0.04 s on a
2.4 GHz Intel i5 computer with 8 GB RAM.

Discussion

Ultrasound and MR images are routinely used for the
diagnosis and treatment of prostate cancer. The results
of this study show that ultrasound data, MR images and
a neural network can be used as a framework to develop
accurate surgical simulation of the MR-guided prostate biopsy
procedure. In the experiments, the shear wave velocity in
the phantom is measured in situ using an ultrasound-based
ARFI imaging technique. The FE model is developed using
anatomically accurate MR images and populated with

Table 2. Results of the validation study between finite element
(FE) analysis and experiments

Case b (�) e (mm) se (mm) θ (�) sθ (�)

1 �10 0.26 0.03 1.33 0.18
2 �5 0.23 0.03 2.81 0.42
3 0 0.16 0.02 4.97 0.24
4 5 0.29 0.05 7.45 1.30
5 10 0.28 0.05 8.62 0.85

The total number of markers on the prostate is eight (item 6,
Figure 2b). ’Case’ represents the validation cases (Figure 3); for all
cases, the maximum displacement of the needle guide is 5 mm. b,
angle at which the guide is displaced; e and θ, maximum absolute
linear and angular errors of the marker position and orientations,
respectively, between the experiments and FE analysis for the eight
markers tracked during the experiments; se and sθ, mean SD of the
linear and angular errors, respectively. The number of experiments
is 5. Accuracy of the marker tracking algorithm is 0.2 mm.

Table 3. The discrepancy between the neural network (NN)-
and finite element (FE)-based predictions of 3D phantom
deformation

Sample Xdisp (mm) b (�) eNN (mm) a (�) er (%)

1 7.75 �5 0.03 0.00 1.02
2 4.25 �3 0.02 0.01 1.01
3 5.25 �2 0.02 0.00 0.83
4 1.5 �1 0.01 0.00 1.40
5 2.5 2 0.01 0.01 1.41

’Sample’ represents the test samples. The displacement and angle of
the needle guide are represented byXdisp and b, respectively; eNN and
a, maximum linear and angular errors of the nodal displacement and
orientation, respectively, between neural network- and FE-predicted
nodal displacements; er, maximum relative error (%) of the nodal
displacement between the results of the neural network- and FE-
based simulation, equation (2).
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elasticities calculated using the shear wave velocity. Subse-
quently, the training data for the neural network are generated
using the linear elastic FE model. The neural network then
predicts the 3D deformation of the phantom, based on the
statistical properties of the training data. In this study, the
FE model is validated with experimental results.

The results of the FE model validation show that a
linear elastic FE model can be used to predict soft tissue
deformation. The maximum absolute linear and angular
errors of the marker position and orientation between
the experiments and FE analysis are 0.29 mm and 8.62�,
respectively (Table 2). Our results also show that a back-
propagation neural network can be used to estimate the
principal mode of variation between undeformed and
deformed shapes for a given input displacement. Using
training samples consisting of 835 patterns of input and
output data, the maximum absolute linear and angular
errors of the nodal displacement and orientation between
neural network- and FE-based predictions are 0.03 mm
and 0.01�, respectively (Table 3).

It is noted that the errors between experiments and FE
analysis are within the allowable tolerance of the needle
tip placement for a conclusive biopsy (26). The FE analysis
can be used during surgical preplanning to predict the
displacement of the suspected lesion due to prostate defor-
mation. Subsequently, using the predicted location of
the lesion, the tip can be accurately positioned within a
spherical radius of 2.5 mm from the suspected lesion for
an accurate diagnosis during the biopsy procedure. Thus,
given that themaximum error in the results of the FEmodel

validation (0.29 mm) is within the allowable tolerance
of tip placement (2.5 mm), the FE model can be used to
predict 3D soft tissue deformation.

The discrepancy between the neural network and FE
predicted deformation is noted to be significantly small,
while the difference between their computational times
is significantly large. The mean time taken for the neural
network and FE analysis to predict soft tissue deformation
is 0.04 s and 11.10 min, respectively. The errors in the
neural network-based predictions of suspected lesion
displacement are also within the allowable tolerance for
a conclusive biopsy. Thus, the proposed neural network
can be used as an alternative to FE analysis for accurately
predicting 3D soft tissue deformation. Further, the low
computational cost of the neural network-based simulation
allows real time predictions of soft tissue deformation.
Thus, the neural network can be used for accurate surgical
simulations systems.

In this study, training data for the neural network are
generated using the FE model. The model is validated
with experiments based on the surface deformation of the
prostate. Nevertheless, the methods presented in this
paper can be extended to a validation study based on the
volumetric deformation of the prostate. Markers can be
positioned in 3D space within the prostate, andMR imaging
can be used to track the displacements of the markers.

Conclusion

In this study, we show that a back-propagation neural
network can accurately predict 3D deformation of the
phantom when it is deformed by the needle guide. The
phantom incorporates the anatomy of the male pelvic
region, including the prostate and its surrounding tissue.
The training data for the neural network are generated
using a validated FE model. The results of the FE model
validation show that a linear elastic FE model can be used
to predict 3D surface deformation of the phantom. The
maximum absolute linear and angular errors of the
marker position and orientation between the experiments
and FE analysis are 0.29 mm and 8.62�, respectively.
Moreover, the maximum absolute linear and angular
errors of the nodal displacement and orientation between
predictions using the neural network and FE analysis
are 0.03 mm and 0.01�, respectively. The results of our
investigation also demonstrate that a combination of
ultrasound data, MR images and a neural network can
be used as a framework for real-time 3D simulations of
soft tissue deformation.

Future work

During a surgical procedure, physicians insert and manipu-
late the needle in order to target a suspected lesion.
Previous work by De Silva et al. showed that needle insertion
results in maximum lateral tissue motion of 1.5 mm (22).

Figure 5. Outline of the neural network-predicted prostate
deformation (Ο) overlaid on the corresponding result of the
finite element analysis (�). Outlines of the prostate are taken in
both transverse (T) and saggital (S) planes. The outlines are for
representative test sample 1, in which the displacement and angle
of the needle guide are 7.75 mm and �5�, respectively.
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Thus, for complete and accurate simulation of the MR-
guided prostate biopsy procedure, we will extend the
results of our neural network-based simulation study to
include needle insertion and for real-time prostate surgical-
interventions scenarios. In future work we will also investi-
gate the state-of-the-art techniques for neural network
in order to predict prostate deformation due to needle
insertion, i.e. pool-based active learning, recurrent, fuzzy
and radial basis neural network. Training data for the
neural network can be generated using a validated FEmodel
that is able to accurately predict soft tissue deformation, due
to both the guide and needle insertion. Further, results of
the simulation will also be validated with experiments
using soft tissue. MR images can be used to accurately
model anatomical details, while the ultrasound-based
ARFI imaging technique can be utilized to measure the
shear wave velocity in soft tissue for a defined region of
interest. Subsequently, the FE model can be populated
accordingly with material properties that are estimated
based on the shear wave velocity. As part of future work,
we will also perform sensitivity studies, where the effects
of model uncertainties on prostate deformation response
during needle insertion will be investigated. We also plan
to combine the proposed neural network with a control
algorithm in order to steer the needle tip towards a
suspected lesion. The usage of the neural network to
predict soft tissue deformation will improve the accuracy
of tip placement during the procedure and, hence, the
conclusiveness of the diagnosis.
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