Magnetic-Based Motion Control of Paramagnetic Microparticles With Disturbance Compensation

Islam S. M. Khalil, Leon Abelmann, and Sarthak Misra

1German University in Cairo, New Cairo City 11835, Egypt
2MESA+ Institute for Nanotechnology, Enschede 7522 NB, University of Twente, The Netherlands.
3Korean Institute of Science and Technology, Saarbrücken 66123, Germany
4MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7522 NB, The Netherlands

Magnetic systems have the potential to control the motion of microparticles and microrobots during targeted drug delivery. During their manipulation, a nominal magnetic force–current map is usually derived and used as a basis of the control system design. However, the inevitable mismatch between the nominal and actual force–current maps along with external disturbances affects the positioning accuracy of the motion control system. In this paper, we devise a control system that allows for the realization of the nominal magnetic force–current map and the point-to-point positioning of paramagnetic microparticles. This control is accomplished by estimating and rejecting the 2-D disturbance forces using an inner loop based on a disturbance force observer. In addition, an outer loop is utilized to achieve stable dynamics of the overall magnetic system. The control system is implemented on a magnetic system for controlling microparticles of paramagnetic material, which experience magnetic forces that are related to the gradient of the field-squared. We evaluate the performance of our control system by analyzing the transient- and steady-state characteristics of the controlled microparticle for two cases. The first case is done without estimating and rejecting the mismatch and the disturbance forces, whereas the second case is done while compensating for these disturbance forces. We do not only obtain 17% faster response during the transient state, but we are also able to achieve 23% higher positioning accuracy in the steady state for the second case (compensating disturbance forces). Although the focus of this paper is on the wireless magnetic-based control of paramagnetic microparticle, the presented control system is general and can be adapted to control microrobots.

Index Terms—Disturbance compensation, disturbance force observer, magnetic, micromanipulation, model mismatch, wireless.

I. INTRODUCTION

Paramagnetic microparticles and nanoparticles have the potential to perform localized drug delivery by selectively targeting diseased tissue [1]–[6]. These particles are steered under the influence of the applied magnetic fields. In manipulating these particles, a magnetic force–current map has to be determined and used as a basis of the control system design [7], [8]. Derivation of the correct force–current map is not simple since weak magnetic field (less than 3 mT) results in constant susceptibility and permeability, whereas stronger magnetic fields do not guarantee the same result [9]. The most often cited force–current map under weak magnetic field is proven not to match the experimental data due to the absence of the initial magnetization [10]. However, accounting for the nonzero initial magnetization corrects the expression of the magnetic force experienced by microparticles under the influence of weak magnetic fields.

Some researchers preferred the utilization of spherical microparticles (Fig. 1) since the direction of magnetization does not have to be specified [11]–[15]. Microparticles with irregular shapes under uniform applied fields have magnetization force, which differs throughout their bodies in an unknown manner. This irregularity has a disadvantage for
soft-magnetic material, for instance, have nonlinear relation between the applied magnetic field and the magnetization.

Designing a microparticle or a microrobot to be satisfactory under all conditions is almost impossible. Fabrication of soft-magnetic microparticles, for instance, is relatively easy. However, its magnetization is nonlinearly proportional to the applied magnetic fields. Therefore, the governing equations relating the applied magnetic field and the magnetization (or the resulting magnetic force and torque) are not accurate. It would be natural to devise control systems with relatively large stability margins to tolerate the model mismatch and the dynamical uncertainties.

This paper is concerned with the design of a control system for magnetically guided paramagnetic microparticles. First, the governing equation in terms of magnetic force–current map of our magnetic system is derived. This equation depends on the field–current map of our magnetic system, as shown in Fig. 1. We model this map using finite-element (FE) analysis and then this model is verified by measuring the actual fields within the workspace of our magnetic system. This verification results in an inevitable mismatch for the field–current map, which in turn results in a mismatch for the force–current map. The mismatch between the governing equation and the actual system along with the external disturbances and drag forces are modeled as an input disturbance force to the governing motion equation of the paramagnetic microparticle. An inner loop is devised to estimate this disturbance force and convert it into a compensating control input [18], [19]. This inner loop compensates only for the disturbance force and converts it into a compensating disturbance force to the governing motion equation of the external disturbances and drag forces are modeled as an input map using finite-element (FE) analysis, and then this model is applied to reach saturation. Therefore, the magnetic field can be used in the determination of the magnetic force–field map (4).

\[\mathbf{m}(\mathbf{P}) = \int_V M(\mathbf{P}) dV = \frac{4}{3} \pi r_p^3 \mathbf{M}(\mathbf{P}) \] (2)

where \(V \) and \(r_p \) are the volume and radius of the spherical microparticle, respectively. The induced magnetization is related to the magnetic field strength \(\mathbf{H}(\mathbf{P}) \) by \(\mathbf{M}(\mathbf{P}) = \chi_m \mathbf{H}(\mathbf{P}) \), where \(\chi_m \) is the magnetic susceptibility constant [24]. The induced magnetization vector \(\mathbf{M}(\mathbf{P}) \) always aligns itself with the applied field since there is no shape anisotropy for the spherical microparticles. This observation simplifies the model as the microparticles will be subjected to pure force and zero magnetic torque. However, the control system we consider in this paper is fairly general and can be implemented on nonspherical microparticles, which experience magnetic force and torque. Rewriting (2) as

\[\mathbf{m}(\mathbf{P}) = \frac{4}{3} \pi r_p^3 \chi_m \mathbf{H}(\mathbf{P}) = \frac{4}{3} \pi r_p^3 \chi_m \mathbf{B}(\mathbf{P}) \] (3)

where \(\mu \) is the permeability coefficient given by \(\mu = \mu_0(1 + \chi_m) \). Furthermore, \(\mu_0 \) is the permeability of vacuum \((\mu_0 = 4 \pi \times 10^{-7} \text{T} \cdot \text{m/A}) \).

Substitution of (3) in (1) yields

\[\mathbf{F}(\mathbf{P}) = \frac{4}{3} \frac{1}{\mu} \pi r_p^3 \chi_m \nabla (\mathbf{B}^T(\mathbf{P}) \mathbf{B}(\mathbf{P})). \] (4)

In this paper, the magnetic field is generated using aircore electromagnets, and does not allow the microparticles to reach saturation. Therefore, the magnetic field can be determined by the superposition of the contribution of each of the electromagnets [7]

\[\mathbf{B}(\mathbf{P}) = \sum_{i=1}^{e} \mathbf{B}_i(\mathbf{P}) \] (5)

where \(e \) is the number of electromagnets within the magnetic system. The magnetic field \(\mathbf{B}(\mathbf{P}) \) is linearly proportional to the applied current \((I_i) \) at the \(i \)-th electromagnet. Therefore, (5) can be rewritten as

\[\mathbf{B}(\mathbf{P}) = \sum_{i=1}^{e} \mathbf{B}_i(\mathbf{P}) I_i = \mathbf{B}(\mathbf{P}) \mathbf{I} \] (6)

where \(\mathbf{B}(\mathbf{P}) \in \mathbb{R}^{2 \times e} \) is a matrix that depends on the position at which the magnetic field is evaluated and \(\mathbf{I} \in \mathbb{R}^{e \times 1} \) is a vector of the applied current. The magnetic field due to each electromagnet is related to the current input by \(\mathbf{B}_i(\mathbf{P}) \).

The FE analysis of the field–current map (6) is shown in Fig. 2. This map has to be constructed to determine the gradient of the magnetic field squared \(\nabla (\mathbf{B}(\mathbf{P}) \mathbf{B}(\mathbf{P})) \), which is used in the determination of the magnetic force–field map (4).
The FE model is developed for a magnetic system with four orthogonally oriented air-core electromagnets. As shown in Fig. 1, the FE model is verified experimentally, and the deviation between the calculated data of the FE model and the measured values is provided in Table I. The deviation in the magnitude and angle is calculated for 12 representative points (Fig. 3) that span the workspace of our magnetic system [7], [8]. We consider this deviation as a model mismatch that has to be estimated and compensated by the overall control system since the gradients of the field squared do not have to be calculated at each point of the workspace.

Fig. 2. Results of the FE analysis for the gradients of the field squared in the workspace of our magnetic system. This system consists of four orthogonally oriented air-core electromagnets, as shown in Fig. 2, the FE model provides the magnetic fields, the field squared, and the gradient of the field squared within an area of $40 \times 40 \text{mm}^2$ when a representative current vector of $[0 \ 0 \ 1]^T \text{A}$ is applied. The entries of the representative current vector are applied to electromagnets A, B, C, and D, respectively. The FE results are utilized in the realization of the force–current map (10) and its inverse (13). The gradients of the magnetic field squared are almost constant within the center of the workspace of our magnetic system ($2.4 \times 1.8 \text{mm}^2$). This observation simplifies the realization of the disturbance force observer and the overall control system since the gradients of the field squared do not have to be calculated at each point of the workspace. B_x, B_y, and Ω are the components of the magnetic field along x-axis, y-axis, and the sum of the square of these components, respectively. The FE model is created using Comsol Multiphysics (COMSOL, Inc., Burlington, USA).

The 2-D components of the magnetic field can be written, with respect to a basis of orthogonal vectors (\hat{x} and \hat{y}), as

$$\mathbf{B}(\mathbf{P}) = B_x \hat{x} + B_y \hat{y}. \quad (7)$$

The gradient of the magnetic field squared ($\mathbf{B}^T(\mathbf{P})\mathbf{B}(\mathbf{P})$) can be calculated as follows:

$$\nabla(\mathbf{B}^T(\mathbf{P})\mathbf{B}(\mathbf{P})) = \nabla(B_x^2 + B_y^2) = \nabla(\Omega) \quad (8)$$

$$= \frac{\partial \Omega}{\partial x} \hat{x} + \frac{\partial \Omega}{\partial y} \hat{y} \quad (9)$$

where $\Omega = B_x^2 + B_y^2$ is a scalar function. Substituting (6) in (4) yields

$$\mathbf{F}(\mathbf{P}) = \beta \nabla(\mathbf{I}^T \mathbf{B}^T(\mathbf{P}) \mathbf{B}(\mathbf{P})) \mathbf{I} \quad (10)$$

where β is a constant, and is given by

$$\beta \triangleq \frac{4}{3} \frac{r^3}{\mu \chi_m}. \quad (11)$$

Therefore, the components of the magnetic force along x and y axes are given by

$$F_j(\mathbf{P}) = \beta I^T \left(\frac{\partial \mathbf{B}^T(\mathbf{P}) \mathbf{B}(\mathbf{P})}{\partial j} \right) \mathbf{I} \quad \text{for } j = x, y \quad (12)$$

where $F_j(\mathbf{P})$ is the magnetic force component for ($j = x, y$). The forward force–current map (12) provides the magnetic force experienced by the microparticle due to a set of applied currents. The proposed control system utilizes this map along with its inverse [given a set of reference forces, we have to solve (12) for \mathbf{I}]. The gradients along x and y axes within the center of the workspace are almost constant, as shown in Fig. 2(c) and (f), respectively. This observation simplifies the force–current map (12). Nevertheless, the inverse of the quadratic matrix equation [(10) or (12)] has to be solved for the current vector (\mathbf{I}).

Necessary and sufficient conditions for the existence of a particular solution for quadratic matrix equations are reported.
in [25]. These conditions provide a solution for the inverse of our force–current map (12) of the following form:

\[X = \Psi_j^T \left(F_j \Psi_j \right)^{-1} + \left(\Pi - \Psi_j^T \right) \left[F_j^{-1} \left(F_j \Psi_j \right)^{-1} \right] \]

\[+ U \left(\Pi - \left(F_j \Psi_j \right)^{-1} \right) \left(F_j \Psi_j \right)^{-1} \]

(13)

where \(\Pi \in \mathbb{R}^{n \times n} \) is the identity matrix. Furthermore, \(U \in \mathbb{R}^{n \times n} \) is the arbitrary matrix. The last column of the matrix \(X \in \mathbb{R}^{n \times n} \) represents a solution of the inverse force–current map (12). The square root in (13) is calculated by the diagonalization of \(\psi_j \) using a matrix \(\Psi_j \), where \(\Psi_j \in \mathbb{R}^{n \times n} \) is a matrix of the eigenvectors of \(\psi_j \). The square root of \(\psi_j \) is then calculated using \(\Psi_j^{-1} \mathbf{P}^{j/2} \Psi_j \), where \(\mathbf{P} \) is a diagonal matrix of the eigenvalues of \(\psi_j \). The simulation results of the inverse map are shown in Fig. 4. Given an arbitrary force component \(F_j \) for \(j = x, y \), we calculate the corresponding current vector using (13). To verify that (13) indeed provides correct results (vector of current values at each of the electromagnets), the given arbitrary force component is compared with the calculated force using the forward force–current map when the calculated currents are provided as inputs to (12). The difference between the input and the calculated forces for 20 arbitrary force components is shown in Fig. 4(a). We observe that the maximum error between the calculated and input magnetic forces is 0.35 nN (index of simulation 18). Moreover, the inverse force–current map is evaluated for a sinusoidal magnetic force with an exponential envelope \(\left(F_j = 1/\beta \left(0.01 + 0.01 \sin(2 \pi t + \beta) \right) \right) \). The input force is plotted against the calculated force, as shown in Fig. 4(b). The calculated currents at each of the electromagnets \((e = 4) \) are shown in Fig. 4(c). The error between the input and calculated force has maximum value of 0.01 nN (force error of 0.01 nN is equivalent to norm-2 of current error of 0.037 A) when a sinusoidal force input is provided. The quadratic matrix equation (12) is solvable if the matrix \(\left(F_j \Psi_j \right)^{1/2} \) exists [25]. Therefore, we attribute the maximum error in Fig. 4(a) to this condition. In this simulation, the \(e \times e \) matrix \(\mathbf{B}^T \mathbf{P} \mathbf{B} \) is provided by the FE model.

III. Model Mismatch and Disturbance Compensation: Inner Loop

During the navigation of a microparticle in a fluid, it experiences drag forces and external forces. We model these forces as a disturbance force input \((\mathbf{d}(\mathbf{P})) \). The estimation and compensation this disturbance force would allow for the realization of the nominal model of the magnetic system. The dynamics of the microparticle is given by

\[\mathbf{F}(\mathbf{P}) - \mathbf{d}(\mathbf{P}) = \mathbf{M} \dot{\mathbf{P}} \]

(14)

where \(\mathbf{M} \) is the mass of the microparticle. Furthermore, \(\mathbf{d}(\mathbf{P}) \in \mathbb{R}^{2 \times 1} \) is the planar disturbance force input. This disturbance force can be calculated using the inverse of the nominal model \((\mathbf{G}(s)) \) and the nominal magnetic force input \((\mathbf{F}(\mathbf{P})) \) as follows:

\[\mathbf{d}(\mathbf{P}) = \mathbf{F}(\mathbf{P}) - \mathbf{G}^{-1}(s) \mathbf{P} = \Delta \mathbf{G}(s) \mathbf{P} + \mathbf{d}(\mathbf{P}) \]

(15)

where \(\mathbf{d}(\mathbf{P}) \in \mathbb{R}^{2 \times 1} \) is the calculated disturbance force based on the nominal model and the nominal magnetic force. Furthermore

\[\mathbf{G}(s) = \frac{1}{M_s s^2} \quad \text{and} \quad \Delta \mathbf{G}(s) = \mathbf{G}^{-1}(s) - \mathbf{G}^{-1}(s) \]

(16)
nominal magnetic force is given by \(F_n(P) = \beta_n \nabla (T^T B_n(P) B_n(P) I) \) \((17) \)

where the subscript \(n \) denotes the nominal values of the parameter \(\beta \) and the matrix \((B_n(P)(B_n(P))) \), respectively. The calculated disturbance force \(\hat{d}(P) \) consists not only of the disturbance force \((d(P)) \) but also of the perturbation \((\Delta G(s)) \) between the actual system and the nominal model based on \((15) \). The inverse of the nominal model \((G_n^{-1}(s)) \) cannot be realized since it includes derivatives. Therefore, the disturbance force must be determined through a low-pass filter \((Q(s)) \)

\[\hat{d}(P) = Q(s) d(P) = Q(s)(F_n(P) - G_n^{-1}(s)P) \] \((18) \)

where \(\hat{d}(P) \in \mathbb{R}^{2 \times 1} \) is the estimated disturbance force through the low-pass filter. Degree of \(Q(s) \) depends on the order of the nominal plant \((G_n(s)) \). Integrating the disturbance force observer \((18) \) with a feedback control system affects its stability and performance. This effect can be shown by analyzing the frequency response of \([26] \)

\[Z(s) = \frac{Q(s)}{1 - Q(s) G_n^{-1}(s)}. \] \((19) \)

In \((19) \), \(Z(s) \) is a transfer function that determines the characteristics of the observer-based feedback control system. Fig. 5 shows the frequency response of \(Z(s) \) for different orders of \(Q(s) \). Increasing the order of \(Q(s) \) allows for the realization of the nominal model for different types of plants. However, the corresponding stability deteriorates due to the increased phase lag, as shown in the phase diagram of Fig. 5. This tradeoff between stability and performance has to be considered during the design of \((18) \) by selecting the proper order and gains of its associated low-pass filter \((Q(s)) \).

The purpose of estimating the disturbance forces (experienced by the microparticle) is to achieve robustness of the motion control system by rejecting these disturbances using an inner loop (Fig. 6). This robustness can be achieved by converting the estimated disturbance force into compensating control input at each of the electromagnets of the magnetic system. The force–current map \((12) \) is derived in Section II. Therefore, the compensating current input can be determined by solving \((10) \) when \(F(P) \) is set to \(\hat{d}(P) \).

Implementation of the observer \((18) \) requires measuring one of the outputs of the magnetic system based on the available measurement (position of the microparticle). In addition, the input current or force has to be known and used in the realization of \((18) \). In the previous analysis, the measurement noise is ignored. However, in practice, it has a significant influence on the performance of the observer-based feedback system. Therefore, we rewrite \((18) \) by accounting for the measurement noise \((\xi) \)

\[\hat{d}(P) = Q(s)(F_n(P) - G_n^{-1}(s)(P - \xi)). \] \((20) \)

Feeding the estimated disturbance force into a feedback control system would result in the following output position \([26] \):

\[P = \frac{G_n(s)(I_{ref} - (1 - Q(s))\hat{d}(P)) + Q(s)\xi}{1 + (1 - Q(s)) G_n(s) \Delta G(s) G_n(s)} \] \((21) \)

where \(I_{ref} \) is the control input of an outer loop, which will be determined. Equation \((21) \) shows that \(Q(s) \) represents a sensitivity function to the sensor noise, whereas \((1 - Q(s)) \) represents a sensitivity function to the mismatch between the system and the nominal model. Therefore, due to the presence of inevitable measurement noise \((\xi) \), the bandwidth of the observer \((20) \) is limited by the bandwidth of the measurement noise. The tradeoff (between stability and performance) and constraint (limits on the bandwidth) analyzed by \((19) \) and \((21) \), respectively, must be considered during the design of the disturbance force observer. This can be accomplished by selecting a proper order of \(Q(s) \) and calculating its associated gains. We observe that a first-order low-pass filter with a
cutoff frequency of 30 rad/s satisfies the tradeoff between stability and performance. We benefit from the low-frequency range at which manipulation of microparticles generally occurs by filtering the high-frequency noise without affecting the performance. Since the effect of the measurement noise is determined by (21), we ignore its effect in the following analysis for simplicity. Rewriting (18) using a first-order low-pass filter for $Q(s)$ [20]

$$\hat{d}(P) = -g\hat{d}(P) + g(F_n(P) - M_n\hat{P}) \tag{22}$$

where M_n and g are the nominal mass of the microparticle and the cutoff frequency of the first-order low-pass filter. Nominal parameters and variables (denoted with the subscript n) are used in the realization of the disturbance force observer. The disturbance force estimation error ($\epsilon_d = d(P) - \hat{d}(P)$) can be determined using (14) and (18). Therefore, the estimation error dynamics is given by

$$\dot{\epsilon}_d = d(P) - \hat{d}(P). \tag{23}$$

We further assume that the disturbance force varies slowly ($d(P) = 0$). Therefore, the estimation error is

$$\dot{\epsilon}_d + g\epsilon_d = 0. \tag{24}$$

This error dynamics indicates that the estimated disturbance force will converge to the actual one in finite time. Nevertheless, we define auxiliary functions to avoid the realization of the estimated disturbance force through the acceleration of the microparticle [14]

$$\Gamma = \hat{d}(P) - \Phi(\hat{P}) \tag{25}$$

where Γ and $\Phi(\hat{P})$ are auxiliary functions. In (25), Γ provides a change of variables to avoid measuring the acceleration of the microparticle, whereas $\Phi(\hat{P})$ is a function of the velocity of the microparticle (to be determined). The time derivative of (25) yields

$$\dot{\Gamma} = \dot{d}(P) = -\frac{\partial \Phi(\hat{P})}{\partial P} \hat{P}. \tag{26}$$

Substituting (25) and (26) in (22) $\dot{\hat{P}}$

$$\dot{\hat{P}} + \frac{\partial \Phi(\hat{P})}{\partial P} \hat{P} = g(F_n(P) - M_n\hat{P}) - g(\Gamma + \Phi(\hat{P})). \tag{27}$$

Setting the derivative of the auxiliary function, $\partial \Phi(\hat{P})/\partial \hat{P} = -gM_n$, yields the following representation of the disturbance force observer using (Γ):

$$\dot{\Gamma} = -g(\Gamma + \Phi(\hat{P})) + gF_n(P) \tag{28}$$

where the auxiliary function $\Phi(\hat{P})$ is

$$\Phi(\hat{P}) = -gM_n\hat{P}. \tag{29}$$

Taking the Laplace transform of (28) without changing the notations of the variables

$$\Gamma = \frac{g}{s + g}(F_n(P) - \Phi(\hat{P})). \tag{30}$$

Finally, substituting (30) in (25) yields

$$\hat{d}(P) = \frac{g}{s + g}(F_n(P) - \Phi(\hat{P})) + \Phi(\hat{P}). \tag{31}$$

Estimating the disturbance force $\hat{d}(P)$ requires measuring the velocity of the microparticle and the input current vector. In (31), the nominal magnetic force $(F_n(P))$ can be represented explicitly in terms of the input current (I) using the nominal forward force–current map (17). The disturbance force observer is shown in Fig. 6. The force–current map is used to convert the estimated disturbance force into equivalent currents to simultaneously attenuate the disturbance forces.
outer loop control transfer function \((C(s))\) is determined using (35). The disturbance force observer is based on the nominal values of the parameters of the magnetic system denoted with the subscript \(n\). The matrix \((\tilde{B}_n(P)B_n(P))\) does not have to be evaluated at each point of the workspace since it has almost a constant value based on the FE analysis of our magnetic system. \(d(P)\), \(d_n(P)\), and \(\tilde{d}(P)\) are the input disturbance force, calculated disturbance force using the nominal model of the magnetic system, and the estimated disturbance force through the low-pass filter \((\hat{Q}(s))\), respectively. The turquoise blocks indicate that the input is evaluated based on (17) and (35).

As shown in Fig. 6, the disturbance force observer depends on the nominal values of the parameters of the magnetic system. The deviation between these parameters and their actual values is modeled as a disturbance force in the magnetic system. The disturbance force observer just represents an inner loop for the control system. Stability of the overall control system must be achieved by an outer loop.

IV. MOTION CONTROL DESIGN: OUTER LOOP

Dynamics of our magnetic system has to be stabilized by an outer loop control input. The outer loop is necessary since a stable equilibrium point under static magnetic forces cannot be achieved [27]. This claim can be verified by calculating the divergence of the magnetic force given by (4) at a point within the workspace of our magnetic system. By considering a point \((P)\) under static force, i.e., \(\mathbf{F}(\mathbf{P}) = 0\), the necessary condition for this point to be a stable equilibrium point is

\[
\nabla \cdot \left(\frac{4}{3} \pi r^3 \chi_m \nabla \left(B^T(P)B(P) \right) \right) < 0. \tag{32}
\]

Since all the arguments of (32) are positive (with the exception of \(\chi_m\) for diamagnetic materials, which are not considered in our work) [24], stable equilibrium point cannot be achieved with feedback control inputs. Therefore, we devise a control law of the following form:

\[
I = I_c + I_{ef} \tag{33}
\]

where \(I_c\) and \(I_{ef}\) are the control inputs of the inner and outer loops, respectively. Using the estimated disturbance force \((\tilde{d}(P))\) by (31), we can calculate \(I_c\) using

\[
\tilde{d}(P) - \beta_n \nabla \left(I^T_c \tilde{B}_n(P) \tilde{B}_n(P) I_c \right) = 0. \tag{34}
\]

The estimated disturbance force–current map (34) is solved for the overall magnetic system. Therefore, we devise an outer loop of the following form:

\[
\mathbf{F}_{ref}(\mathbf{P}) = M_n(\tilde{\mathbf{P}}_{ref} - K_\alpha \dot{e} - K_p e) \tag{35}
\]

where \(\mathbf{F}_{ref}(\mathbf{P})\) and \(\tilde{\mathbf{P}}_{ref}\) are the outer loop force and the reference acceleration input, respectively. Furthermore, \(\dot{e} = \mathbf{P}_{ref} - \mathbf{P}\) is the velocity tracking error of the microparticle, and similarly, \(e = \mathbf{P}_{ref} - \mathbf{P}\) is the position tracking error. The reference position vector \((\mathbf{P}_{ref})\) and velocity vector \((\dot{\mathbf{P}}_{ref})\) are known beforehand. The controller gain matrices \((K_p > 0\) and \(K_d > 0)) must achieve stable tracking error dynamics. The gain matrices of (35) are

\[
K_p = \begin{bmatrix} k_{p1} & 0 \\ 0 & k_{p2} \end{bmatrix} \quad \text{and} \quad K_d = \begin{bmatrix} k_{d1} & 0 \\ 0 & k_{d2} \end{bmatrix} \tag{36}
\]

where \(k_{pi}\) and \(k_{di}\), for \((i = 1, 2)\), are the proportional and derivative gains, respectively. The outer loop control input \((I_{ref})\) can be calculated by

\[
\mathbf{F}_{ref}(\mathbf{P}) = -\beta_n \nabla \left(I_{ref}^T \tilde{B}_n(\mathbf{P}) \tilde{B}_n(\mathbf{P}) I_{ref} \right) = 0. \tag{37}
\]

The control input (33) results in the following magnetic force:

\[
\mathbf{F}(\mathbf{P}) = \tilde{\mathbf{d}}(\mathbf{P}) + \mathbf{F}_{ref}(\mathbf{P}). \tag{38}
\]

Substituting (31), (35), and (38) into (14), we obtain

\[
\dot{e} + K_\alpha \dot{e} + K_p e = 0. \tag{39}
\]

Compensating for the model mismatch and disturbances along with selecting positive definite control gain matrices \((K_p > 0\) and \(K_d > 0)) enforces the position tracking error to zero in finite time based on (39). We assume that the estimated disturbance force converges to the actual one based on (24).

The overall structure of the control system is shown in Fig. 7.
The experiments are done using a magnetic system with four orthogonally oriented air-core electromagnets [12], [13]. The electromagnets surround a water reservoir, as shown in Fig. 1. The microparticles utilized throughout our experiments are superparamagnetic particles made by embedding magnetite (Fe$_3$O$_4$) in a matrix of poly(D,L-lactic acid). According to the manufacturer (PLAParticles-M-redF-plain from Micromod Partikeltechnologie GmbH, Rostock-Warnemuende, Germany), their average diameter is 100 μm, magnetization at 100 mT is approximately 4.3 Am^2/kg, and they do not saturate until 1 T. Since the density of the particles is 1.4 × 103 kg/m3, we estimate the susceptibility χ_m to be 0.075 (Table II). The position of the microparticle is tracked using a vision system embedded to a microscope.

To implement our control system, the inner and outer loops are realized. The inner loop depends on the disturbance force observer (31), whereas the outer loop stabilizes the dynamics of the magnetic system using (35). These loops depend on the position and velocity of the microparticle. The disturbance force observer depends on the availability of the outputs of the magnetic system (position or velocity of the microparticle) along with assuming that the nominal model of the magnetic force is known a priori. We calculate the velocity of the microparticle along with the input currents to realize the disturbance force observer (31). The presence of measurement noise could deteriorate the performance of the disturbance force observer and limit its bandwidth, as explained in Section III. Therefore, velocity of the microparticle is calculated using a low-pass filter with a cutoff frequency of 30 rad/s.

The disturbance force observer estimates the components of the disturbance force along x and y axes. Velocities along these axes are fed into the observer along with the magnetic force input calculated based on the nominal model (17). Hereafter, the compensating currents (I_q) are determined by solving (34). The transfer function of the outer loop control system ($C(s)$) is determined using the control law (35).

The experimental result of the motion control law (33) is shown in Fig. 8. This control law allows for the tracking of a reference position within the workspace of the system while simultaneously compensating for the disturbance force experienced by the microparticle. As shown in Fig. 8, the controlled microparticle tracks a 300 μm reference position (distance between the initial position of the microparticle and the given reference position) at a velocity of 98 μm/s and settling time of 3.15 s. In the steady state, the position tracking error is 10 μm. To show that the proposed control system indeed compensates for the disturbance force, we investigate its performance in the presence and absence of the contribution of the inner loop (this loop estimates the disturbance force and provides a compensating control input). Characteristics of the transient and steady states are used to evaluate the performance of the control system in each case.

The experimental validation of the disturbance force compensation by the inner loop is shown in Fig. 9. Multiple reference positions are given within the workspace of our magnetic system. Fig. 9(a) shows a representative motion control trial when the output of the inner loop is not supplied to the magnetic system, whereas Fig. 9(a) shows a representative motion control trial of the overall control law (33). The position tracking along x and y axes shown in Fig. 9(a) and (b), respectively, indicates that the control system achieves average settling time of 3.6 s in the absence of the contribution of the inner loop. On the other hand, Fig. 9(d) and (e) shows that the average settling time is 3.0 s when the contribution of the inner loop is added to the overall control input. In addition, the average velocity of the microparticle is 45 μm/s in the absence of the contribution of the inner loop, whereas the average velocity is 60 μm/s when the disturbance force is compensated using (31). The average is calculated from 10 motion control trials for each case. The position tracking errors along x and y axes for the aforementioned two cases are shown in Fig. 9(c) and (f), respectively. These results show the effect of the inner loop on the characteristics of the steady state. The control system achieves maximum position tracking error of 18 μm in the absence of the contribution of the inner loop, whereas the overall control system (33) achieves maximum position tracking error of 14 μm in the steady state. Table III summarizes the experimental results. We observe that the microparticle exhibits oscillatory response in the steady state, as shown in Fig. 9(a), (b), (d), and (e). This response can be explained by (32), which indicates that a stable equilibrium point cannot be achieved for microparticles of paramagnetic material without a feedback control system.
VI. DISCUSSION

During the design of controllers for magnetic-based manipulation systems, a magnetic force–current map (and magnetic torque–current map) has to be realized and used as a basis of the control system design. This magnetic force–current map depends on a field–current map. We model this field–current map by an FE model, and calculate the deviations between its fields and the actual fields measured by a calibrated Hall magnetometer. The average deviation in the magnitude and direction of the magnetic field are 2.3% and 0.7%, respectively. This average is calculated from a grid of 12 points, which span the workspace of our magnetic system (Table I). The mismatch between the actual magnetic system and our FE model along with the drag forces and any unmodeled dynamics is considered as an input disturbance force on the nominal magnetic force–current map. Using this map, a disturbance force observer is designed. This observer allows the estimated disturbance to converge to the actual disturbance force in finite time based on (24). The disturbance force observer is further utilized in the realization of the control system. The control system employs the disturbance force observer in an inner loop to compensate simultaneously for the disturbance force input (which represents the sum of the aforementioned forces). In addition, the overall stability of the magnetic system is achieved by an outer loop. Realization of the proposed control system relies on the nominal force–current map along with its inverse map (we have shown through simulation results the solution of the inverse map). Furthermore, our FE analysis shows that the gradients of the field squared do not have to be evaluated at each point of the workspace of our magnetic system since they are almost uniform. This observation along with the solution of the inverse force–current map allows for the realization of the proposed control system.

The order of the low-pass filter \(Q(s) \) associated with the disturbance force observer depends on the nature of the input disturbance force. This force is a function of time and can be modeled by the following polynomial [26]:

\[
\frac{dl}{dt}d(P, t) = 0 \quad (40)
\]

where \(d(P, t) \) is the input disturbance force and \(l \) is the order of the low-pass filter \(Q(s) \) associated with the disturbance force observer. Approximating the input disturbance force using a step function \((l = 1) \) allows us to use a first-order low-pass filter in (31). Furthermore, approximating the input disturbance force using a ramp function \((l = 2) \) allows us to use a second-order low-pass filter, and so forth. Therefore, our disturbance force observer can be adapted to estimate disturbance force inputs of higher orders.

Even though the experimental work is done using paramagnetic microparticles of spherical geometry, the presented control system is fairly general and can be modified to control superparamagnetic particles, ferromagnetic particles,
microparticles of irregular shapes, and microrobots. This necessitates the incorporation of the magnetic torque–current map with the control system. The magnetic force– and torque–current maps can be used in the realization of the inner and outer loops of the control system. Furthermore, the proposed magnetic-based control strategy can be adapted to control microparticles in the 3-D space.

A. Conclusion

The mismatch between the actual and nominal field-current map of magnetic-based manipulation systems, which can be as high as 20%, affects the governing force–current map that is necessary for the realization of the magnetic-based control system. In this paper, a control system is investigated based on estimating the mismatch and the drag forces. These forces are considered as a disturbance force input to the governing equation of the magnetic system. The outlined control system compensates for this force by an inner loop. This loop estimates the disturbance force and converts it into a control input for the realization of the nominal model of the magnetic system. In addition, the control system achieves stable position tracking error dynamics for the microparticles using an outer loop. Compensating the mismatch and the drag forces results in 17% faster response and 23% higher positioning accuracy of the microparticle by the proposed control system in the transient and steady states, as opposed to the same control system without compensation.

B. Future Work

Future work in the field of wireless magnetic-based control will be extended to achieve targeted drug delivery. Our microparticles will be coated with drugs, and the physiological conditions of the release process will be studied experimentally. Clusters of nanoparticles will be used as magnetic drug carriers owing to their low toxicity and excellent magnetic saturation [28]. Furthermore, we will investigate the possibilities to modify our system to be integrated with a clinical imaging modality, such as magnetic resonance imaging [29]. In vivo experiments need to be done to investigate important aspects, such as time-varying fluid viscosity and flow. Furthermore, our magnetic system will be modified to incorporate controlled disturbance inputs, such as time-varying fluid flow, to verify the effectiveness of the control technique.

REFERENCES