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Magnetic systems have the potential to control the motion of microparticles and microrobots during targeted drug delivery. During
their manipulation, a nominal magnetic force–current map is usually derived and used as a basis of the control system design.
However, the inevitable mismatch between the nominal and actual force–current maps along with external disturbances affects the
positioning accuracy of the motion control system. In this paper, we devise a control system that allows for the realization of the
nominal magnetic force–current map and the point-to-point positioning of paramagnetic microparticles. This control is accomplished
by estimating and rejecting the 2-D disturbance forces using an inner loop based on a disturbance force observer. In addition, an
outer loop is utilized to achieve stable dynamics of the overall magnetic system. The control system is implemented on a magnetic
system for controlling microparticles of paramagnetic material, which experience magnetic forces that are related to the gradient of
the field-squared. We evaluate the performance of our control system by analyzing the transient- and steady-state characteristics of
the controlled microparticle for two cases. The first case is done without estimating and rejecting the mismatch and the disturbance
forces, whereas the second case is done while compensating for these disturbance forces. We do not only obtain 17% faster response
during the transient state, but we are also able to achieve 23% higher positioning accuracy in the steady state for the second case
(compensating disturbance forces). Although the focus of this paper is on the wireless magnetic-based control of paramagnetic
microparticle, the presented control system is general and can be adapted to control microrobots.

Index Terms— Disturbance compensation, disturbance force observer, magnetic, micromanipulation, model mismatch, wireless.

I. INTRODUCTION

PARAMAGNETIC microparticles and nanoparticles have
the potential to perform localized drug delivery by selec-

tively targeting diseased tissue [1]–[6]. These particles are
steered under the influence of the applied magnetic fields.
In manipulating these particles, a magnetic force–current map
has to be determined and used as a basis of the control system
design [7], [8]. Derivation of the correct force–current map
is not simple since weak magnetic field (less than 3 mT)
results in constant susceptibility and permeability, whereas
stronger magnetic fields do not guarantee the same result [9].
The most often cited force–current map under weak magnetic
field is proven not to match the experimental data due to the
absence of the initial magnetization [10]. However, accounting
for the nonzero initial magnetization corrects the expression
of the magnetic force experienced by microparticles under the
influence of weak magnetic fields.

Some researchers preferred the utilization of spherical
microparticles (Fig. 1) since the direction of magnetization
does not have to be specified [11]–[15]. Microparticles with
irregular shapes under uniform applied fields have magne-
tization force, which differs throughout their bodies in an
unknown manner. This irregularity has a disadvantage for
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Fig. 1. Magnetic-based manipulation system with inner and outer loops. The
input disturbance force (d(P)) represents the model mismatch and external
disturbance forces on the system. The output of the disturbance force observer
(D(s)) compensates for the model mismatch and the external disturbances,
whereas the output of the control system (C(s)) stabilizes the overall dynamics
of the system. The inset shows a 100 µm spherical paramagnetic microparticle
moving toward a reference position (small blue circle) under the influence of
the applied magnetic fields. The large blue circle indicates the microparticle,
and is assigned by our feature tracking software [12]. The red line represents
the velocity vector of the microparticle. The actual and reference position
vectors are represented by P and Pref , respectively. The electromagnets are
labeled with the letters A, B, C, and D.

microparticles or microrobots whose surface is not of second
degree (ellipsoid has surface with second degree) [16], [17].
Materialalso affects the relation between the applied field and
the magnetization of the microparticle. Microparticles with
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soft-magnetic material, for instance, have nonlinear relation
between the applied magnetic field and the magnetization.

Designing a microparticle or a microrobot to be satisfactory
under all conditions is almost impossible. Fabrication of
soft-magnetic microparticles, for instance, is relatively easy.
However, its magnetization is nonlinearly proportional to the
applied magnetic fields. Therefore, the governing equations
relating the applied magnetic field and the magnetization (or
the resulting magnetic force and torque) are not accurate. It
would be natural to devise control systems with relatively
large stability margins to tolerate the model mismatch and
the dynamical uncertainties.

This paper is concerned with the design of a control system
for magnetically guided paramagnetic microparticles. First, the
governing equation in terms of magnetic force–current map
is derived. This equation depends on the field–current map
of our magnetic system, as shown in Fig. 1. We model this
map using finite-element (FE) analysis, and then this model is
verified by measuring the actual fields within the workspace of
our magnetic system. This verification results in an inevitable
mismatch for the field–current map, which in turn results in a
mismatch for the force–current map. The mismatch between
the governing equation and the actual system along with the
external disturbances and drag forces are modeled as an input
disturbance force to the governing motion equation of the
paramagnetic microparticle. An inner loop is devised to esti-
mate this disturbance force and convert it into a compensating
control input [18], [19]. This inner loop compensates only for
the disturbance forces along x and y axes, since our magnetic
system is designed for the manipulation of microparticles in a
2-D workspace. In addition, an outer loop is devised to achieve
stability of the overall magnetic system based on specific
transient- and steady-state characteristics. The experimental
work provided in this paper is performed on a magnetic
system that has a similar configuration to the lower set of
OctoMag [7]. The merits and novelty of our work are due to
the design of a closed-loop control system for microparticles
of paramagnetic material. This system allows for the point-to-
point positioning of these microparticles and the simultaneous
rejection of the disturbance forces.

The remainder of this paper is organized as follows:
In Section II, we discuss the theoretical background pertaining
to the modeling of paramagnetic microparticles under the
influence of external magnetic fields. Section III provides
the model mismatch and disturbance estimation analysis, and
the design of a disturbance force observer [20]. In Section IV,
a motion control strategy is presented, based on the estimation
and compensation of the disturbance force using an inner
loop, along with achieving stability of the magnetic system
using an outer loop. Description of the magnetic system and
the experimental results are provided in Section V. Finally,
discussion about the presented control strategy, conclusion,
and future work are provided in Section VI.

II. MAGNETIC FORCE MODELING

The planar magnetic force (F(P) ∈ R2×1) acting on a
magnetic dipole is given by

F(P) = ∇(m(P) · B(P)) (1)

where m(P) ∈ R2×1 and B(P) ∈ R2×1 are the permanent
or induced magnetic dipole moment of the microparticle and
the induced magnetic field at point (P ∈ R2×1), respec-
tively [21], [22]. The microparticles we consider in this paper
have spherical geometry. Therefore, their induced magnetic
dipole moment can be determined as the volume integral of
the induced magnetization (M(P)) [23]

m(P) =
∫

V

M(P)dV = 4
3
πr3

p M(P) (2)

where V and rp are the volume and radius of the spheri-
cal microparticle, respectively. The induced magnetization is
related to the magnetic field strength (H(P)) by M(P) =
χmH(P), where χm is the magnetic susceptibility con-
stant [24]. The induced magnetization vector (M(P)) always
aligns itself with the applied field since there is no shape
anisotropy for the spherical microparticles. This observa-
tion simplifies the model as the microparticles will be
subjected to pure force and zero magnetic torque. How-
ever, the control system we consider in this paper is
fairly general and can be implemented on nonspherical
microparticles, which experience magnetic force and torque.
Rewriting (2) as

m(P) = 4
3
πr3

p χmH(P) = 1
µ

4
3
πr3

pχmB(P) (3)

where µ is the permeability coefficient given by
µ = µ0(1 + χm), and B(P) = µH(P). Furthermore,
µ0 is the permeability of vacuum (µ0 = 4π × 10−7T · m/A).
Substitution of (3) in (1) yields

F(P) = 4
3

1
µ

πr3
p χm∇(BT(P)B(P)). (4)

In this paper, the magnetic field is generated using air-
core electromagnets, and does not allow the microparticles
to reach saturation. Therefore, the magnetic field can be
determined by the superposition of the contribution of each
of the electromagnets [7]

B(P) =
e∑

i=1

Bi (P) (5)

where e is the number of electromagnets within the magnetic
system. The magnetic field (Bi (P)) is linearly proportional to
the applied current (Ii ) at the i th electromagnet. Therefore,
(5) can be rewritten as

B(P) =
e∑

i=1

B̃i (P)Ii = B̃(P)I (6)

where B̃(P) ∈ R2×e is a matrix that depends on the
position at which the magnetic field is evaluated and I ∈
Re×1 is a vector of the applied current. The magnetic field
due to each electromagnet is related to the current input
by B̃i (P).

The FE analysis of the field–current map (6) is shown in
Fig. 2. This map has to be constructed to determine the gradi-
ent of the magnetic field squared (∇(BT(P)B(P))), which is
used in the determination of the magnetic force–field map (4).
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Fig. 2. Results of the FE analysis for the gradients of the field squared in our magnetic system. This system consists of four orthogonally oriented air-core
electromagnets. The FE analysis describes the magnetic field, the field squared, and the gradient of the field squared within an area of 40 × 40 mm2 when
a representative current vector of [0 0 0 1]T A is applied. The entries of the representative current vector are applied to electromagnets A, B, C, and D,
respectively. The FE results are utilized in the realization of the force–current map (10) and its inverse (13). The gradients of the magnetic field squared are
almost constant within the center of the workspace of our magnetic system (2.4 × 1.8 mm2). This observation simplifies the realization of the disturbance
force observer and the overall control system since the gradients of the field squared do not have to be calculated at each point of the workspace. Bx , By ,
and # are the components of the magnetic field along x-axis, y-axis, and the sum of the square of these components, respectively. The FE model is created
using Comsol Multiphysics (COMSOL, Inc., Burlington, USA).

The FE model is developed for a magnetic system with four
orthogonally oriented air-core electromagnets. As shown in
Fig. 2, the FE model provides the magnetic fields, the field
squared, and the gradients of the field squared in a workspace
of 40 × 40 mm2 within the center of our magnetic system, as
shown in Fig. 1. The FE model is verified experimentally,
and the deviation between the calculated data of the FE
model and the measured values is provided in Table I. The
deviation in the magnitude and angle is calculated for 12
representative points (Fig. 3) that span the workspace of our
magnetic system [7], [8]. We consider this deviation as a model
mismatch that has to be estimated and compensated by the
control system.

The 2-D components of the magnetic field can be
written, with respect to a basis of orthogonal vectors
(x̂ and ŷ), as

B(P) = Bx x̂ + Byŷ. (7)

The gradient of the magnetic field squared (BT(P)B(P)) can
be calculated as follows:

∇(BT(P)B(P)) = ∇(B2
x + B2

y ) = ∇(#) (8)

= ∂#

∂x
x̂ + ∂#

∂y
ŷ (9)

where # = B2
x + B2

y is a scalar function. Substituting (6) in (4)

yields

F(P) = β∇(ITB̃T(P)B̃(P)I) (10)

where β is a constant, and is given by

β ! 4
3

1
µ

πr3
pχm. (11)

Therefore, the components of the magnetic force along x and
y axes are given by

Fj (P) = βIT

(
∂(B̃T(P)B̃(P))

∂ j

)

︸ ︷︷ ︸
!& j

I for j = x, y (12)

where Fj (P) is the magnetic force component for ( j = x, y).
The forward force–current map (12) provides the magnetic
force experienced by the microparticle due to a set of applied
currents. The proposed control system utilizes this map along
with its inverse [given a set of reference forces, we have to
solve (12) for I]. The gradients along x and y axes within
the center of the workspace are almost constant, as shown
in Fig. 2(c) and (f), respectively. This observation simplifies
the force–current map (12). Nevertheless, the inverse of the
quadratic matrix equation [(10) or (12)] has to be solved for
the current vector (I).

Necessary and sufficient conditions for the existence of a
particular solution for quadratic matrix equations are reported
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TABLE I

EXPERIMENTAL VALIDATION OF THE FE ANALYSIS BY CALCULATING THE MAGNITUDES (|| · |) AND ANGLE ( ̸ (·)) DEVIATIONS BETWEEN THE

MAGNETIC FIELDS PROVIDED BY THE FE ANALYSIS (BF) AND THE MEASURED MAGNETIC FIELDS (BM). MEASUREMENTS ARE CARRIED

OUT AT 12 REPRESENTATIVE POINTS [Pl FOR (l = 1, . . . , 12)] THAT SPAN THE WORKSPACE OF THE MAGNETIC SYSTEM USING A

CALIBRATED THREE-AXIS HALL MAGNETOMETER (SENTRON AG, DIGITAL TESLAMETER 3MS1-A2D3-2-2T, SWITZERLAND).

PLANAR COMPONENTS OF THE MAGNETIC FIELD ARE ONLY PROVIDED SINCE THIS PAPER ADDRESSES MOTION

CONTROL OF MICROPARTICLES IN A 2-D WORKSPACE

Fig. 3. Measurement of the magnetic field within a grid that spans the
workspace of the magnetic system (b = 10 mm) to validate the FE model.
The components of the magnetic field are measured at each point of the
grid using a calibrated three-axis Hall magnetometer (Sentron AG, Digital
Teslameter 3MS1-A2D3-2-2T, Switzerland).

in [25]. These conditions provide a solution for the inverse of
our force–current map (12) of the following form:

X = &†
j (Fj& j )

1
2 + (' − &†

j & j )
[
Fj ((Fj & j )

1
2 )†

+U(' − (Fj& j )
1
2 ((Fj & j )

1
2 )†)

]
(13)

where ' ∈ Re×e is the identity matrix. Furthermore, U ∈
Re×e is the arbitrary matrix. The last column of the matrix
(X ∈ Re×e) represents a solution of the inverse force–
current map (12). The square root in (13) is calculated by the
diagonalization of (& j ) using a matrix V j , where V j ∈ Re×e

is a matrix of the eigenvectors of & j . The square root of
(& j ) is then calculated using V−1

j D1/2
j V j , where D j is a

diagonal matrix of the eigenvalues of & j . The simulation
results of the inverse map are shown in Fig. 4. Given an
arbitrary force component (Fj for j = x, y), we calculate
the corresponding current vector using (13). To verify that (13)
indeed provides correct results (vector of current values at each
of the electromagnets), the given arbitrary force component is
compared with the calculated force using the forward force–
current map when the calculated currents are provided as
inputs to (12). The difference between the input and the
calculated forces for 20 arbitrary force components is shown
in Fig. 4(a). We observe that the maximum error between

the calculated and input magnetic forces is 0.35 nN (index
of simulation 18). Moreover, the inverse force–current map is
evaluated for a sinusoidal magnetic force with an exponential
envelope (Fj = 1/βn(0.01 + 0.01 sin(2t) exp(−0.12t)). The
input force is plotted against the calculated force, as shown in
Fig. 4(b). The calculated currents at each of the electromagnets
(e = 4) are shown in Fig. 4(c). The error between the input and
calculated force has maximum value of 0.01 nN (force error
of 0.01 nN is equivalent to norm-2 of current error of 0.037 A)
when a sinusoidal force input is provided. The quadratic matrix
equation (12) is solvable if the matrix (Fj & j )1/2 exists [25].
Therefore, we attribute the maximum error in Fig. 4(a) to this
condition. In this simulation, the e × e matrix (B̃T(P)B̃(P)) is
provided by the FE model.

III. MODEL MISMATCH AND DISTURBANCE

COMPENSATION: INNER LOOP

During the navigation of a microparticle in a fluid, it
experiences drag forces and external forces. We model these
forces as a disturbance force input (d(P)). The estimation
and compensation this disturbance force would allow for the
realization of the nominal model of the magnetic system. The
dynamics of the microparticle is given by

F(P) − d(P) = MP̈ (14)

where M is the mass of the microparticle. Furthermore, d(P) ∈
R2×1 is the planar disturbance force input. This disturbance
force can be calculated using the inverse of the nominal model
(Gn(s)) and the nominal magnetic force input (Fn(P)) as
follows:

do(P) = Fn(P) − G−1
n (s)P = (G(s)P + d(P) (15)

where do(P) ∈ R2×1 is the calculated disturbance force
based on the nominal model and the nominal magnetic force.
Furthermore

Gn(s) = 1
Mns2 and (G(s) = G−1(s) − G−1

n (s). (16)
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Fig. 4. Calculation of the current vector using the inverse of the force–current map (12). The quadratic matrix equation is used to determine the current
at each of the four electromagnets [25]. (a) Current vector (I ∈ R4×1) is calculated for 20 arbitrary force components. The input forces are compared with
the computed forces using the calculated current vector to verify the result of the inverse force–current map. The black circles represent the values of the
arbitrary input forces, whereas the red squares represent the calculated forces from the computed current vectors. (b) Input versus calculated force values. The
dashed black lines represent the input values of the force, whereas the red line represents the calculated force using the currents, which are determined by the
inverse force–current map. The deviation between the input and calculated forces has maximum calculation error of 0.01 nN, which corresponds to norm-2
of current error of 0.037 A. The input force has the following representation: Fj = 1/βn(0.01 + 0.01 sin(2t) exp(−0.12t)). (c) Currents are calculated by the
solution (13) of the inverse of the force–current map for the time-varying force with an exponential envelope. Ii for (i = 1, . . . , e) represents the current at
the ith electromagnet of our magnetic system.

In (16), Mn is the nominal mass of the microparticle. The
nominal magnetic force is given by

Fn(P) = βn∇(ITB̃T
n (P)B̃n(P)I) (17)

where the subscript (n) denotes the nominal values of the
parameter (β) and the matrix (B̃T(P)B̃(P)), respectively. The
calculated disturbance force (do(P)) consists not only of
the disturbance force (d(P)) but also of the perturbation
((G(s)) between the actual system and the nominal model
based on (15). The inverse of the nominal model (G−1

n (s))
cannot be realized since it includes derivatives. Therefore,
the disturbance force must be determined through a low-pass
filter (Q(s))

d̂(P) = Q(s)do(P) = Q(s)(Fn(P) − G−1
n (s)P) (18)

where d̂(P) ∈ R2×1 is the estimated disturbance force through
the low-pass filter. Degree of Q(s) depends on the order
of the nominal plant (Gn(s)). Integrating the disturbance
force observer (18) with a feedback control system affects
its stability and performance. This effect can be shown by
analyzing the frequency response of [26]

Z(s) = Q(s)
1 − Q(s)

G−1
n (s). (19)

In (19), Z(s) is a transfer function that determines the charac-
teristics of the observer-based feedback control system. Fig. 5
shows the frequency response of Z(s) for different orders of
Q(s). Increasing the order of Q(s) allows for the realization of
the nominal model for different types of plants. However, the
corresponding stability deteriorates due to the increased phase
lag, as shown in the phase diagram of Fig. 5. This tradeoff
between stability and performance has to be considered during
the design of (18) by selecting the proper order and gains of
its associated low-pass filter (Q(s)).

The purpose of estimating the disturbance forces (experi-
enced by the microparticle) is to achieve robustness of the

motion control system by rejecting these disturbances using
an inner loop (Fig. 6). This robustness can be achieved by
converting the estimated disturbance force into compensating
control input at each of the electromagnets of the magnetic sys-
tem. The force–current map (12) is derived in Section II.
Therefore, the compensating current input can be determined
by solving (10) when F(P) is set to d̂(P).

Implementation of the observer (18) requires measuring one
of the outputs of the magnetic system based on the available
measurement (position of the microparticle). In addition, the
input current or force has to be known and used in the
realization of (18). In the previous analysis, the measurement
noise is ignored. However, in practice, it has a significant
influence on the performance of the observer-based feedback
system. Therefore, we rewrite (18) by accounting for the
measurement noise (ξ )

d̂(P) = Q(s)(Fn(P) − G−1
n (s)(P − ξ)). (20)

Feeding the estimated disturbance force into a feedback con-
trol system would result in the following output position [26]:

P = Gn(s) (Iref − (1 − Q(s))d(P)) + Q(s)ξ
1 + (1 − Q(s)) (G(s)Gn(s)

(21)

where Iref is the control input of an outer loop, which will
be determined. Equation (21) shows that Q(s) represents a
sensitivity function to the sensor noise, whereas (1 − Q(s))
represents a sensitivity function to the mismatch between the
system and the nominal model. Therefore, due to the presence
of inevitable measurement noise (ξ), the bandwidth of the
observer (20) is limited by the bandwidth of the measurement
noise. The tradeoff (between stability and performance) and
constraint (limits on the bandwidth) analyzed by (19) and (21),
respectively, must be considered during the design of the
disturbance force observer. This can be accomplished by
selecting a proper order of Q(s) and calculating its associated
gains. We observe that a first-order low-pass filter with a
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Fig. 5. Characteristics of the observer-based feedback control system for
different orders of Q(s). The order of the observer affects the stability of the
observer-based feedback control system. The frequency response of Z(s) is
plotted for different degrees of Q(s). The index of the transfer function Zk (s)
stands for the order of Q(s) [k = 1 indicates that Q(s) is a first-order transfer
function].

cutoff frequency of 30 rad/s satisfies the tradeoff between
stability and performance. We benefit from the low-frequency
range at which manipulation of microparticles generally occurs
by filtering the high-frequency noise without affecting the
performance. Since the effect of the measurement noise is
determined by (21), we ignore its effect in the following
analysis for simplicity. Rewriting (18) using a first-order low-
pass filter for Q(s) [20]

˙̂d(P) = −gd̂(P) + g(Fn(P) − MnP̈) (22)

where Mn and g are the nominal mass of the microparticle and
the cutoff frequency of the first-order low-pass filter. Nominal
parameters and variables (denoted with the subscript n) are
used in the realization of the disturbance force observer. The
disturbance force estimation error (ed = d(P) − d̂(P)) can
be determined using (14) and (18). Therefore, the estimation
error dynamics is given by

ėd = d(Ṗ) − ˙̂d(Ṗ). (23)

We further assume that the disturbance force varies slowly
(ḋ(P) = 0). Therefore, the estimation error is

ėd + ged = 0. (24)

This error dynamics indicates that the estimated disturbance
force will converge to the actual one in finite time. Neverthe-
less, we define auxiliary functions to avoid the realization of
the estimated disturbance force through the acceleration of the
microparticle [14]

* = d̂(P) − +(Ṗ) (25)

where * and +(Ṗ) are auxiliary functions. In (25), * provides
a change of variables to avoid measuring the acceleration of
the microparticle, whereas +(Ṗ) is a function of the velocity
of the microparticle (to be determined). The time derivative of

Fig. 6. Disturbance force estimation and compensation. The force–current
map along with its inverse is utilized to determine the estimated disturbance
force and provides a compensating current input (Ic) to reject the disturbance
force input (d(P)). The observer is based on the nominal values of the
parameters of the magnetic system denoted with the subscript n. The matrix
(B̃T

n (P)B̃n(P)) does not have to be evaluated at each point of the workspace
since it has almost a constant value based on the FE analysis of our
magnetic system. d(P), do(P), and d̂(P) represent the input disturbance force,
calculated disturbance force using the nominal model of the system, and the
estimated disturbance force through the low-pass filter (Q(s)), respectively.
The turquoise blocks indicate that the input is evaluated based on (17).

(25) yields

*̇ = ˙̂d(P) − ∂+(Ṗ)

∂Ṗ
P̈. (26)

Substituting (25) and (26) in (22) P̈

*̇ + ∂+(Ṗ)

∂Ṗ
P̈ = g(Fn(P) − MnP̈) − g(* + +(Ṗ)). (27)

Setting the derivative of the auxiliary function, ∂+(Ṗ)/∂Ṗ =
−gMn, yields the following representation of the disturbance
force observer using (*):

*̇ = −g(* + +(Ṗ)) + gFn(P) (28)

where the auxiliary function +(Ṗ) is

+(Ṗ) = −gMnṖ. (29)

Taking the Laplace transform of (28) without changing the
notations of the variables

* = g
s + g

(Fn(P) − +(Ṗ)). (30)

Finally, substituting (30) in (25) yields

d̂(P) = g
s + g

(Fn(P) − +(Ṗ)) + +(Ṗ). (31)

Estimating the disturbance force (d̂(P)) requires measur-
ing the velocity of the microparticle and the input current
vector. In (31), the nominal magnetic force (Fn(P)) can be
represented explicitly in terms of the input current (I) using
the nominal forward force–current map (17). The disturbance
force observer is shown in Fig. 6. The force–current map is
used to convert the estimated disturbance force into equivalent
currents to simultaneously attenuate the disturbance forces.
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Fig. 7. Overall structure of the control system. The control system consists of
inner and outer loops to compensate for the disturbances and achieve stability,
respectively. The outer loop control transfer function (C(s)) is determined
using (35). The disturbance force observer is based on the nominal values
of the parameters of the magnetic system denoted with the subscript n. The
matrix (B̃T

n (P)B̃n(P)) does not have to be evaluated at each point of the
workspace since it has almost a constant value based on the FE analysis
of our magnetic system. d(P), do(P), and d̂(P) are the input disturbance
force, calculated disturbance force using the nominal model of the magnetic
system, and the estimated disturbance force through the low-pass filter (Q(s)),
respectively. The turquoise blocks indicate that the input is evaluated based
on (17) and (35).

As shown in Fig. 6, the disturbance force observer depends on
the nominal values of the parameters of the magnetic system.
The deviation between these parameters and their actual values
is modeled as a disturbance force in the magnetic system. The
disturbance force observer just represents an inner loop for the
control system. Stability of the overall control system must be
achieved by an outer loop.

IV. MOTION CONTROL DESIGN: OUTER LOOP

Dynamics of our magnetic system has to be stabilized by
an outer loop control input. The outer loop is necessary since
a stable equilibrium point under static magnetic forces cannot
be achieved [27]. This claim can be verified by calculating
the divergence of the magnetic force given by (4) at a point
within the workspace of our magnetic system. By considering
a point (P) under static force, i.e., F(P) = 0, the necessary
condition for this point to be a stable equilibrium point is

∇ ·
(

4
3

1
µ

πr3
p χm∇

(
BT(P)B(P)

))
< 0. (32)

Since all the arguments of (32) are positive (with the exception
of χm for diamagnetic materials, which are not considered in
our work) [24], stable equilibrium point cannot be achieved
without feedback control inputs. Therefore, we devise a control
law of the following form:

I = Ic + Iref (33)

where Ic and Iref are the control inputs of the inner and
outer loops, respectively. Using the estimated disturbance force
(d̂(P)) by (31), we can calculate Ic using

d̂(P) − βn∇(IT
c B̃T

n (P)B̃n(P)Ic) = 0. (34)

Fig. 8. Microparticle moving toward a reference position under the influence
of the controlled fields generated by the control law (33). The microparticle
tracks the given reference position at velocity of 98 µm/s and settling time of
3.15 s. In the steady state, the position tracking error is 10 µm. The large blue
circle indicates the tracked microparticle by our feature tracking software [12],
whereas the small blue circle indicates the reference position. The velocity
vector of the microparticle is represented by the red line. The controller gains
are kp1 = kp2 = 0.1 s−2 and kd1 = kd2 = 0.5 s−1. The cutoff frequency of
the low-pass filter associated with the disturbance force observer is 30 rad/s.

The estimated disturbance force–current map (34) is solved
using (13) and the 2-D components of the estimated distur-
bance force.

The control input of the outer loop has to achieve stability
for the overall magnetic system. Therefore, we devise an outer
loop of the following form:

Fref(P) = Mn(P̈ref − Kdė − Kpe) (35)

where Fref(P) and P̈ref are the outer loop force and the
reference acceleration input, respectively. Furthermore, ė =
Ṗref − Ṗ is the velocity tracking error of the microparticle,
and similarly, e = Pref − P is the position tracking error. The
reference position vector (Pref ) and velocity vector (Ṗref ) are
known beforehand. The controller gain matrices (Kp > 0 and
Kd > 0) must achieve stable tracking error dynamics. The
gain matrices of (35) are

Kp =
[

kp1 0
0 kp2

]
and Kd =

[
kd1 0
0 kd2

]
(36)

where kpi and kdi , for (i = 1, 2), are the proportional and
derivative gains, respectively. The outer loop control input
(Iref) can be calculated by

Fref(P) − βn∇(IT
ref B̃T

n (P)B̃n(P)Iref ) = 0. (37)

The control input (33) results in the following magnetic force:
F(P) = d̂(P) + Fref(P). (38)

Substituting (31), (35), and (38) into (14), we obtain

ë + Kdė + Kpe = 0. (39)

Compensating for the model mismatch and disturbances along
with selecting positive definite control gain matrices (Kp > 0
and Kd > 0) enforces the position tracking error to zero
in finite time based on (39). We assume that the estimated
disturbance force converges to the actual one based on (24).
The overall structure of the control system is shown in Fig. 7.
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TABLE II

EXPERIMENTAL PARAMETERS AND CONTROLLER GAINS. THE

CONTROLLER GAINS ARE SELECTED SUCH THAT THE

MATRICES (KP) AND (Kd) ARE POSITIVE DEFINITE

V. EXPERIMENTAL RESULTS

The experiments are done using a magnetic system with
four orthogonally oriented air-core electromagnets [12], [13].
The electromagnets surround a water reservoir, as shown
in Fig. 1. The microparticles utilized throughout our
experiments are superparamagnetic particles made by embed-
ding magnetite (Fe3O4) in a matrix of poly(D,L-lactic acid).
According to the manufacturer (PLAParticles-M-redF-plain
from Micromod Partikeltechnologie GmbH, Rostock-
Warnemuende, Germany), their average diameter is 100 µm,
magnetization at 100 mT is approximately 4.3 Am2/kg,
and they do not saturate until 1 T. Since the density of the
particles is 1.4 ×103 kg/m3, we estimate the susceptibility
χm to be 0.075 (Table II). The position of the microparticle
is tracked using a vision system embedded to a microscope.

To implement our control system, the inner and outer loops
are realized. The inner loop depends on the disturbance force
observer (31), whereas the outer loop stabilizes the dynamics
of the magnetic system using (35). These loops depend on
the position and velocity of the microparticle. The disturbance
force observer depends on the availability of the outputs of the
magnetic system (position or velocity of the microparticle)
along with assuming that the nominal model of the magnetic
force is known a priori. We calculate the velocity of the
microparticle along with the input currents to realize the distur-
bance force observer (31). The presence of measurement noise
could deteriorate the performance of the disturbance force
observer and limit its bandwidth, as explained in Section III.
Therefore, velocity of the microparticle is calculated using a
low-pass filter with a cutoff frequency of 30 rad/s.

The disturbance force observer estimates the components
of the disturbance force along x and y axes. Velocities along
these axes are fed into the observer along with the magnetic
force input calculated based on the nominal model (17).
Hereafter, the compensating currents (Ic) are determined by
solving (34). The transfer function of the outer loop control
system (C(s)) is determined using the control law (35).

The experimental result of the motion control law (33) is
shown in Fig. 8. This control law allows for the tracking
of a reference position within the workspace of the system
while simultaneously compensating for the disturbance force
experienced by the microparticle. As shown in Fig. 8, the
controlled microparticle tracks a 300 µm reference position

TABLE III

CHARACTERISTICS OF THE CONTROL SYSTEM IN THE TRANSIENT AND

STEADY STATES. THE TRANSIENT STATE IS REPRESENTED BY THE

AVERAGE SETTLING TIME AND AVERAGE VELOCITY, WHEREAS

THE STEADY STATE IS REPRESENTED BY THE MAXIMUM ERROR.

THE AVERAGE IS CALCULATED FROM 10 CLOSED-LOOP

CONTROL TRIALS WHEN DISTURBANCE FORCES ARE

UNCOMPENSATED AND COMPENSATED

(distance between the initial position of the microparticle and
the given reference position) at a velocity of 98 µm/s and
settling time of 3.15 s. In the steady state, the position tracking
error is 10 µm. To show that the proposed control system
indeed compensates for the disturbance force, we investigate
its performance in the presence and absence of the contribution
of the inner loop (this loop estimates the disturbance force and
provides a compensating control input). Characteristics of the
transient and steady states are used to evaluate the performance
of the control system in each case.

The experimental validation of the disturbance force com-
pensation by the inner loop is shown in Fig. 9. Multiple refer-
ence positions are given within the workspace of our magnetic
system. Fig. 9(a)–(c) shows a representative motion control
trial when the output of the inner loop is not supplied to the
magnetic system, whereas Fig. 9(a)–(c) shows a representative
motion control trial of the overall control law (33). The posi-
tion tracking along x and y axes shown in Fig. 9(a) and (b),
respectively, indicates that the control system achieves average
settling time of 3.6 s in the absence of the contribution of the
inner loop. On the other hand, Fig. 9(d) and (e) shows that
the average settling time is 3.0 s when the contribution of the
inner loop is added to the overall control input. In addition, the
average velocity of the microparticle is 45 µm/s in the absence
of the contribution of the inner loop, whereas the average
velocity is 60 µm/s when the disturbance force is compensated
using (31). The average is calculated from 10 motion control
trails for each case. The position tracking errors along x
and y axes for the aforementioned two cases are shown in
Fig. 9(c) and (f), respectively. These results show the effect of
the inner loop on the characteristics of the steady state. The
control system achieves maximum position tracking error of
18 µm in the absence of the contribution of the inner loop,
whereas the overall control system (33) achieves maximum
position tracking error of 14 µm in the steady state. Table III
summarizes the experimental results. We observe that the
microparticle exhibits oscillatory response in the steady state,
as shown in Fig. 9(a), (b), (d), and (e). This response can be
explained by (32), which indicates that a stable equilibrium
point cannot be achieved for microparticles of paramagnetic
material without a feedback control system.
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Fig. 9. Representative motion control experimental results of the microparticle under the influence of the applied magnetic fields in the absence and presence
of the contribution of the inner loop (with disturbance compensation). The microparticle tracks four different points within the planar workspace of the
magnetic system. The reference positions are indicated with 1⃝, 2⃝, and 3⃝. The black lines represent the reference set points along x and y axes, whereas
the blue dashed lines represent the path taken by the microparticle. (a) and (d) Controlled motion of the microparticle along x-axis. (b) and (e) Controlled
motion of the microparticle along y-axis. (c) and (f) Position tracking errors along x and y axes. This motion control result is accomplished by the control
law (33).

VI. DISCUSSION

During the design of controllers for magnetic-based manip-
ulation systems, a magnetic force–current map (and magnetic
torque–current map) has to be realized and used as a basis of
the control system design. This magnetic force–current map
depends on a field–current map. We model this field–current
map by an FE model, and calculate the deviations between
its fields and the actual fields measured by a calibrated Hall
magnetometer. The average deviation in the magnitude and
direction of the magnetic field are 2.3% and 0.7%, respectively.
This average is calculated from a grid of 12 points, which
span the workspace of our magnetic system (Table I). The
mismatch between the actual magnetic system and our FE
model along with the drag forces and any unmodeled dynamics
is considered as an input disturbance force on the nominal
magnetic force–current map. Using this map, a disturbance
force observer is designed. This observer allows the estimated
disturbance to converge to the actual disturbance force in finite
time based on (24). The disturbance force observer is further
utilized in the realization of the control system. The control
system employs the disturbance force observer in an inner
loop to compensate simultaneously for the disturbance force
input (which represents the sum of the aforementioned forces).
In addition, the overall stability of the magnetic system is
achieved by an outer loop. Realization of the proposed control
system relies on the nominal force–current map along with its

inverse map (we have shown through simulation results the
solution of the inverse map). Furthermore, our FE analysis
shows that the gradients of the field squared do not have to
be evaluated at each point of the workspace of our magnetic
system since they are almost uniform. This observation along
with the solution of the inverse force–current map allows for
the realization of the proposed control system.

The order of the low-pass filter (Q(s)) associated with the
disturbance force observer depends on the nature of the input
disturbance force. This force is a function of time and can be
modeled by the following polynomial [26]:

dl

dtl d(P, t) = 0 (40)

where d(P, t) is the input disturbance force and l is the order
of the low-pass filter (Q(s)) associated with the disturbance
force observer. Approximating the input disturbance force
using a step function (l = 1) allows us to use a first-order
low-pass filter in (31). Furthermore, approximating the input
disturbance force using a ramp function (l = 2) allows us to
use a second-order low-pass filter, and so forth. Therefore,
our disturbance force observer can be adapted to estimate
disturbance force inputs of higher orders.

Even though the experimental work is done using para-
magnetic microparticles of spherical geometry, the presented
control system is fairly general and can be modified to
control superparamagnetic particles, ferromagnetic particles,
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microparticles of irregular shapes, and microrobots. This
necessitates the incorporation of the magnetic torque–current
map with the control system. The magnetic force– and torque–
current maps can be used in the realization of the inner and
outer loops of the control system. Furthermore, the proposed
magnetic-based control strategy can be adapted to control
microparticles in the 3-D space.

A. Conclusion

The mismatch between the actual and nominal field-current
map of magnetic-based manipulation systems, which can be
as high as 20%, affects the governing force–current map that
is necessary for the realization of the magnetic-based control
system. In this paper, a control system is investigated based
on estimating the mismatch and the drag forces. These forces
are considered as a disturbance force input to the governing
equation of the magnetic system. The outlined control sys-
tem compensates for this force by an inner loop. This loop
estimates the disturbance force and converts it into a control
input for the realization of the nominal model of the magnetic
system. In addition, the control system achieves stable position
tracking error dynamics for the microparticles using an outer
loop. Compensating the mismatch and the drag forces results
in 17% faster response and 23% higher positioning accuracy
of the microparticle by the proposed control system in the
transient and steady states, as opposed to the same control
system without compensation.

B. Future Work

Future work in the field of wireless magnetic-based con-
trol will be extended to achieve targeted drug delivery. Our
microparticles will be coated with drugs, and the physiological
conditions of the release process will be studied experimen-
tally. Clusters of nanopaticles will be used as magnetic drug
carriers owing to their low toxicity and excellent magnetic sat-
uration [28]. Furthermore, we will investigate the possibilities
to modify our system to be integrated with a clinical imaging
modality, such as magnetic resonance imaging [29]. In vivo
experiments need to be done to investigate important aspects,
such as time-varying fluid viscosity and flow. Furthermore, our
magnetic system will be modified to incorporate controlled
disturbance inputs, such as time-varying fluid flow, to verify
the effectiveness of the control technique.
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