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ABSTRACT

Analysis of the attitude dynamics of a spacecraft is necessary for its successful op-
eration. Recent research has focussed on the object-oriented analysis and design for
generating and solving the complex nonlinear dynamic equations of motion of a multi-
body space system. In this thesis, an effort has been made to develop objects that can
be combined to formulate the complete dynamic equations of a spacecraft containing
reaction wheels. In order to generate the mathematical model and dynamical equa-
tions of the multibody system, a variation of the Lagrange’s method has been used,
along with the concept of Natural Orthogonal Complement, in order to eliminate the

kinematic constraint force and moments.

The designed objects would be part of a multibody system software package that
could simulate the complex dynamics of a spacecraft containing reaction wheels and
any arbitrary configuration of connected bodies. The objects have been designed such
that the spin rate of the wheels may be specified as a constant nominal rate, or as any
function of time, or in the form of a P.I.D. control law, wherein the wheel spin rate is
a function of the body quaternion of the motherbody. The accuracy, versatility, and
adaptability of the designed objects have been illustrated with numerous examples
and compared with results obtained using standard procedure. Maneuvers have also
been simulated on the designed model and compared with available spacecraft data

in order to substantiate the authenticity of the designed objects.



RESUME

Pour mener a bien ’objectif d’un vol spatial, une étude du comportement dynamique
du vaisseau est primordiale. La recherche actuelle s’est penchée sur I’analyse et la
conception “orientée-objet” pour synthétiser et résoudre de complexes équations dy-
namiques non-lineaires, des mouvement d’un systeme spatial a plusieurs corps. Dans
cette these, un effort particulier a été fait pour développer des objets pouvant se com-
biner afin de formuler des équations dynamiques completes d’'un mobile, embarquant
des roues a réactions. Afin de determiner le modele mathématique et les équations
dynamiques du systeme a plusieurs corps, une variante de la méthode de Lagrange,
ainsi que le concept de “Natural Orthogonal Complement” ont été appliqués dans le

but d’éliminer les forces et moments de contraintes cinématiques.

Les objets congus feront parti d’un logiciel de systeme a plusieurs corps qui pour-
rait simuler le dynamique complexe d’un vaisseau possédant des roues a réaction ainsi
que de toute configuration arbitraire de corps couplés. Les objets ont été congus de
sorte que le vecteur vitesse angulaire des roues puisse etre defini comme une constante
nominale, comme fonction du temps ou encore sous la forme d’une loi de control du
type P.I.D., dans laquelle le vecteur vitesse est fonction du vecteur quaternion du
mobile-meére. L’efficacité, la polyvalence et ’adaptabilité de ces objets ont été il-
lustrés par de nombreux examples et comparés avec des résultats obtenus par des

approches plus classiques. Les fonctionnements ont aussi été simulés sur le modele
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ainsi congu et comparés avec des données disponibles sur les vaisseaux spatiaux afin

de corroborer la légitimité de ces objets.
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NOMENCLATURE

All bold-face, lower-case, Latin and Greek letters used in this thesis denote vectors
and all bold-face, upper-case, Latin and Greek letters denote matrices. The term
extended refers to quantities associated with each body, while the term generalized
refers to those quantities associated with the overall system. Moreover the terms with
a subscript ‘B’ are associated with the motherbody; the terms with a subscript ‘J’
are associated with the joint; and the terms with a subscript ‘w’ are associated with
the reaction wheel, unless specified otherwise. Also (')y:o stands for the evaluation
of a quantity when the generalized acceleration vector (¥) of the multibody system

is set to zero, whereas the superscript ‘x’ represents the cross product operation.
Latin Symbols

c,,: Position vector of the center of mass for body .

€;: Euler axis for body 1.

h: Angular momentum of the spacecraft expressed in the inertial coordinate
frame.

I5c: Inertia tensor of the spacecraft.

I, k = xx,yy, zz: Mass moment of inertia of the body around its center of mass.

J ;2 Local Jacobian matrix of the joint .

Ky, £ =1, 2,3: Control gain vectors.

L;: Matrix transforming the time derivative of the pose q; to the twist v;.

m;: Mass of body 1.



NOMENCLATURE

M;: Extended mass matrix of body i.

M": Mass moment of inertia of the " body around its center of mass.

N: Natural Orthogonal Complement matrix.

O: Inertial reference frame for the generic kinematic element.

Op: Local body frame of the generic rigid link.

O,: Coordinate frame of the joint before it has undergone motion.

O%: Coordinate frame of the joint after it has undergone motion.

O,,.: Local body frame of the generic kinematic element.

O,: Local body frame of the generic kinematic element after having undergone
motion.

p;: Position vector of the origin of frame (X;, Y;, Z;) with respect to (X,, Y,, Z,).

Pm: Position vector locating the origin of frame O,, from the inertial reference
frame O.

ps: Position vector locating the origin of frame Oy from the inertial reference
frame O.

d:: Quaternion of the i** body.

q;: Pose of body 1.

r: Relative displacement from the origin of the original frame to the origin of the
new frame, unless stated otherwise.

R: Relative rotation matrix describing the orientation of the new frame with
respect to the original frame, unless stated otherwise.

R;: Rotation Matrix defining the orientation of frame (X;,Y;, Z;) with respect
t0 (Xo, Yo, Zo).

R,,: Rotation matrix that represents the orientation of frame O,, with respect
to the inertial reference frame O.

R,: Rotation matrix that represents the orientation of frame O, with respect to
the inertial reference frame O.

RW,, k =1,2,3: Spin rate of the reaction wheels.

t: Time variable.

XV



NOMENCLATURE

T: Transformation matrix representing the orientation of the three reaction wheels
relative to the body coordinate frame.

T;: Kinetic energy of body 1.

Tsc: Kinetic energy of the spacecraft containing the reaction wheel.

v;: Twist of body 1.

Byt Twist of the reaction wheel relative to the motherbody.

w;: Vector accounting for all the nonconservative wrenches acting on body 1.

w': The algebraic constraint wrench associated with body i.

wP: The external wrench acting on body 1.

wl: The kinematic constraint wrench associated with body i.

"X9: Spatial transformation matrix for the outward link 4.

“X!I: Spatial transformation matrix for the inward link 3.

X ;: Spatial transformation matrix of the joint .

y: Vector containing the generalized coordinates of the mulitbody system.

Z,: Joint characteristic matrix for a prismatic joint.

Z,: Joint characteristic matrix for a revolute joint.

(X,Y, Z): Local frame of the motherbody.

(X;,Y;, Z;): Local frame of body .

(X,,Y,, Z,): Inertial frame of the multibody system located at the base.

Greek Symbols

a, 3, ~v: Joint angles.

I';: Mapping matrix.

f;: Euler angle for body .

0;: Joint coordinate vector composed translational displacement and/or rota-
tional angles of the joint 1.

A;: Matrix transforming the twist v; to the time derivative of the pose q;.

7: Joint torque applied to the arms, unless specified otherwise.

Y;: Connectivity matrix.

XVi



NOMENCLATURE

¢F: Extended external wrench associated with body i.

¢X: Extended kinematic constraint wrench associated with body i.

qbf : Extended system wrench associated with body i.

Wywheett Spin rate of the reaction wheel.

w: Relative angular velocity of the new frame with respect to the original frame.

w;: Angular velocity of frame (X;, Y;, Z;) with respect to (X,, Y,, Z,).

wm: Angular velocity of frame O,, with respect to the inertial reference frame
0.

w,: Angular velocity of frame O, with respect to the inertial reference frame O.

wsc: Angular velocity of the spacecraft.

wi, k= z,y, z: Slew velocity of the spacecraft.

Xvii



CHAPTER 1

Introduction

1. Multibody Space Systems

The early stages of space exploration saw the spacecraft tending to be small and
mechanically simple, in contrast to a modern space vehicle carrying numerous light-
weight deployable members, such as solar panels, antennas, and robotic manipulators.

This section describes several space systems and illustrates their multibody nature.

FIGURE 1.1. An artist’s conception of the International Space Station (cour-
tesy:NASA Photo gallery)



1.1 MULTIBODY SPACE SYSTEMS

The space age truly began with the launch of Sputnik in 1957. Sputnik was a light
weight, spherically shaped spacecraft made of aluminum, and had four antennas. The
shape and the size of the satellites have changed much since then. From the manned
Mercury and Gemini, through Apollo in the sixties, and now the International Space
Station (ISS), all represent a wide range of multibody space systems with varying
degrees of complexity. The Apollo 11 mission which landed the first men on the
Moon consisted of a relatively simple spacecraft with four legs attached to it, and
was shaped like a blunt cone. Skylab, Mir, and the ISS, represent a range of complex
multibody space systems. The configuration of ISS, shown in figure 1.1, is a set
of linear trusses to which pressurized modules, subsystems, and user laboratories
are attached. The ISS will be 155 meters in length and 244,055 kilograms in mass
after assembly, and would have four large photovoltaic arrays; each array having four

modules (Modi and Ng, 1990).

FIGURE 1.2. The Mars Global Surveyor (courtesy:JPL Photo gallery)

The path of exploring planets by means of multibody space systems begun with
the Pioneers and Voyagers (Kilston et al., 2000). The Mars Global Surveyor space-

craft, which was launched in 1996, shown in figure 1.2, is an example of one of the

2



1.1 MULTIBODY SPACE SYSTEMS

many complex multibody space systems used for planetary exploration. It has four
solar panels each of length 12 meters. It also has a high gain antenna mounted on a

2 meters long boom.

The unmanned space observatories also represent multibody space systems that
help observe phenomena and objects hard to see from the bottom of our atmosphere.
The Hubble Space Telescope, Far Ultraviolet Spectroscopic Explorer, and Chandra
X-Ray Telescope, have given us the highest resolution visual images of distant ob-
jects, early relics of the Big Bang, and Supernovas, respectively. The Hubble Space
Telescope, shown in figure 1.3, is a 13.3 meters long and 4.3 meters wide spacecraft.

It has two double roll out solar arrays of dimensions 2.3 meters x 12 meters.

FIGURE 1.3. The Hubble Space Telescope during the STS 61 flight (cour-
tesy:NASA Photo gallery)

The vast range of communication satellites, like SATCOM, INTELSAT, and IN-
MARSAT also belong to the realm of multibody space systems and have led the
way for global long distance and maritime communications. The use of large ap-

pendages are required for some space systems, for example, the Radio Astronomy

3



1.1 MULTIBODY SPACE SYSTEMS

Explorer (RAE) satellite used four 750 feet antennas for detecting low-frequency sig-
nals (Modi, 197/). Another example highlighting the complexity of multibody space
systems is the Tracking and Data Relay Satellite (TDRS). This satellite has two wing-

like solar panels and two high-gain parabolic antennas, that look like giant umbrellas.

Space robotic devices also belong to the category of multibody space systems.
Telerobotics can reduce extra-vehicular activity with the associated time overhead and
dangers to astronauts. Moreover, the use of automated assembly operations will be
advantageous for the in-orbit construction of large space structures (Mitsushige, 1997).
To increase the mobility of such space systems, free-flying spacecraft, in which ma-
nipulators are mounted on a satellite, are being proposed. The Canadian Remote
Manipulator System, better known as the CANADARM, is frequently used in con-
junction with the Space Shuttle and is an example of a space robot. A more advanced
version of the CANADARM is the Mobile Servicing System (MSS), shown in figure
1.4, part of which was launched in April 2001, is Canada’s contribution to the ISS.
One of the main components of the MSS is the Special Purpose Dextrous Manipu-
lator (SPDM), which is a highly dextrous robot with two arms that will perform a
great many of the tasks in the assembly and maintenance of the ISS. Advanced space
manipulators that have currently been developed are the European Hermes Robot
Arm (HERA) and the Japanese Experiment Module Remote Manipulator System
(JEMRMS). For fine dextrous operations, the functions of future space robots would
encompass the servicing of satellites, space debris recovery, and planetary surveys.
Such future space robots include the Ranger, Charlotte, and the German built Space
Robot Technology Experiment (ROTEX) (David, 1995).

Future space missions, such as Space Technology (2004), Space Terrestrial Planet
Finder (2005), Terrestrial Planet Finder (2011), and Life Finder (2016) would consist
of highly complex multibody space systems carrying numerous appendages, used for

a variety of purposes. Thus, the presence of multiple complex components is evident
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in a broad spectrum of space applications. The dynamical analysis of such complex
multibody space systems is known to be intricate and demanding. The dynamics and
control of multibody space systems are the subjects of discussion in the subsequent

sections.

FIGURE 1.4. An artist’s conception of the MSS (courtesy:MacDonald Det-
twiler Space and Advanced Robotics )

2. Dynamics of Multibody Systems

The study of multibody system dynamics dates back to the mid-sixties, when
there became an apparent need for designs with higher reliability and faster response.
Also, with the advent of the space age, the need to predict the dynamical response
of complex satellites in micro-gravity environment became essential. For such and
many more applications, the traditional single degree of freedom systems or linear
multiple degree of freedom systems were not suitable to meet the ever increasing de-
mands of analytical accuracy. Furthermore, with the advances of digital computers,
it was possible to handle millions of floating point operations. Thus, the discipline of
multibody dynamics has grown from a small and very specialized subject of classical

mechanics to one of the major fields of computational mechanics. Extensive research
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has been done, which has led to software simulation tools for modeling mechanical

systems with complex geometries.

As mentioned previously, satellites or space systems with connected bodies or
appendages belong to the regime of multibody space systems whose dynamics are
known to be complex and challenging. The governing equations of motion for the
motherbody and the connected bodies can be derived in terms of nonlinear differen-
tial equations, by modeling them as a multibody mechanical system. The connected
bodies may be in the form of solar panels, booms, antennas, and/or manipulator
arms. When bodies are attached to the motherbody, there is an interaction between
its dynamics and the dynamics of the motherbody. The motion of the connected
bodies produces reaction forces and moments on the satellite through the mother-
body base. These forces and moments produce translation of the center of mass of
the spacecraft and rotation about its center of mass. Due to such dynamic coupling
between the motherbody and the connected bodies, the position and the orientation
of the spacecraft are functions of the position and orientation of the connected ap-

pendages.

A multibody space system can be modeled for dynamical analysis as a kinematic
chain of interconnected rigid bodies (links). This kinematic chain can be simple
or complex. The equations of motion for a multibody system can be obtained by
using many different formalisms, such as the Newton-Euler method, or the Euler-
Lagrange procedure. The first method is based on force and moment equilibrium of
component bodies and subsequent elimination of the inter-body forces. The latter
method is based on work/energy principles and the system is considered as a whole.
To avoid lengthy expressions in the Lagrangian procedure, it is advantageous to de-
rive the equations of motion for component bodies and subsequently eliminate the
non-working constraint forces utlitizing the Natural Orthogonal Complement of the

velocity constraint matrix (Cyril et al., 1991). This allows computationally efficient
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recursive formulations in which the components are dealt with sequentially, taking
advantage of the kinematic and dynamic equations of the previous body (Woerkom

and Misra, 1996).

3. Attitude Control of Space Systems

Attitude control is one of the most important problems in spacecraft design, since
there are always disturbances due to dynamic interaction, gravitational torques, or-

bital motion, etc. The basic types of attitude control systems are (Chobotov, 1991):

e Passive Gravity Gradient Control.

e Spin Control.

e Dual-Spin Control.

e Three-Axis Active Control.

e Momentum Bias Control.

The spacecraft attitude stabilization is necessary in order to maintain communi-
cation link, generate electrical power from the solar panels, and to comply with the
mission objectives of the spacecraft. The dynamic coupling between the attached ap-
pendages and the spacecraft poses control problems. In most cases, the position and
attitude of the spacecraft are controlled by one of the above stated attitude control
methods in conjunction with reaction jets to compensate for the unwanted external
torques exerted on the spacecraft. For example, the Mars Global Surveyor, shown in
figure 1.2, has three reaction wheels and twelve jet thrusters as its three axis stabi-
lized attitude control system. The utilization of jet thrusters solely as attitude control
devices is not prudent as it consumes relatively large amounts of fuel, thus limiting
the useful life of the system. Most importantly for intricate motion, thrusters pose

the threat of sudden movements/jerks.
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Reaction wheels, as shown in figure 1.5, are used in many space applications in
order to maintain and/or reorient the attitude of the spacecraft. The wheels are lo-
cated at a fixed orientation with respect to the spacecraft body axes. The motion of
the attached appendages of a multibody space system, causes variation in the attitude
of the spacecraft, which in turn causes the angular momentum of the spacecraft to
change. The spacecraft attitude is controlled by absorbing the angular impulse from
the external torques into the reaction wheels during slew or reorientation maneuvers.

The advantages of a three axis stabilized reaction wheel system are:

(i) Capability of continuous high pointing accuracy.
(ii) Large angle slewing maneuvers without fuel consumption.

(iii) Compensation for cyclic torques without fuel consumption.

FIGURE 1.5. A body with three reaction wheels

By sensing the orientation of the spacecraft, the control system seeks to deal with
the unwanted angular momentum contributed by external torques, by transferring it
to the reaction wheels. This transferral is accomplished by applying control laws

to the wheels. These wheels are aptly called reaction wheels because the equal and

8



1.4 THE OBJECT-ORIENTED APPROACH

opposite torque from the wheels on the spacecraft tend to cancel the external torque,

leaving the momentum of the spacecraft unchanged (Hughes, 1986).

4. The Object-oriented Approach

Considerable effort has been directed towards the dynamics, modeling, and com-
puter simulation of multibody systems because the micro-gravity environment of
space is not easily amenable for experimentation on the ground (Min et al., 1999).
Most previous investigations, have considered specific models and have adopted a
procedure-oriented approach. Modeling by this method is composed of a large num-
ber of procedures. This method is prone to errors and does not easily accommodate
the possibility of modifications, as it is too laborious. But recently several researchers
have focussed attention to the application of object-oriented approaches to multibody
dynamics formulations (Otter et al., 1993). Following this methodology, the system
is viewed as a combination of distinctive objects having certain characteristic data
and corresponding operations. An action of the system is typified as a procedure
which swaps and renews the information through its own internal operation. This
makes the object-oriented approach have a much lower probability of errors while
modeling. Moreover it is considerably easy to upgrade and/or modify existing sys-

tems by simply adding or replacing some objects.

Multibody systems are comprised of many distinctive and consequential elements,
such as solar panels, antennas, booms, and manipulator arms. The functionalities and
characteristics of each of these elements can be generalized and modeled as objects.
In addition, processes, such as the system assembly and the solution of the nonlinear
equations are also designed as objects. Consequently, using object-oriented concepts,
the modeling of multibody systems can be done in a modular fashion. Modeling is

achieved by interconnection of the object modules in a simple and concise manner.
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5. Motivation and Objective

The formalisms for computer-oriented generation of multibody system equations
have been developed to a high degree of maturity during the past decades. Mean-
while, the modeling aspects in the various technological contexts and the interaction
with other methodologies for computer-aided system design, are fertile research topics

in multibody dynamics.

Using object-oriented approach, the multibody system can be broken down into
generic classes and further bifurcated into specialized objects. Such a methodol-
ogy has many advantages over the conventional procedure-oriented technique. While
modeling complex multibody systems, the object-oriented modeling method is less
prone to errors. It also enhances code re-usability, since it is a constantly evolving
piece of software and is easy to alter and/or upgrade. As mentioned previously, the
attitude stabilization and control of the motherbody is of extreme importance, and
the use of reaction wheels is a very effective method of maintaining the orientation
of the spacecraft. Objects that could simulate a spacecraft mounted with reaction
wheels, and this system being a part of a larger multibody space system, have not
been developed. Hence, the objective of this study involves the application of object-
oriented modeling techniques for the efficient generation and solution of the dynamic
equations of motion of a spacecraft containing reaction wheels. In order to preserve
the autonomous portrayal of each individual body in the multibody space system, the
technique adopted involves the modification of the Lagrangian method in conjunction

with the Natural Orthogonal Complement of the kinematic constraint matrix.

This research project encompasses the mathematical formulation, as well as de-
signing and coding of the objects that would simulate a spacecraft mounted with
three reaction/momentum wheels. The objects designed would be part of a multi-
body space system software package, that could be used to simulate a variety of

real-life space applications. The first step in this research work would be to develop
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a mathematical model to study the dynamics of a general multibody space system.
A variation of the Lagrangian formulation technique will be used to formulate the
equations of motion. The next step will be to incorporate the reaction wheels along
each body-fixed axes of the spacecraft. Using energy methods, the complete equa-
tions of motion of the spacecraft with reaction wheels will be derived. The kinematic
constraints evolving between two connected bodies of the multibody system will be
eliminated using the Natural Orthogonal Complement matrix. Finally objects for the
reaction wheels mounted on the body-fixed axes of the spacecraft will be developed
using ROSE (Real-time Object-oriented Software Environment) (Min et al., 1999).
The objects designed will be such that control gains could be fed to the reaction
wheels, which would change the spin rate of the wheels. This would consequently
change their angular momentum, and thus compensate for the change in the angular
momentum of the spacecraft. Such an object-oriented approach enables characteristic
features such as code re-usability, versatility, and information hiding, which are the

advantages of using such a modular approach (Min et al., 2000).

6. Organization of the Thesis

This thesis is divided into three distinct parts. The first part involves the rigorous
formulation of the equations of motion of the motherbody with reaction wheels. This
has been described in chapter 2. The chapter starts by introducing the kinemat-
ics involved for rigid body undergoing translation and rotation. Using the relations
obtained from kinematics, the general dynamical equations for a body are obtained.
Then a reaction wheel spinning about a fixed axis, with respect to the body-fixed axes
of the spacecraft is considered. The terms originating due to the dynamic coupling
between the spacecraft and the reaction wheels are added to the equations of motion
of the motherbody, in order to deduce the complete set of equations governing the

dynamics of a spacecraft containing multiple reaction wheels.
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The second part gives a brief history of the application of object-oriented mod-
eling techniques to multibody dynamics and the concept of the generic elements are
also introduced. This lays the foundation for the formation of classes like Body and
Joint. This has been explained in chapter 3. The equations of motion for each
body of the multibody system are assembled here and the kinematic constraints are
also eliminated. Chapter 4 is concerned with the implementation of the equations
of motion of the system into programmable code, and finally in the form of fully

developed and functional objects.
The last part viz. chapter 5, involves validation tests and new simulations done

for a variety of cases. Finally in conclusion of the thesis, i.e. chapter 6, a summary

of the work is presented and suggestions are given for future work.
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CHAPTER 2

Dynamical Equations of the System

1. Introduction

The system under study is composed of a main body(motherbody or satellite)
containing reaction wheels, that serves as a platform on which there is provision for
multiple appendages to be attached in any open chain configuration. Such space sys-
tems can be modeled for dynamical analysis as multibody mechanical systems. The
crux of this chapter is the formulation of the dynamical equations of motion of a

spacecraft containing reaction wheels.

For the study under consideration, the main body or satellite is modeled to be a
rigid body, while the multiple short appendages are modeled to be rigid links. The
joints are modeled as rigid and could be of prismatic, revolute or free floating type.
The kinematics presented here, is described in the most general case which could be
applied to any i** body of the multibody system. A suitable set of coordinates that
describes the motion of a rigid body will be presented. Also, the position and velocity
vectors of any point on body 7 are obtained in order to use them for the derivation

of the equations of motion.
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2. Kinematics

2.1. Coordinates for a Rigid Body. If the rigid body ¢ is considered to be
an unconstrained body, then under rigid body conditions, it can be fully described
by the position and orientation of the body-fixed frame X;, Y;, Z; with respect to the

inertial frame X,, Y,, Z,, as shown in figure 2.1. The location of the origin of the

FIGURE 2.1. The representation of a rigid body

frame X;, Y;, Z; from the origin of the frame X,, Y,, Z, is described by the position
vector p; and the orientation is specified by the rotation matrix R;. The nine ele-
ments of this matrix R,; are direction cosines of the unit vectors along X;, Y;, Z; axes,
which uniquely describe the orientation of the body-fixed frame X;, Y;, Z; in terms
of the X,, Y,, Z, coordinates. There exist only three independent parameters within
the nine elements, and hence there exist six constraint equations, which are due to

the orthogonality property of R; .i.e.

R/R; =1 (2.1)
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Thus there are only three independent parameters, the most popular of which
are : Euler angles and Bryant(Cardan) angles. However it has been proven that no
three-parameter set is nonsingular (Stuelpnagel, 196/). An alternative to overcome
the singularities of the three-parameter set for orientation, is to choose a set of four
redundant parameters with one constraint equation. This four-parameter set is re-
ferred to as quaternions, and some of these are: natural invariants, Euler parameters,

and linear invariants.

2.2. Definitions. @ The Euler parameters associated with body 7 are defined

by,
0;
r; = sin (5) é; (2.2)

ro, = cos (%) (2.3)

and,

(2.5)

Since sin(-) and cos(-) are dependent upon each other, the quaternions satisfy the

algebraic constraint equation,
Q; G = 1 (2.6)
The rotation matrix R;, expressed in terms of Euler parameters is then given by,
R; = (272 — 1) 1+2r;1] + 27,1 (2.7)

0
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2.2 KINEMATICS

The superscript ‘x’ represents the cross product operation. The explicit formulae
for the inverse problem in which the matrix R; is given and the corresponding Euler

parameters are determined, are as follows (Wittenburg, 197/),

To, = % (2.8)
Rijj +1 tr (R, 1
Tigy = ( d )_(T( ) + 1) ;7=1,2,3 (2.9)

2 4

where the subscripts ;,, and R;, represent the 7™ and (j, /)™ elements of the cor-

1(j )

responding vector and matrix, respectively and tr(R;) denotes the trace of R,;.

The 7—dimensional extended position vector, q;, contains the position vector p;
of the origin of the frame X;, Y;, Z; on the i"® body and the orientation ¢; of that

body. It is also referred to as the pose of the body and is given as,

q = b (2.10)

A

q;

The 6—dimensional extended velocity vector v; consists of the linear or translational
velocity p; of the origin of the frame X;, Y;, Z; on the i"* body and the angular
velocity w; of that body. It is also referred to as the twist of the body and is given
by,

v, = (2.11)
wj

The twist v; and the time derivative of the pose q; are related as,

16
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where ¢; is a 7 x 1 vector, given by,

. P
q; =
q;

and L, = L; (q;, t) which is a 6 x 7 matrix, defined by,

133 034

033 L

Li:

where L; is a 3 x 4 matrix, given by,

~ 01 . 01 ~ X . 0’; A~
L, =2 [cos <5> 1 + sin <5> €' — sin (§> ez}

qz‘ = A;jv;

Also,

and,
& = Aiv; + Ay,
where A; = A; (q;, t) is a 7 X 6 matrix and is given by,

133 033

043 Ay

Ai:

where A; is a 4 x 3 matrix, given by,

A 1 [COS (%) 1 — sin (%) & -|

2 (B e

Moreover,

L; A;

I
[y

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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and also,
LA, =1 (2.21)

Further, A; and AZ can be evaluated from L; and f;z respectively, using the Moor-

Penrose pseudo inverse,

A, = L7 (LLD)™ (2.22)
And,
A= B (LAT) (2.23)
3. Dynamics
3.1. Introduction. The Newton-Euler Method is a very efficient recursive

technique for doing computations involving the inverse and forward dynamics of serial,
rigid-link manipulators. However, while analysing complicated systems this method
is extremely cumbersome. Alternatively, the Euler Lagrange method is conceptually
much simpler. However, the straightforward implementation of this method requires
a great amount of lengthy partial differentiations, which also render these equations

computationally less efficient than the other methods.

In this thesis, the derivations of the dynamical equations of the spacecraft with
reaction wheels and any other connected bodies has been done using a variation of
the Euler-Lagrange formulation method. In the case of this variation of Lagrangian
dynamics, the kinetic and potential energies of each body are considered and then
the equations of motion are derived. The equations of motion of each body are
then assembled to get the dynamical equations motion of the whole system. This
method introduces the non-working constraint wrenches, as in the case of the Newton-
Euler formulation, but they are eliminated using the concept of Natural Orthogonal

Complement (Cyril et al., 1991), which is described later.
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3.2. Formulation of Equations of Motion for the i** Body.

The kinetic
energy for each body, which could be the spacecraft, motherbody, or any attached
appendage is,

T, = T; (q;,d;)

(2.24)
The kinetic energy can be written in terms of the twist v; as,
L 7

where M; = M; (q;, t) is the 6 x 6 extended mass matrix of body i. The expression

for the extended mass matrix can be derived from the kinetic energy and is written
as,

Y LY
M, = | v (2.26)
L\Y KCI\Y (4
where,
M = /1 dm; = m; 1 (2.27)
Mf’" = — /rfj dm; = —m;c, (2.28)
M" = — /r;i r, dm = M’ (2.29)

In the above equations m;, c,,

and M are the total mass, position vector of the

center of mass, and the second moment of inertia of the i** body around its center of
mass, respectively.
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The dynamical equations of body 7 are derived using the Euler-Lagrange equation,

which is given as,

d (07T; oT;
- — = W, 2.

where, w; is a 6 X 1 dimensional vector accounting for all nonconservative wrenches.

wi = w + w + w (2.31)

where,

e w is the algebraic constraint wrench originating from the fact that,
=1 (2.32)

e w¥ is the external wrench.

e wX is the kinematic constraint wrench.
The potential energy has been ignored in the Euler-Lagrange equation (2.30). Such a
consideration has been done because of the fact that in micro-gravity environment the
effect of the gravitational potential energy is small compared to the nonconservative
wrenches. Using local velocity transformation, stated in equation (2.12) and rewritten
again for convenience,

vi = Liq;

The kinetic energy of body 4, from equation (2.25), is now rewritten as,

1
T; = 5 qiT I;q; (2-33)

where,

I, = LM, L (2.34)
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Applying the Euler-Lagrange equation stated in equation (2.30), the equation of

motion for the i body is given as,

. o, 1 . .
La=-La + (& L) +w) + w + w (2.35)
2 0q;
The equation of motion, represented by equation (2.35), for the i* body is pre-
multiplied by A}, in order to eliminate the algebraic constraint w#', from equation

(A.7) in Appendix A, and substituting the expression for {;, derived in equation
(2.17), the following equation is obtained,

. . 1

" Oq;
+ AT wP + Al wE (2.36)

Using the relations derived in equation (2.20), and equations (B.5), (B.6), and (B.13)
in Appendix B, equation (2.36) can be expressed as,

. . 1 oM,
2 aqi
+¢F + oF (2.37)
where,
oF = ATwF

K T K
¢ = A w,

Equation (2.37) can be stated in a compact form as,
MV = ¢ + ¢ + ¢ (2.38)

which is the generalized Newton-Euler equation, where ¢is is the system wrench given

by,

. . 1 oM,
¢S = -M,v; — QAZTL;F M,;v; + EA;T (V;F £ Vi) (239)
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4. Dynamical Equations of Motion for a Spacecraft with Re-

action Wheels

The spacecraft can be regarded as a rigid body and hence the concepts and
formulation techniques that were introduced in the previous section for a body
could be extended to the spacecraft (subscript B). The reaction wheels are mounted
on a fixed axis frame with respect to the body coordinate frame of the spacecraft.

The kinetic energy of a spacecraft containing a reaction wheel is given by,
TSC = TB + Tw (240)

where,

e Tsc is the total kinetic energy

e Tp is the kinetic energy of the spacecraft

e T, is the kinetic energy of the reaction wheel
Thus the total kinetic energy 7Tsc can be separated into two parts T and 7T,,. In
the foregoing formulation the Euler-Lagrange equation is applied to the sum of T'g
and T,,; however, for the ease of formulation the contributions from 75 and T, are
evaluated separately and then the evaluated terms are added together in order to get

the complete dynamic equations of motion of the spacecraft with the reaction wheels.

4.1. The Spacecraft. The kinetic energy (T5) for the spacecraft is given as,

1
TB = §V§ MB VB (241)

where,
e vp is the 6—dimensional twist of the spacecraft, as defined in equation (2.11).
e My is the 6 X 6 extended mass matrix of the spacecraft. The expression

for the extended mass matrix can be derived from the kinetic energy and is
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written as,

Mg = Mg Mg (2.42)

My My
The terms of the extended mass matrix of the spacecraft, given in equation (2.42) can
be evaluated from the expressions given in equations (2.27), (2.28) and (2.29). On
applying the Euler-Lagrange equation to equation (2.41) and using the result obtained
from equation (2.37), the contribution of the kinetic energy of the motherbody to the

equation of motion of the considered system is,

. . 1 oM
MB\./'B = —MBVB—2AEL£MBVB+—A£ Vg—BVB
2 dqp
+¢5 + b5 (2.43)
4.2. Reaction Wheel. The derivation presented below is for one reaction

wheel which can be extended to three reaction wheels. The inertia and wrench terms
that are generated from the dynamical equations of motion of the reaction wheels
are combined with the inertia and wrench terms of the spacecraft, which have been

derived in equation (2.43).

The kinetic energy of the wheel is given as,

1
T, = = v M,v, (2.44)

where M, is the 6 x 6 extended mass matrix of reaction wheel. The expression for

the extended mass matrix of the wheel can be derived as,

Mdd Mdr
M, = Y v (2.45)
Mré MrT
where,
M = / ldm, = my,1 (2.46)
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Body Frame

FIGURE 2.2. Reaction wheel in the motherbody

M = —m,, cX (2.47)

w

In the above equations m, and M  are the total mass and the second moment of
inertia of the reaction wheel expressed in the spacecraft body frame, respectively,
while c,, is the position vector of the center of mass of the wheel from the origin of
the body frame of the motherbody, as shown in figure 2.2. Bv,, is the twist of the
wheel relative to the motherbody. The total twist of the reaction wheel, v,,, which is

expressed in the body frame of the motherbody is given by,

v, = vg + Bv, (2.48)

By, is a 6-dimensional vector. All the elements of Zv,, are zero, except one, depend-

ing on the axis of spin of the reaction wheel. The fourth, fifth or sixth element of
the vector Pv,, constitutes the spin rate (relative angular velocity) of wheel if it spins
about its X-axis, Y-axis or Z-axis, respectively. This relative angular speed of the

reaction wheel is denoted by wypeer and it could be:

(i) A constant nominal spin rate.

24



2.4 DYNAMICAL EQUATIONS OF MOTION FOR A SPACECRAFT WITH REACTION WHEELS

(ii) Any function of time.

(iii) In the form of a P.I.D. control law, such as,

uneet = K1 @5 + Ko / dp dt + Ky (2.49)

where, K;, Ky and K3 are 1 x 4 control gain vectors and ¢p is the body
quaternion of the spacecraft. The equations of motion of the spacecraft with
the reaction wheels have been formulated to accommodate such a P.I.D. control
law.

Substituting the expression for the total velocity of the reaction wheel, v,, in equation

(2.44), the kinetic energy of the wheel on expanding is,

T, = (vg M, vp + BvI M, v + vE M, %v, + BvI M, va) (2.50)

N | =

which is rewritten as,

1 1
T, = 5ngva + vEM,, Bv, + éngMvaw (2.51)
Let,
Tw = T1 + T2 + T3

where,

o} = %ngva

oIy = vg M,, Bv,

o I3 = %ngMvaw

4.3. Complete Dynamic Equations of Motion for the Spacecraft with
the Reaction Wheel. = The inertia (Left hand) terms and the wrench (Right
hand) terms due to the kinetic energy of the reaction wheel derived in equation
(C.32), given in Appendix C, are combined with the inertia and wrench terms of the
spacecraft to get the dynamical equations of motion for the spacecraft containing the
reaction wheel. The inertia and wrench terms of the spacecraft has been derived in

equation (2.43). Thus the complete equation of motion of the spacecraft with the
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reaction wheel is,

0Bv,,

T
MB‘./-B +Mu}‘.’B+A£ (@) Mw{rB:_MBVB_QAngMBVB

B 0qp

. 9Bv,\ "
vB> —2A§L§vaB+A§( w) M, V5

1
Z AT
+2 B (v o9p

) dBv d (08v,\"
—2ATLEM, By, - M, —2 — AL — YY) M,
BB Y dt Bt \ day Ve

d (8%vy,\" v\ " dBv
—AL |+ YY) M, Bv,| — A <) M, —~
B[dt(8q3> vt B <an) di
T 9", ! B E K
+Ap D4z My “vu | + ¢5 + ¢35 (2.52)

The equation of motion for any ** connected body appended onto the spacecraft is

given by,

. . 1 M,
q;

+é7 + @) (2.53)
Equation (2.52) is the dynamic equation of motion of the motherbody containing a
reaction wheel. The inertia and wrench terms of this equation have been converted

into programmable code and incoporated into functional objects, which is described

in the subsequent chapters.
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CHAPTER 3

Object-oriented Concepts and Multibody

Dynamics

1. Introduction

In an object-oriented approach, a complex system is viewed as a meaningful col-
lection of objects that collaborate to achieve some higher level of operation. Object-
oriented modeling methods have evolved to help developers exploit the expressive
power of object-oriented programming languages, using class and object as building
blocks (Booch, 1994). Classes and objects are intimately related concepts. Specif-
ically, every object belongs to a certain class. The object-oriented modeling offers
significant benefits such as,

e The object models are produced from stable intermediate forms which are

more resilient to change.

e Systems developed using the object-oriented concepts can be allowed to evolve
over time, rather than be abandoned or completely redesigned in response to
the first major change in requirements.

e Object-oriented modeling reduces the risks and errors inherent in developing
complex systems, primarily because integration of the software is spread out
across the life cycle rather than occurring as one major event.

e It engineers an illusion of simplicity and is user-friendly.
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2. Object-oriented Concepts Applied to Multibody Systems

Most past research has focussed on the procedure-oriented computation tech-
niques for analyzing the dynamics of multibody systems. In this method of compu-
tation, the main task is broken down into numerous simple instruction units that are
processed in a serial fashion. Unfortunately this method is extremely cumbersome
for large and complex multibody systems. The object-oriented modeling consists of
identifying objects and the computations done by those objects, and creating simula-
tions of those objects, their processes, and the required communications between the
objects (Sebest, 1989). As mentioned in the previous section, such a formulation

technique is less prone to errors and is relatively easy to modify and/or upgrade.

Due to the apparent and numerous advantages of using object-oriented modeling
techniques, various researchers have applied these concepts for the dynamic simula-
tion of multibody systems. Otter and Hocke (1993) can be credited as one of the
first research groups who introduced the concept of object-oriented programming into
a data model for the exchange of rigid multibody system descriptions. They used a
hierarchical framework for characterizing objects and were concerned only with the
dynamic simulation of rigid body systems. Wallrapp extended the work of Otter and
Hocke by adding classes that could represent the flexible members of the multibody
system (Wallrapp, 1993). The work done by these researchers was aimed at provid-
ing a standard input for multibody system software packages and did not specify the

method used to formulate the equations of motion.

Kecskeméthy applied object-oriented modeling for the efficient generation and
solution of the equations of motion for rigid multibody systems (Kecskeméthy,
1995). He classified the multibody system into state objects and transmission ele-
ments. State objects were responsible for holding and passing on information about
position, velocity, acceleration, and load at an arbitrary location, while the transmis-

sion elements transmitted this information from one set of state objects to another.
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The assembly process consisted of attaching specific copies of state objects to the
inputs and outputs of the transmission elements. Liickel et al. adopted a computa-
tionally efficient recursive Newton-Euler formalism for the dynamic simulation of rigid
multibody systems (Liickel et al., 1993). The use of work-energy relations was the
focus of research for the dynamic simulation of multibody systems by Anantharaman
(Anantharaman, 7996). In his research, the equations of motion for the multibody

system were derived using symbolic differentiation of the virtual work of the system.

In order to accommodate the flexibility as well as maintain the independent rep-
resentation of each individual body in a multibody system, Min et al. adopted the
formalism based on the Euler-Lagrange method in conjunction with the use of the
Natural Orthogonal Complement of the kinematic constraint matrix (Min et al.,
1999). In that work, the multibody dynamics model has been treated as a combi-
nation of Body, Joint, System, and Solver classes. The objects defined in these
classes are refined from the generic types in a top-down fashion by taking advantage
of the inheritance concept, as opposed to the procedure-oriented approach which
functions at a very specific level. The methodology followed in this research is an
extension of the work done by Min et al. This thesis involves the modeling of objects
that would simulate the dynamic response of a spacecraft carrying reaction wheels.

The spacecraft could be a complex multibody space system.

3. Kinematic Objects

As mentioned previously, multibody space systems can be composed of many
distinctive components, such as solar panels, booms, manipulator links, antennas,
actuators, reaction wheels, control moment gyros, and jet thrusters. The processes
and operations for each of these components can be identified and characterized into
objects. The following section describes the essential kinematic relationships that

have been embedded into objects for the transfer of motion states from one body to
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the next body via joints in a multibody system. The objects mentioned in this thesis

are written in stalics.

3.1. The Generic Element. Kinematics is responsible for holding and pass-
ing the motion states of the body. The transfer of motion states can occur within
a Link and within a Joint due to the motion of the rigid body. The relationships
presented below are given in the most general form for a generic kinematic element,
during the transfer of motion states from one frame to another. These relationships

have been extended to be incorporated in the objects Link and Joint.

The fundamental motion states of the rigid body are position (p), velocity (p)
and acceleration (Py—o) for translation, and rotation matrix (R), angular velocity (w),
and angular acceleration (wy—o) for rotation respectively. They are held in an object
titled Frame. In the above (-)5;:0 stands for the evaluation of a quantity when the
generalized acceleration vector (¥) of the multibody system is set to zero, where y is
the generalized coordinate vector of the system. These values are used instead of real
accelerations, since they are useful for the assembly of the global system dynamics.
The kinematic motion states are expressed with respect to the inertial reference frame
O. The frame O,, represents the local body frame of the rigid body. O; represents
the new frame after the relative change in position and orientation due to rigid body
motion. p; is the position vector that locates the origin of the frame O, from the origin
of the inertial reference frame O, while R is the rotation matrix that represents the
orientation of the frame O, with respect to the inertial reference frame O. p,, is the
position vector that locates the origin of the frame O,, from the origin of the inertial
reference frame O, while R, is the rotation matrix that represents the orientation
of the frame O,, with respect to the inertial reference frame O. The fundamental
operation of the generic kinematic element is the transmission of motion states from
one frame into another as depicted in figure 3.1. It consists of the following three

transmissions.
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(Pmy Rn)

O

FIGURE 3.1. Generic kinematic element

e Displacement

R” (pm + I‘) = Ps (31)
e Velocity
R" (P + wyit) = Ds (3.3)
R” (wy + w) = w, (3.4)
e Acceleration
R’ <f)m§:0 + d;;(nyzo r+ wywy r) = Poy_o (3.5)

31



3.3 KINEMATIC OBJECTS
R (Wmny_y + whw) = Wy, (3.6)

In the above expressions, r and w represent the relative displacement and relative
angular velocity, respectively, between frames O,, and Oy, while the superscript ‘x’

represents the cross product operation.

3.2. Link. Link is a kinematic object that transfers motion states within a
body. In order to provide some simplicity while modeling complex multibody systems,
the objects Outward Link and Inward Link are developed for a rigid body. The
Outward Link is responsible for transfer of kinematic states from the local body frame
Op to the outside frame O (the term “outside frame” represents the frame towards
the terminal bodies/outside of the multibody system, at the connection point between
the joint and the body). The Inward Link transfers the motion states from the inside
frame O; (the term “inside frame” represents the frame towards the base/inside of
the multibody system, at the connection point between the joint and the body) to
the local body frame Op. The figure 3.2 depicts the schematic of a generic Link
(Outward Link and Inward Link). r is the nominal length vector from the origin of
frame Op to the origin of the frame O, while R is the rotation matrix of frame O
with respect to frame Op due to normal twist of the body. r is a constant vector and

R is a constant matrix and they are determined by the nominal body architecture.

Along with the transmission of motion states, the link restrains the relative mo-
tion of a frame with respect to another. The kinematic constraint equations of the
link can be obtained by the modification of the velocity transmission relations, equa-
tions (3.3) and (3.4). For outward operation (Outward Link), the constraint relation

is,

X9 _ )t (3.7)
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FIGURE 3.2. Generic rigid link

where,
RT _ RT rX
X9 =
0 RT

and for the inward operation (Inward Link), the constraint relation is,

Ps Ps
=Xx! (3.8)
wpB wjy
where,
s R r*R
X_L ==
0 R

In the above equations, pp and wpg are the linear velocity vector and angular velocity
vector of the rigid body expressed in the inertial reference frame, respectively. p;
and w; are the linear velocity vector and angular velocity vector of the rigid body
at the inward or outward location, respectively. In equations (3.7) and (3.8), X¢

and X! are spatial transformations for the outward type link and the inward type
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3.3 KINEMATIC OBJECTS

link, respectively. They are essential for assembly of the global kinematic constraint

equation of the whole system, which will be explained later.

3.3. Joint. Jointis an object that transfers the kinematic states between two
interconnecting bodies. Joints can be of revolute, prismatic, universal, or spherical
types. Figure 3.3 depicts the schematic of a generic Joint. O; and O’ represent
the joint frames before and after the joint has undergone motion (translation and/or
rotation), respectively. If r is a vector that represents the translational displacement
of the joint, as in the case of a prismatic joint, and if R is a matrix that represents
the rotation of the joint, as in the case of a revolute joint, then the state quantities

of the Joint are expressed below in table 3.1 as,

\ Translation \ Rotation \
r = r(0) R = R(0)
r=2,0 w=2,0

ty_0 = Zo0 + Z, 050 | wy—0 = 2,0 + Z, 0y

TABLE 3.1. State quantities of a joint

In table 3.1, 0 is the joint coordinate vector composed of the translational dis-
placement and/or rotational angles of the joint. Z,, Z,,, Z,, and Zw are the joint char-
acteristic matrices and are dependent on the type of joint. For example, (Zy, Zy, Z, Z.,) =
(Zp, 03x1,03x1,03%1) for a prismatic joint undergoing translation along the Zz, axis,
while (Z,, Z,,, Z,, Zw) = (03x1, 03x1, 2, 03x1) for a revolute joint undergoing rotation

about the z, axis.

A joint also defines a restriction on the relative motion of a frame on one body
with respect to a frame on an adjacent body. From the velocity transmission relations

given by equations (3.3) and (3.4), the kinematic constraint equation for the joint is,
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FIGURE 3.3. Generic joint

X4 b+ 30=4 (3.9)
where,
RT _RT rx
X; = (3.10)
0 R”
And,
R Z,
J; = [ -| (3.11)
| R"Z, |

In the above equations, p; and w; are the linear velocity vector and the angular
velocity vector, respectively, before the joint has undergone motion and are expressed
in the inertial reference frame, while p} and w! are the linear velocity vector and

the angular velocity vector, respectively, after the joint has undergone motion and
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are also expressed in the inertial reference frame. In equations (3.10) and (3.11),
X and J; are the spatial transformation and the local Jacobian matrices of the
joint, respectively. They play a crucial role in the assemblage of the global kinematic

constraint equation of the system, which is described later.

4. Dynamic Objects

Dynamic objects are responsible for yielding the equation of motion of a body,

which is given in the general form as (Jaar, 1993),

M(y) v =0(,v,1) (3.12)

where,

e M is the 6 x 6 extended mass matrix of the body.

e ¢ is the 6—dimensional wrench of the body consisting of the external forces
and moments acting on the body, and the mixed terms i.e. terms which are
functions of the generalized coordinate vector y, extended velocity vector v
and also time t.

The generic dynamics objects are Inertia and Wrench, which represents the motion
resistance and the motion agent, respectively. The primary operation of Inertia is to
build the extended mass matrix and its time derivative of the body. While Wrench
is responsible for evaluation of the right hand side of equation (3.12). The previous
chapter was concerned with the formulation of the dynamical equations of motion
of the system, which included the inertia and wrench terms. These terms have been

coded in the objects Inertia and Wrench.

In the next section the kinematic constraint equations of the body and the joint,
which were derived earlier, will be used to formulate the global kinematic constraint
equation of the multibody system and hence the Natural Orthogonal Complement
matrix of the system. The Natural Orthogonal Complement matrix is used to elimi-

nate the kinematic constraint wrench of the system.
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5. Assembly

Multibody systems in the most general form can be considered to be composed of
N bodies. After assembling the individual body equations, which includes the moth-
erbody and the connected auxiliary bodies, the dynamical equations of the complete

multibody system are obtained in the form (Cyril et al., 1991),
Mv = ¢° + ¢¥ + ¥ (3.13)

where M is the 6 N x 6 IV generalized mass matrix, v represents the 6 N —dimensional
time derivative of the generalized twist, while ¢°, ¢, and ¢* are the 6 N—dimensional
generalized system, generalized external, and generalized constraint wrenches, respec-
tively. The dynamic equation for the multibody system, given in equation (3.13) can

be rewritten more explicitly as,

0
M; Vi p =8 0 p 1 dF p+ 1 of (3.14)
0 :

where M, v;, qbz-S , qbZE , and ¢iK are the 6 x 6 extended mass matrix, the 6—dimensional
time derivative of the twist, system wrench, external wrench, and constraint wrench,
respectively, associated with the i body. The constraint wrench ¢ is eliminated
by multiplying the assembled equations of motion from the left by N7 the transpose
of the Natural Orthogonal Complement matrix, to obtain the independent dynamical

equations of the multibody system.

5.1. Formulation for the Natural Orthogonal Complement Matrix.
As mentioned earlier in this chapter, the rigid body has been decomposed into two
distinct parts viz. the outward link and the inward link. The kinematic constraint
is due to the combination of the outward link in the lower body ¢ — 1, the inward
link in the body ¢, and the joint 7 between them, as shown in figure (3.4). Using

equations (3.7), (3.8), and (3.9), the individual constraint equations in terms of the
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FIGURE 3.4. Connected Bodies

spatial transformation and local Jacobian matrices are given as,

i pi—l f’.]'
% lxg — v
wz—l w.].i
pJ o)
. . . . T
Xy Cop 30 = '
I
. I . .
ixl in - Pi
L I -

3.5 ASSEMBLY

(3.15)

(3.16)

(3.17)

Substituting equations (3.15) and (3.16) in equation (3.17), the kinematic constraint

equation between the body 7 and the lower body ¢ — 1 is derived as,
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ixIoix; 1x9 + XL i3, 0, = Pi

Wi-1 wj

(3.18)

In the tree-type topology the serial combination of the joint coordinates 6; is
expressed as y = [ OZT}T There exists a mapping between the generalized
speed y and the rate of change of the joint angles 0; and also between the generalized

twist {p7 wiT}T such that,

6, =Y,y (3.19)
Prl 1y (3.20)
Wi

where the connectivity matrix Y; is composed of elements that are either 0 or 1, while
the mapping matrix I'; is not that apparent to infer. Now substituting the mapping
expressions stated in equations (3.19) and (3.20) into the constraint equation (3.18),

the resulting relationship after simplifications is,

Xy Xy TIXPT 4+ XL, =T i>1 (3.21)

1X£ 1JJ Tl = Fl (322)

Equation (3.22) is the application of equation (3.21) at the base i.e. i = 1. Equations
(3.21) and (3.22) constitute a recursive formula to compute mapping matrices IT'; from
the motherbody to the terminal body of the multibody system. Thus, the Natural

Orthogonal Complement matrix of the kinematic constraints is obtained as,
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'y

The dynamical equations of a multibody system written in equation (3.13) con-
tain non-working constraint wrenches due to the physical coupling between adjacent
bodies. These constraint wrenches introduce additional variables in the dynamical
equations, as a result, the dimension of the system of equations is increased. Thus
the constraint equations are not desirable and hence, have to be eliminated from
the dynamical equations. The Natural Orthogonal Complement matrix N maps the

generalized speed y and the generalized twist v, such that,
v =Ny (3.24)

It has been shown that, by using the principle of virtual work and the fact that
the kinematic constraint wrench is a non-working wrench, the Natural Orthogonal
Complement matrix N is orthogonal to the kinematic constraint wrench ¢* (Cyril

et al., 1991). Thus,
NT % =0 (3.25)
Taking the time derivative of the generalized twist v, given in equation (3.24),
v =Ny + Ny (3.26)

Pre-multiplying the dynamical equation of motion (3.13) of the multibody system
with N7 and using the relations derived in equations (3.24), (3.25), and (3.26), the
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dynamical equation of motion of the multibody system is,
(NTMN) § = ~-N"MNy + NT¢% + N7 ¢” (3.27)

Evaluation of N7 involves extensive computations, hence the following relation is

used,
Ny = vy_o (3.28)

Using equation (3.28), equation (3.27) is rewritten in a more compact form. This is
the equation of motion of the complete multibody system obtained in terms of the

minimal generalized coordinates as,
Iy =c(y,y) +7 (3.29)

where,
I=N'MN
c =N (=Mvy_o + ¢°)

T = NT¢E
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CHAPTER 4

Implementation

The multibody system under consideration has a base or a motherbody to which a
series of bodies can be attached in any open chain configuration. The appendages
are connected to each other via joints. The kinematics and dynamics of these various
elements of the multibody space system have been formulated and coded into objects.
As mentioned earlier, objects having common functionalities and characteristics can
be grouped into a class. In this research work, the multibody simulation archetype
constitutes of Body, Joint, System, and Solver classes (Min et al., 2000). This

chapter discusses the aforementioned classes.

1. Body

The class Body is an abstraction of objects having mass as well as finite dimen-
sions. The objects grouped in this class represent the functionality that characterizes
the complete kinematics and dynamics of a rigid body. The objects Frame, Base,

Link, Inertia, and Wrench belong to the class Body.

The object Frame characterizes the local body frame of the rigid body. It stores
the kinematic states of the body and is updated recursively from the base to the

terminal bodies of the system. The kinematic states of the body include the position
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and orientation, the linear and angular velocities, and the linear and angular accel-
erations of the body. The transmission of these kinematic states from one frame to

the next frame is through the objects like Link and Joint.

A multibody system has an inertial reference frame. The local body frame of
each body in the multibody system has been resolved in the inertial reference frame,
in order to enable the global dynamics assembly of the system. The Base is reckoned
as a special type of the frame having a stationary kinematic state. This implies that
the coordinate frame associated with the Base is regarded as the inertial reference
frame of the system. It is possible to induce motion to the base or motherbody in the
form of external velocity and acceleration. This enables the simulation of a gravity
environment by providing an external linear acceleration to the Base. Orbital motion
of the spacecraft can also be simulated by providing external angular velocity to the

Base.

In a complex multibody system each body can be connected with one or more
bodies. Hence the objects must be designed so as to accommodate any such general
formulation. A body is separated into two parts and is visualized as two distinguish-
able objects, viz. Inward Link and Outward Link. As shown in figure 4.1, the OQutward
Link of body 17 is connected to Inward Links of bodies ¢ + 1 and ¢ + 2, which charac-
terizes the fact that bodies ¢+1 and i+2 are both connected to body . The objects
Inward Link and QOutward Link are designed to transfer kinematic states within a
body. The spatial transformation matrices derived in equations (3.7) and (3.8) are
computed in the objects Qutward Link and Inward Link, respectively, which are used
for the formulation of the Natural Orthogonal Complement matrix in the System

object.

Inertia and Wrench are built for the dynamics of the system. The dynamic

equation of motion for any body (motherbody or any connected appendage), in terms
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Ourward (i+1)

Ourward (i+2)

rvwward (i+2)

O urvward (i)

FIGURE 4.1. Abstraction of Inward and Outward Links

of the extended velocity vector v, is given by (Cyril et al., 1991),
Miv; = ¢ + ¢} + ¢ (4.1)

where M; is the extended mass matrix of the body, while ¢f , ¢iE and ¢iK are the
wrenches due to the non-inertial and relative motions of the body, the external forces
and moments, and the kinematic constraints imposed by the links and joints con-

nected to the body, respectively.

The object Inertia computes the extended mass matrix and its time derivative
of any body attached to the motherbody. The object Inertia (Body and Wheel)
computes the motherbody’s extended mass matrix and its time derivative, and also
the extended mass matrix of the reaction wheels. The motherbody’s extended mass

matrix and its time derivative are computed if the mass, mass moment of inertia,
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and location of the center of mass of the motherbody with respect to the local body
coordinate frame are supplied to the object. The extended mass matrix of the reaction
wheel is also computed once its mass and mass moment of inertia are inputed to
the object Inertia (Body and Wheel). Figure 4.2 depicts the graphical icon created,
that represents the object Inertia (Body and Wheel). The connection point Inertia
exports the extended mass matrix and its time derivative of the motherbody and
the extended mass matrix of the reaction wheels into the Wrench object. While the
connection point M exports the total extended mass matrix for the motherbody with
the wheels into the object System, where it is used for the global dynamics assembly of
the system. The angular velocity and the relative rotation matrix of the motherbody
with reaction wheels are imported into the object via the connection point w and
R, respectively, which are required for the computation of the extended mass matrix
and its time derivative of the motherbody with reaction wheels. They are imported

from the kinematic states of the body supplied by the object Frame.

Ficure 4.2. OBJECT: Inertia of the Mother body and wheels
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The dynamic object Wrench computes the wrench of any body connected to the
motherbody. It combines all the motion agents on the body and evaluates the right
hand side of equation (4.1). During the global dynamics assembly of the system an-
other term having dimension of wrench appears and it is accounted for in the system
wrench of the individual body. This term appears due to the use of the expression
Ny = V-0, as derived in equation (3.28). Therefore, the system wrench of the body

which is computed in this object is given by,

¢ = —M;Vi,_, + & (4.2)

FI1GURE 4.3. OBJECT: Wrench of the Mother body and wheels

Figure 4.3 depicts the graphical icon created, that represents the object Wrench
(Body and Wheel). As stated previously, the extended mass matrix and its time
derivative of the motherbody with reaction wheels are fed into this object via the
connection point Inertia. In this object the external wrench qbf can be inputed into

the system via the connection point ext. The relative rotation matrix, the twist,
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and the time derivative of the twist are imported into the object via the connections
R, vel, and acc, respectively. They are imported from the kinematic states of the
body supplied by the object Frame. The output of this object is the total wrench
(; + &F + @F), which is used for the global dynamics assembly of the system and
is denoted by the connection point W. This wrench is supplied to the object System.
The noteworthy attributes of the object Wrench (Body and Wheel) are:
(i) It is feasible to place the reaction wheels in any orientation with respect to the
body coordinate frame.
(ii) There is a capability to specify a constant nominal spin rate of the reaction
wheel.
(iii) One can specify the angular velocity of the reaction wheel as any function of
time.
(iv) It is possible to specify the angular velocity of the wheel as a function of the
body quaternion i.e. the wheel velocity could be in the form of a P.I.D. control

law. Thus it is possible to specify the spin rate of each wheel in the form,
Wwheet = K1Qp + Ky /le dt + K;dp (4.3)

where, K;, Ky and K3 are 1 X 4 control gain vectors. The equations of motion
of the spacecraft with the reaction wheels have been formulated to accommo-

date such a P.I.D. control law.

The objects in the class Body export the spatial transformation matrix of the
link as the prototypical kinematics, as well as the inertia matrix and the wrench
vector as the prototypical dynamics to the system object (Min et al., 1999). They

are used to update the elements in the Inertia, Wrench, and Link objects.

2. Joint

The bodies of a multibody system are connected to each other via joints. The

two fundamental joints are the prismatic and revolute joints, which are developed
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from the generic joint element. The joint objects have a maximum of six degrees of
freedom. For each joint, it is possible to provide external actuation that could be in
the form of joint forces or torques. The joint objects export the spatial transforma-
tion and local Jacobian matrices, derived in equations (3.10) and (3.11), respectively,
which are used for the formulation of the Natural Orthogonal Complement matrix in

the object System.

The translatory motion of a Prismatic Joint can be expressed in one of three
different coordinate systems depending on the nature of the motion viz. rectangular,
cylindrical, and spherical. The two sets of Euler angles viz. 1—2—3 Euler angles and
3 — 1 — 3 Euler angles are available to describe the rotational motion of a Revolute

Joint (Min et al., 1999).

3. Assembly

The process of assembling and solving the dynamic equations of motion of the
multibody system are done in the classes System and Solver, respectively. The
class System contains an object System that assembles the individual wrenches and
inertia matrices of each body and combines them to form the equations of motion of
the system. The equations of motion are then multiplied by the Natural Orthogonal
Complement matrix in the System object. The Natural Orthogonal Complement
matrix is built in the object System, by combining the spatial transformation matrices
from the Inward Link and Outward Link objects and the spatial transformation and
the local Jacobian matrices from the Joint object, for each of the bodies. Having
gathered and computed the extended mass matrices and wrenches from the bodies,
as well as the said Natural Orthogonal Complement matrix, the complete dynamic
equations of motion of the system are formulated. The class Solver contains an
object Solver that numerically integrates non-linear differential equations of motion

of the system. The integrator is of Adams-Moulton type (Min et al., 1999)
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1, body1 - Schematic

1 5 v e v e

FiGure 4.4. ROSE model for a spacecraft with three reaction wheels

Each object is implemented as a class module with a graphic icon in ROSE(Real-
time Object-oriented Simulation Environment). The implementation in ROSE pro-
vides several benefits such as, automated code generation, interactive execution con-
trol, and rapid model development (Min et al., 1999). The actual modeling is
achieved by the interconnection of the pre-casted object modules in an uncompli-
cated manner. Figure 4.4 depicts the interconnection of various objects in order to

model a spacecraft mounted with three reaction wheels.
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CHAPTER 5

Simulation and Results

In the previous chapters, the mathematical model for the multibody space system was
developed. The dynamical equations of motion for the spacecraft with the reaction
wheels was formulated, so as to incorporate them into the existing multibody soft-
ware package. Using ROSE (Real-time Object Oriented Software Environment) the
objects have been developed in a modular fashion and integrated with the existing

objects.

This chapter is concerned with the verification and simulation conducted using the
designed objects. In order to verify the accuracy of the designed objects, simulations
were done using them and compared with results obtained using standard procedure,
which were coded in MATLAB. So as to highlight the features and the control aspect

of the designed objects, simulations for various examples have also been done.

1. Validation of Designed Objects

The first set of simulations were done to verify the validity of the designed objects.
The methodology used for coding the objects was that, initially objects for rigid
bodies were coded and then the procedures were written for the dynamic coupling

terms between the motherbody and the reaction wheel. The simulation results that
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are presented in this section deal with rigid bodies. The simulation results obtained

using the designed objects are compared with those obtained by conventional method.

1.1. R R Manipulator. The first simulation was done for a R R manipulator,
as shown in figure 5.1. The physical data parameters for the R R manipulator are
given in table 1.1. The R R manipulator was subjected to similar initial conditions
in both ROSE and MATLAB. For the results obtained from MATLAB and ROSE,
the variation of the joint angles, viz. « and 3, with time are plotted in figure 5.2 and
the variations of the time derivative of the joint angles viz. & and B, with time are

plotted in figure 5.3. The results obtained in the two cases are equivalent.

| No. | Link Length (m) | Mass (kg.) | Moment of Inertia (kg. m?) |
1 2.0 10.0 3.33

2 4.0 10.0 13.33
TABLE 5.1. Data for the R R manipulator

5

Ficure 5.1. R R Manipulatior
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1.2. Body With Two Arms : Planar Motion.

5.1 VALIDATION OF DESIGNED OBJECTS

The next simulations were

done for a body with two appendages undergoing planar motion, as shown in figure

5.4. The simulation data parameters for the body and the two arms are given in

table 5.2. For the results obtained from MATLAB and ROSE, the variation of the

joint angles viz. «, (3, and 7y, with time are shown in figure 5.5 and the variation of

the time derivative of the joint angles viz. &, £, and 7, with time are shown in figure

5.6. The variations in amplitude of the responses got from MATLAB and ROSE are

correlating.
| Body |[Mass(kg.)| Moment of Inertia (kg.m.?) |
Motherbody 500.0 1041.7
Link 1 25.0 208.3
Link 2 25.0 208.3

TABLE 5.2. Data for a body with two appendages undergoing planar motion

FIGURE 5.4. Body with two arms undergoing planar motion
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1.3. Satellite Spinning about Major axis : 3 D Motion. The third
set of simulations involved a satellite spinning about its major axis, while there were
small perturbations about the other two axes, as shown in figure 5.7. The physical
data of the satellite are given in table 5.3. Using MATLAB and ROSE, the variations
in attitude and attitude rates with time, are shown in figures 5.8 and 5.9, respectively.
There is a maximum deviation of 0.06% in amplitude from the responses obtained
from ROSE, as compared to those obtained via MATLAB. This may be due to fact
that a constant step size of 1 x 10~* was used in ROSE, as compared to the more

accurate adaptive step size used by MATLAB.

| Mass(kg.) | Lig(kg-m.?) | L, (kg.-m.*) |1, (kg.m.?) |
‘ 200.0 ‘ 379.2 ‘ 379.2 ‘ 625 ‘
TABLE 5.3. Data for a spinning satellite

FIGURE 5.7. Satellite spinning about major axis

In all the three cases i.e. the R R manipulator (figure 5.1), a body with two
arms undergoing planar motion (figure 5.4), and the spinning satellite (figure 5.7),

the responses got from MATLAB and ROSE are consistent.
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2. Validation of the Objects using Slew Maneuver : Cassini

Spacecraft

The Cassini spacecraft was launched on October 15, 1997 and after an inter-
planetary cruise of more than seven years, it will arrive at Saturn in February, 2005.
Slew maneuvers were done on the Cassini spacecraft, using reaction wheels, on the
seventy-fifth day of the year 2000 i.e. March 15, 2000. The maneuvers consisted
of slews about the Y-axis, followed by a slew about the X-axis, another slew about
the Y-axis, a slew about the Z-axis, and finally a very small slew about the Y-axis.
The duration of these slew maneuvers was for a total period of approximately 7000
seconds. Telemetry data were available for the entire duration of the slews, at a fre-
quency of once every four seconds (Wertz et al., 2001). The slew velocities of the
Cassini spacecraft obtained via telemetry are plotted in figure 5.10. The actual time
history of the spin rates of the reaction wheels during the slew maneuver are shown
in figures 5.11, 5.12, and 5.13. The intention of conducting these slew maneuvers was
the inflight estimation of the inertia tensor of the Cassini spacecraft using the spin

rates of the reaction wheels.

In order to corroborate the accuracy of the designed objects, the reaction wheels
were given time histories, similar to the variation in spin rates of the reaction wheels
located in the Cassini spacecraft. The aim of this validation test was to replicate the
first slew maneuver about the Y-axis. The time histories that were given as inputs to
the reaction wheels for a period of 1400 seconds are shown in figure 5.14. This test
was done for a period of 1400 seconds instead of the total period of 7000 seconds,
due to the fact that the time involved in simulating 7000 seconds in ROSE would be
extremely lengthy and might also result in data storage issues on the computer. As
shown in figure 5.15, the spacecraft undergoes an approximate slew of —2.7 x 1073
rad./sec. about the Y-axis, which is the desired result. The angular velocity of the

spacecraft about the Y-axis (w,) follows the correct trend of rising to an approximately
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constant slew rate about the Y-axis and then going back to zero at the end of the slew
maneuver. During the slew maneuver w, and w, are zero. There are small differences
between the actual slew velocity of the Cassini spacecraft and the generated simulation
result due to the approximations made while prescribing the time histories to the

reaction wheels.

Day 75 Slew Data
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FI1GURE 5.10. Slew velocity of the Cassini spacecraft via telemetry data
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3. Slew Maneuvers and Reorientation : Cassini Spacecraft

As mentioned in the previous section, the Cassini spacecraft is an interplanetary
probe on its way to Saturn. This section presents simulation results obtained by

conducting slew and reorientation maneuvers on the model of the Cassini spacecraft.

When a spacecraft is slewed about an axis using reaction wheels, the spin rates of
the wheels vary. Since the magnitude of the external torques exerted on the spacecraft
about all the axes is negligible, the total angular momentum vector of the spacecraft
is conserved throughout the slew maneuver. This total angular momentum vector has
two components, one from the spacecraft angular velocity and one from the angular
velocity of the reaction wheels. The conservation of the angular momentum allows the
total angular momentum evaluated at the initial time (prior to the beginning of the
slew) to be set equal to the total angular momentum evaluated throughout the slew.
This equality enables the derivation of an equation for each time step throughout the
slew, with the only unknown being the angular velocity vector of the reaction wheels.
Angular momentum at the beginning of the slew maneuver expressed in the inertial
coordinate frame is given by,

h(0) = R(0) |Tscwsc (0) + Y Ru, Ty, {RY, wsc (0) + wy, (0)} (5.1)

i=1
where,
e R (0) is the rotation matrix that represents the orientation of the body coor-
dinate frame with respect to the inertial coordinate frame, just prior to the
begining of the slew maneuver.

e Igc is the inertia tensor of the Cassini spacecraft.

8810.8 —136.8 115.3
Isc = | —136.8 8157.3 156.4 | kg.m.? (5.2)
115.3  156.4 4721.8
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CASSINI CRUISE CONFIGURATION
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FIGURE 5.16. The Cassini spacecraft (courtesy:Jet Propulsion Laboratory
Photo gallery)

wsc (0) is the angular velocity of the spacecraft just prior to the begining of
the slew maneuver.

Ry, , © = 1,2, 3 are the matrices defining the orientation of the reaction wheels
with respect to the body coordinate frame. The elements of the matrices
Ry,, ¢ = 1,2,3 are all zero, except a column vector which represents the
directional cosines relating the frame of the reaction wheel to the body frame
of the spacecraft. The orientation of the three reaction wheels relative to the
body coordinate frame is determined by the transformation matrix T, such

that,

T =) Ry, (5.3)

=1
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where T for the Cassini spacecraft is given as,

0 _L L
V2 V2
— 2 1 1
T=\|\Vi 7% % (5-4)
1 1 1
i Vi v

oI, .t = 1,2,3 are the inertia matrices of the each of the reaction wheels

expressed in the wheel frame. And,

L, = > 1L,

=1
I,, 0 0
= 0 I, O (5.5)
0 0 I,

In the above expression, I,,, I,,, and I,,, are the moments of inertia about
the axis of rotation for the reaction wheels 1, 2, and 3, respectively.
o w, (0)i = 1,2,3 are the angular velocities of each of the reaction wheels

relative to the spacecraft, just prior to the starting of the slew maneuver.

Also,
Wy,
W,, = Wapy (5 6)
Waoys
and,
3
Ir = Isc + ) Ry, I, Ry, (5.7)

i=1
Using the expressions in equations (5.3), (5.5), (5.6), and (5.7) and applying them to
equation (5.1),

h(0) = R (0) [Ir wsc (0) + T, w, (0)] (5.8)
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Similar to equation (5.8), the angular momentum during the slew maneuver is deduced

h(t) = R(¢) Irwsc (t) + TL,wy (2)] (5.9)

As stated earlier the angular momentum in the inertial frame is constant when there

are no external torques acting on the spacecraft. Thus,
h(0) = h(t) (5.10)
Using equations (5.8), (5.9), (5.10), and solving for w,, (),
TIL,w, (t) = R (t) R(0) [Irwsc (0) + TI,w, (0)] — Irwse (¢) (5.11)

Just prior to the beginning of the slew at time ¢ = 0, the angular velocity of the
spacecraft wgc (0) is approximately zero and R (0) is an identity matrix. Moreover
wsc (t) is the desired slew velocity, which is predefined and so the only unknown in

equation (5.11) are the velocities of the reaction wheels w,, (t). Hence,
wy (t) = (TL,) ' [RT (¢) TL,wy, (0) — Irwse (2)] (5.12)

Equation (5.12) is applied recursively in order to obtain the angular velocities of the

wheels during the entire slew maneuver.

The first simulation involved a reorientation maneuver done on the spacecraft.
The spacecraft was reoriented from 6; = 6y = 03 = 0 initially to the final orientation
of ) = 0 = 0and 63 = 7, as shown in figure 5.17. The prescribed angular velocity
of the spacecraft is shown in figure 5.18 and the corresponding spin rates of the

reaction wheels are shown in figure 5.19.
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x10°
1.6 T

14

[rad./sec.]

=3
o
T
I

W, 0, W
X Yy

I
=2
T

I

0.2f b

0 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [sec.]
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The next simulation on the model of the Cassini spacecraft involved sequential

slewing. In this simulation, the angular velocity (slew velocity) of the spacecraft

was prescribed, as shown in table 5.4. The slew velocities of the Cassini spacecraft

are plotted in figure 5.20. In order to maintain the prescribed slew velocity of the

spacecraft, the reaction wheels have to change their spin rate. This change in the

spin rates of the reaction wheels has been plotted in figure 5.21. The variation in the

spin rates of the reaction wheels is governed by the equation 5.12, which was derived

earlier.

| No. | Slew Axis | Slew Velocity (rad./sec.) |

1. Y-Axis 0.04
2. Z-Axis -0.08
3. X-Axis 0.07
4. Z-Axis -0.03

TABLE 5.4. Slew velocities of the Cassini spacecraft

The reorientation and slew maneuver simulations were conducted to highlight the

versatility of the designed objects, wherein the angular velocity of the motherbody

could be specified and the reaction wheels would maintain that angular velocity/slew

velocity of the motherbody.
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4. Multibody Space Systems

The main goal of the simulations presented in this section was to demonstrate the
functionality of the designed objects. The designed objects have been connected to
simulate the dynamical response of typical multibody space systems, with one reaction
wheel spinning at a high constant spin rate. These multibody space systems include
two or more manipulator arms. Initially the uncontrolled motion of the motherbody
with the appendages was simulated and then a reaction wheel rotating at a high
nominal angular velocity, about the body-fixed axis of the motherbody, was used to

restrict the attitude drift of the motherbody.

4.1. Satellite with 2 Arms : Reaction Wheel about Z-Axis. Figure 5.22
depicts a motherbody mounted with two manipulator arms. One of the manipulator
joints was supplied with a torque as shown in figure 5.23, about the X-axis, and given
by the relation Tagy,, = {0.002t — 0.016 sin (24—?)} The other joint was supplied
with a torque as shown in figure 5.24, about the Y-axis, and given by TARM;, =
{0.0lt — 0.08 sin (%)} The physical data for the multibody system are given
in table 5.5. The reaction wheel was mounted along the body-fixed Z-axis of the
spacecraft and was spinning at 400 rad./sec.. The mass and size of the wheel are

negligible compared to those of the spacecraft.

| Body |Mass(kg.) | Iz(kg.m.?) | Ly (kg.m.?) | 1..(kg.m.?) |

Satellite 200.0 12.5 12.5 50.0
Arm 1 10 0.4 0.4 0.8
Arm 2 10 0.4 0.4 0.8

TABLE 5.5. Data for motherbody mounted with two manipulators

The attitude and attitude rates of the motherbody with and without the reaction
wheel are depicted in figures 5.25 and 5.26, respectively. It is seen that the attitude
drift of the motherbody is completely arrested due to the spinning reaction wheel. As
seen from figure 5.25(a), without spin stabilization, « begins to grow at 17.9 seconds

and reaches a maximum of —6.14 radians and the disturbances in 3 begins at 17.9
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FIGURE 5.22. Motherbody with reaction wheel spinning about the Z-axis

seconds and goes to a high of 1.17 radians. The variations in 7 begins at 21.8 sec-
onds and reaches a maximum of —2.6 radians. Figure 5.26(a) depicts the variation
in the attitude rates without spin stabilization, & begins to oscillate at 21.4 seconds
and reaches a maximum of —2.23 rad./sec. and the disturbances in 3 begins at 17.1
seconds and goes to a high of —0.77 rad./sec.. The variations in % begins at 25.0

seconds and reaches a maximum of 2.1 rad./sec.

Due to the presence of the spinning reaction wheel, as seen in figure 5.25(b),
the maximum magnitude of the perturbations in « is 0.02 radians, while for 3 the
maximum magnitude is 0.007 radians, and the perturbations in v reaches a maximum
value of 0.008 radians. Figure 5.26(b) depicts the variation in the attitude rates with
time, as the reaction wheel spins at a constant spin rate. The maximum magnitude of
the perturbations in & is 0.26 rad./sec., while for ﬂ the maximum magnitude is 0.09

rad./sec., and the perturbations in ¥ also reaches a maximum value of 0.09 rad./sec.
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4.2. Motherbody with Multiple Appendages : Reaction Wheel about
the Y-Axis. Figure 5.27 shows a motherbody mounted with three sets of ap-
pendages. This example represents the fact that the dynamics of a complex multi-
body system (7 bodies, in this example) can be simulated using the designed objects.
The reaction wheel was spinning at a constant speed of 250 rad./sec., about the body-
fixed Y-axis. The torque applied to the each of the joints is shown in figure 5.28, and
is given by 7 = 0.001 {1.0 — COoS (%) } The joint torque was about the X-axis for
the first joint and about the Z-axis for the second joint, for each of the arms. As
shown in figures 5.29 and 5.30, due to the presence of the reaction wheel spinning
about the body-fixed Y-axis , the variations in attitude and attitude rates about the
X and Z axes have been arrested. As seen figure 5.29(a), the maximum variation
in « and 7y are —0.037 radians and —0.025 radians, respectively, while from figure
5.30(a), the maximum variation in & and ¥ are 11.17 rad./sec. and 7.59 rad./sec.,
respectively. Due to the presence of the reaction wheel spinning at 250 rad./sec. ,
there are no noticeable variations in «, 7, &, and ¥, but § and ﬁ about the Y-axis

remain unchanged.

\ Body | Mass(kg.) | Ing(kg.m.?) | Ly, (kg.m.?) | I..(kg. m.?) |
Satellite 500.0 125.0 125.0 250.0
Arm 1 to 3 Link 1 20 3.3 3.3 6.7
Arm 1 to 3 Link 2 10 0.8 0.4 0.4
TABLE 5.6. Data for motherbody with multiple appendages
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FiGure 5.27. Multibody space system with reaction wheel spinning about
the Y-axis
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FIGURE 5.28. Joint Torque applied to the arms
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FI1GURE 5.29. Comparison of the variation in the attitude of the motherbody
(a) Without spin stabilization (b) With wheel spinning about the Y-axis
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5. Attitude Control

Since attitude control of the spacecraft or satellite is of prime concern, reaction
wheels are used as attitude control devices. Reaction wheels are referred to as mo-
mentum transfer devices. They compensate for the change in angular momentum
of the system, when external torques are applied to the system and as a result, it is
possible to maintain a constant angular momentum. The reaction wheels compensate
for the change in angular momentum by varying its spin rate. In this section, the
spin rate of the reaction wheels have been considered to be functions of the body
quaternion of the motherbody. The objects have been designed such that spin rate

of the reaction wheel can be in the form of a P.I1.D. control law.

5.1. Attitude Control of the Clementine Spacecraft. @ Clementine, the
Deep Space Program Science Experiment spacecraft, was launched in January 1994
to map the surface of the moon (DeLaHunt et al., 1995). The spacecraft char-
acteristics (deployed and wet configuration) are provided in table 5.7. The attitude
control system requirements and constraints led to the need for small lightweight
reaction wheels for the three-axis precision control system. The total mass of the
three reaction wheels was 8.4 kg. The wheels were mounted so that their axes were

mutually orthogonal.

| Mass (kg.) | Iz (kg.m.”) |1, (kg.m.”) | L, (kg.m.”) |
‘ 456.0 ‘ 93.0 ‘ 80.0 ‘ 107.0 ‘
TABLE 5.7. Characteristics of the Clementine spacecraft

In the simulation presented here, the spacecraft was subjected to small initial
perturbation of 0.02 rad./sec., about all the three axes. The P.I. control law supplied

to the wheels is given in equation (5.13). Each element of the 3 X 1 vector wWypee
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FIGURE 5.31. The Clementine spacecraft

represents the spin rate of one reaction wheel.

66 0 0 O 50 0 0 O
Wwheel = — 0 656 0 O fl - 0 55 0 0 /f]dt (513)
0 0 65 0 0 0 5 0

The uncontrolled attitude and attitude rates of the spacecraft are shown in figures
5.32(a) and 5.33(a), respectively, while the controlled variations in the attitude and
attitude rates are shown in figures 5.32(b) and 5.33(b), respectively. The salient
features, that can be inferred from figure 5.32(b), have been tabulated in table 5.8.

| Attitude | Overshoot (radians) | Peak Time (seconds) | Settling Time (seconds) |

Attitude x 0.024 2.5 30.0

Attitudey 0.022 2.5 27.0

Attitude 0.027 2.5 37.0
TABLE 5.8. Attitude characteristics due to P.I. control
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FIGURE 5.32. Variation in the attitude of the Clementine spacecraft (a)
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FIGURE 5.33. Variation in the attitude rates of the Clementine spacecraft
(a) Uncontrolled (b) P.I. control applied to the reaction wheels
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5.2. Attitude Control of a Spacecraft Carrying Two Manipulators.
Figure 5.34 shows a motherbody mounted with two appendages. The joint torque
was applied about the Z-axis to these appendages and is shown in figure 5.35. The
physical data for the spacecraft and the appendages are given in table 5.9. Initially

@

FIGURE 5.34. Motherbody with reaction wheels about the X and Y axes

| Body |Mass(kyg.) | Lz(kg.m.?) [ L,(kg.m.”) | L.(kg.m.?) |

Satellite 200.0 12.5 12.5 50.0

Arm 1 10 0.4 0.4 0.8

Arm 2 10 0.4 0.4 0.8
TABLE 5.9. Data for motherbody and two appendages

the uncontrolled attitude angles are plotted, as shown in figure 5.36, line (a). Figure
5.36, line (b), considers two reaction wheels spinning at a constant spin rate of 300
rad./sec., about the X and Y axes. It is seen that the variations in v are arrested,
but the perturbations in « and f are still present. From figure 5.36, line (b), it can
be noted that when there are two reaction wheels spinning at a constant rate, the

maximum variation in « and 3 is 0.0282 radians and —0.0055 radians, respectively.

Figure 5.36, line (c), depicts the changes in the attitude angles when a P.I.D.
control is applied to the reaction wheel spinning about the body-fixed Z-axis. The
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FIGURE 5.35. Joint torque to the arms applied about the Z-axis

P.I.D. control law is given by,
Wheel = [0 0 45.0 50.0] q- [0 0 20.0 45.0] /th
+ [o 0 350.0 350.0] a (5.14)

It is seen that the variations in 7y, can be damped out with this P.I.D. control. Due to
the application of this P.I.D. control law to the reaction wheel, the overshoot of v is
1.87 radians at 2.56 seconds and at 6.03 seconds, v starts to oscillate. At 30.0 seconds,
~ has a value of 0.18 radians. Moreover, the variations in « and [ are completely

arrested due to the application of this P.I.D. control law to the reaction wheel.
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CHAPTER 6

Conclusion

As space technology and its commercialization expands, the use of in-orbit multibody
space systems will be more prevalent. They will serve multi-faceted purposes. The
dynamic modeling of such multibody space systems is known to be complicated. Only
recently have researchers shifted focus from the customary and prevalent procedure-
oriented approach of modeling and simulating complex multibody systems to the

more accurate, versatile, and user friendly object-oriented approach.

The attitude stabilization and control of a spacecraft that carries multiple ap-
pendages or robotic manipulators are quite important. The orientation of the moth-
erbody needs to be maintained, since it is necessary to preserve communication link
with the Earth stations and also to accomplish the mission objectives of the spacecraft.
Reaction wheels are one of the most common and efficient methods of maintaining

the attitude of the spacecraft.

In this thesis, three reaction wheels, each spinning about a fixed axis and located
in the spacecraft, are considered for the attitude control and stabilization of the
motherbody. The development of objects that could enable simulation of a space-
craft containing reaction wheels has not been done prior to this work. Hence, the

essence of this research was to develop a dynamics formalism which embraced the
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FIGURE 6.1. Artist’s impression of the next generation of space robots (cour-
tesy:NASA Photo gallery)

object-oriented concepts and addressed the dynamic simulation of a spacecraft with
reaction wheels. This involved the modeling, designing, and coding of objects that
would simulate the dynamic response of a complex multibody space system, with the

motherbody containing reaction wheels.

The first step in this research project was to devise a mathematical model for the
system under consideration. In order to frame the mathematical model of the sys-
tem, the underlying kinematic relationships were first formulated. A variation of the
Lagrangian dynamics and the principle of Natural Orthogonal Complement, in order
to eliminate the kinematic constraints, were used to derive the dynamic equations of
motion of the spacecraft coupled with the reaction wheels. Such a formulation tech-
nique has been proven to be computationally more efficient for complex multibody
systems. The multibody system could be in the form of a spacecraft with multiple

appendages, in an open chain configuration. The objects that simulate the dynamic
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response of the motherbody containing reaction wheels have been designed, so as to
be part of a standard multibody system software package used in ROSE (Real-time

Object-oriented Software Environment).

In order to ascertain the functionality and precision of the proposed objects,
several validation tests were conducted. These representative examples verified the
definitiveness of the designed objects by comparing the simulated responses with the
results derived using standard procedure. The rigid body systems considered for vali-
dation included a R R manipulator, a body with two arms undergoing planar motion,
and a satellite spinning about its major axis, while undergoing 3 D motion. The
dynamic equations of motion for the mentioned rigid body systems were known and
then coded in MATLAB. The dynamic responses obtained from both MATLAB and
ROSE were close.

Further validation of the designed objects was done by simulating a slew maneu-
ver on the Cassini spacecraft, in order to verify the accuracy of the coded objects. In
this test, the inputs to the reaction wheels were time varying spin rates, which were
got from actual telemetry data aboard the Cassini spacecraft. By providing these
time varying spin rates to the reaction wheels, it was possible to slew the spacecraft
about the required axis, at the prescribed rate. The results obtained were similar to

those available from the actual spacecraft.

In order to highlight the adaptability and functionality of the coded objects, the
next set of simulations conducted considered the motherbody containing a reaction
wheel. The motherbody and reaction wheel were part of a representative multibody
space system, having two or more connected appendages. Initial simulation results
considered the absence of the reaction wheel in the multibody space system. There

were variations in the attitude of the motherbody, due to the application of time
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varying joint torques to the connected appendages. Then the reaction wheel was con-
sidered spinning at a high constant nominal spin rate, about the body-fixed axis of
the motherbody. It was shown that the variations in the attitude of the motherbody
could be arrested about at least one of its axes, due to the reaction wheel spinning

at a high spin rate.

It was also demonstrated that the variations in the attitude of the motherbody
could be damped out by providing appropriate control gains to the reaction wheels
located in the motherbody. The control law provided to the reaction wheels were in
the form of a P.I.LD. control law, wherein the spin rate of the reaction wheels were
functions of the body quaternion of the motherbody. The Clementine spacecraft,
which had three reaction wheels, was considered as an example. The application
of a P.I. control law to the reaction wheels of the Clementine spacecraft resulted
in the controlled and damped out variations of the spacecraft attitude. It was also
shown for a representative multibody space system, that the motherbody’s attitude
is better controlled by a P.I.D. control law, applied to the reaction wheel, as opposed

to reaction wheels spinning at a constant high spin rate.

1. Recommendations for Future Work

In this thesis, the objects were designed to simulate a spacecraft containing three
reaction wheels, which was part of an effort to develop a multibody space system
software package. The objects were designed so as to integrate and assimilate with
the existing objects. Future work could look into the prospect of fully developing
this software package by designing objects that could simulate the various complex
aspects and functionalities of the dynamics and control of a multibody space system.

e In this thesis, the bodies connected to the motherbody were considered rigid.

Future research could consider the dynamic interaction between flexible ap-
pendages mounted on the motherbody and could explore the use of reaction

wheels, in order to maintain the attitude of the spacecraft.
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e Single gimbal or double gimbal control moment gyros are also bias momentum
transfer devices that can be used to control the attitude of the spacecraft.
Efforts could me made to develop objects that would simulate a spacecraft or
satellite containing such variable speed control moment gyros.

e Emphasis could be laid on the control aspect of the reaction/momentum
wheels. More robust control techniques could be applied to the wheels in
order to guarantee greater stability and better attitude control of the system.
Studies could be done on choosing gains required for stability of the system.
The possibility of using adaptive control techniques and optimization princi-
ple for formulating the control laws to be fed to the reaction wheels, could be
explored.

e In the present work, open kinematic chains had been considered. Research
could be done and objects could be designed to simulate closed kinematic

chains.
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APPENDIX A

Relations Pertaining to the Algebraic

Constraint Wrench

The algebraic constraint for body 7 is given as,

a4 =q Zq =1

00
01

Differentiating equation (A.1) with respect to time,

where,

Y =

297 2§ = 0
Now using equation (2.16), the above equation is,
(2q; ) Ajv; = 0
Alternatively,

AT (£q;) =0

(A1)

(A.2)

(A.3)

(A.4)

(A.5)



APPENDIX A. RELATIONS PERTAINING TO THE ALGEBRAIC CONSTRAINT WRENCH
The algebraic constraint wrench for body i is given as (Cyril et al., 1991),
T
wh = (@' 3)" A = \Zq (A.6)

where ) is the Lagrange multiplier and w# is the algebraic constraint wrench of body

i. Thus using equations (A.5) and (A.6),

Afwi =0 (A7)

1 7
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APPENDIX B

Relations Used to Simplify the Equation

of Motion for Body 2

I.Ji is initialized as a 6 x 7 matrix for body 7 and is given as,
. (VI
Lz' = .
0 L;

fJZZQ[T’Ol].-i-I.'ZX —I.'Z]

=i

where,

A,; is initialized as a 7 X 6 matrix for body 7 and is given as,
. 0 o0
Az’ = X

0 A;

where,

(B.2)

(B.3)

(B.4)



APPENDIX B. RELATIONS USED TO SIMPLIFY THE EQUATION OF MOTION FOR BODY I

Having defined expressions for L; and A;, the following relations are used to simplify

the equation of motion, equation (2.36), of the i body,

ov;

PR It can be shown that

The derivation presented below provides an expression for

(Cyril et al., 1991),

Liqg=0 (B.7)
Thus,
Lg = | J[{P =P (B5)
0 L, Qi 0
Alternatively,
Liq, = Lo Pl Caq; (B.9)
00 q;
where, C is a constant. Using the relation derived in equation (B.9),
Liq; = Cq;
Thus,
Lig; + Lig; = Cq; (B.10)
Rearranging terms in the above equation,
vi = Lig = —Liq; + Cd, (B.11)
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Hence,
ov; .
Vi - 1, (B.12)
dq;
Thus, using the relation derived for g;ﬁ in equation (B.12), Bﬂi (VZT M; vi) is evaluated
as,
= 0 (VTM-V-) = 2 ovi)' M;v; + v] oM, v;
dg ~ Y 0q; n " oq
. OM,;
qi

101



APPENDIX C

Kinetic Energy of the Wheel

The mathematical analysis presented here, involves the application of the Euler-
Lagrange equation to each of the kinetic energy terms due to the reaction wheel. The
foregoing analysis enables the generatation of the inertia and wrench terms of the
dynamic equations of motion of a spacecraft containing reaction wheels. As stated
previously, the terms with the subscript ‘B’ are associated with the motherbody. It
should be noted that the relations derived earlier, for the i body, can be applied to
the motherbody.

1. TERM 1

The first term in kinetic energy equation (2.51) is,

1
T, = ivg M, vp (C.1)

Using equation (2.12), that relates the twist of the motherbody to the time derivative
of its pose,

ve = Lpqs

Substituting the above expression for v in equation (C.1),

1. .
T = 2 qg Lg M, Lgas (C-Q)



C1 TERM 1

The following is defined as,
v, = LEM,Lp (C.3)

Substituting equation (C.3) in equation (C.2),

1. .
T, = 5 qﬁ v, 4z (C-4)

Now evaluating each term of Euler-Lagrange equation (2.30),

T, 1. 1., T
— = | = —q Py .
T (Geaas) + (jaben) (©5)
The above expression is rewritten as,
0Ty
— = ¥, ¢ C.6
oq, (0
Also,
o 1 (dve\" 1 (ove\" T 1 ,0M
1 B B T T w
— === M, — [ =— M,) + -vp—— C.7
oqp 2 (6(13) Vet (6(13) (v Ma) 2 VB dqp ve  (CT)
which is rewritten as,
8T1 (aVB) 1 T aMw
— =|=—) Muvp+ =-vg——V C.8
dan oqp B 278 9qp P (C8)

But, from equation (B.12), which is rewritten below,

6VB r .
Z'B - _L
(3(13 ) N
Ty

The expression for s is now rewritten as,

o7, 1 , 0M,

=L = _L M, -V —— C.9
945 B vp + 2VB GIp Vg (C.9)
Taking the time derivative of equation (C.6),
d (0T .
S (L) = @, 45 + P C.10
i < an> dB + aB ( )
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C1 TERM 1

Taking the time derivative of the equation (2.16), which is rewritten below, the rela-

tion obtained is,

le =Apvp

qB = AB vVp + AB‘.’B (C]_l)
and, taking the time derivative of equation (C.3),
¥, = LEM, L + LEM, L + LLE M, Ly (C.12)

Substituting equations (C.11) and (C.12) into equation (C.10),

d T . A
% (%) = Lng LBABVB + LgMu}LBABvB + LEM’IU LBAB‘.’B
aB

+LngLBABVB + LngLBABVB (013)

The terms gq% and 4 (gc.l%) derived in equations (C.9) and (C.13), respectively, are
used while applying the Euler-Lagrange equation to term 1 (73). Using equations
(2.20), (B.5), (C.9), (C.13), pre-multiplying by A7 in order to eliminate the algebraic

constraint, and finally applying the Euler-Lagrange equation (2.30) on term 1 (73),

T T . .
AE [d (a 1) a 1:| = AngvaB - MwLBABVB

dt \0ds)  Oqg
+M, Vs + AELngvB + vaB + MwLBABVB
1 oM,
Alternatively,
d (0T o7, . .
AL = (=—) - =—| = 2AZLZM, M, v M,,
B |:dt (an) an:| BLp \'2:} + VB + Vp
1 oM,
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C.2 TERM 2

2. TERM 2

The second term in kinetic energy equation (2.51) is,
T, = v M, ®v, (C.16)
Substituting equation (2.12) in equation (C.16),
T, = 5 LEM,, Bv, (C.17)

Now evaluating each term of the Euler-Lagrange equation (2.30),

0Bv,,

94z

- = Ly M, "vy, +
0qp B

T
) M, Lgas (C.18)

and,
d Bv,,
dt

d [(0Bv,\" 9Bvy\" -
— et M, Lgd v M, Lgd
+dt(8q3) BQB+<an) BO4B

8B w T : . aB w T .
T (aqi) M, Lp as + (aqi) M, Lzds (C.19)

d (0T . i
— (Q) = LM, v, + LEM, ®v, + LLM,,

Using the expression for §g, derived in equation (C.11) and rewritten below,

dp = ABVB + Apvp
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C.2 TERM 2

Substituting the expression for ¢p in equation (C.19), and using the relations derived

in equations (2.16) and (B.5),

d (0T, . B T B T d®Bv,
— | == =L, M L,M LM, ——
di (8(13) B My vy + Lp My, Tvy, + LM, di
d [0Pv, T 0Bv,, T
— M, : M,,
+dt<8q3) VB+<an> VB
B T B T
+ 0 .Vw M,LgApvp — 9 .vw M, LgApvp
0q4s 0q4s
v\ "
+ ( aq‘; ) M, ¥z (C.20)

T,

The expression for b is derived below, which is also used in the Euler-Lagrange

equation (2.30).

oT) <avB ) Ty (anw ) g r OM,, 5
_—‘ — - Mw Ve + Mw v + Vv Vuw C.21
das Jdqp dqp B B dqp ( )

The terms % (g(.%) and g% derived in equations (C.20) and (C.21), respectively, are
used while applying the Euler-Lagrange equation to term 2 (73). Using expressions
derived in equations (2.20), (C.20), (C.21), and as stated earlier, pre-multiplying by
AL in order to eliminate the algebraic constraint, and finally applying the Euler-

Lagrange equation (2.30) on term 2 (73),

d T T . . dBv,,
As [_ (82) 82] = ALLEM,, Bv, + M, Bv,, + M, v

dt \oqs) Oqs dt
d [98v,\T aBv, \ T . 98v, \©
AL — (=) M, AL [=—2) M, AL [ =—2) M,V
Bdt<3c'13) Vet B<3<'13) Vet B(aq3> Ve

B T
+ALLEM, Bv, — AL (%) M, v — AL (vT oM, va> (C.22)
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Alternatively,
d 8T2 6T2 . . dBV
AL — — = 2ALLE M, Bv, + M, Bv,, + M, v
7 [dt (aq3> an] 5 p M Ve T M Ve dt
d (9Bv,\" 0Bvy\" Bvy\ "

AL — “) M, AL “) M, A} 2] M,
+Bdt<3qB> v ¥ B(@QB) v ¥ B(@QB) Ve
—AT (anw>T N AT (VT aMw BV ) (C 23)

B oqp vrE B B oqp b .
3. TERM 3
The third term in kinetic energy equation (2.51) is,
T3 = %ng M,, Zv,, (C.24)

As done previously, each term of the Euler-Lagrange equation (2.30) is evaluated,
wherein the kinetic energy is given above, in equation (C.24). The expressions derived

for & (gi) and gg are given below:
qB qaB

T3 1 (0Bv,\" B 1 (0%v,\" 5 1 T
—_— = = M, “vy, + = - M,,
an 2 ( an ) Vo F 2 an ( Vu )
0Bv,\ "
= 21 M, Bv, C.25
(Gez) muv (©.25)
Taking the time derivative of equation (C.25),
B T B T
i _6T3 = i 0 .Vw Mw va + 0 .Vw Mw va
dt \ 0q4g dt \ 0q4g ole}:
Bvy,\ " dBv
d M, @ C.26
+ () WG (€20
and now, evaluating gql;,
OT; v\ . 1, 0 OM, 5
— = M, "vy + = %vy, —— "y C.27
dqp ( oas ) Yoty oas v (©.27)

The terms 4 (gé%) and gq% derived in equations (C.26) and (C.27), respectively, are

used while applying the Euler-Lagrange equation to term 3 (73). Using expressions
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derived in equations (C.26), (C.27), pre-multiplying by A%, and finally applying the

i 8va TM BV
dt \ Odg v

8B.vw T M, dBv,,
an dt

Euler-Lagrange equation(2.30) on term 3 (73),

d (073 0T3
AT Bt ikl _ 2o = AT
B |:dt ( 8(]3 ) an :| B

0Bv,\" ]
+ A% ( V) M, Bv, | + AL

- an -
N -
1 M,
— AL (8aq‘;w> M,, Bv, | — 3 A% [ng aan va] (C.28)

The reaction wheels are located at a fixed orientation with respect to the body

reference frame of the spacecraft, hence,

oM
A C.29
s (C.29)
and,
M, = 0 (C.30)

Thus, adding expressions obtained from equations (C.15), (C.23), and (C.28), and
using the relations stated in equations (C.29) and (C.30),

d (0T, oT,, . , 0Bv,\ "
AL [@ ( ) } AT My vp + My ¥ — AL (_) M, v

8ds)  Oqs

. dBv, d [(0Bv,\"
+2ATTTM, By, + My, =% 4 AT ( V) M, Vs

dt Bt \ 04s
9Bv,\" d (8%v,\"
AL “) M AL | = 21 M, Bv,
A (g ) M | () ”’V]
v\ - dPv, Bvy\ "
+AZ (aqi) o d: — A% [( 8q‘;> Mvaw] (C.31)
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Now the inertia and wrench terms in equation (C.31) are separated and rewritten as,

0Bv,

94z

T T
. d B w
) M, vy = —2ALLL M, vy — A% (a M ) M, Vs

M,, v AL —
Ve T B( #at \ oa

B
d vy,

+ AL 0%vu TM vg — 2ALLEM, Pv, — M
B 8QB w VB BYpB w w w dt

d [(98v,\" 88v,\" dBv
_AT | w M, Bv, —*) M, —
8 [dt(8q3> v <an> dt ]

(aBV”’)T M,, va] (C.32)

_AE

+AL
B 0qp
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APPENDIX D

System Wrench Terms

There are analogous terms appearing in the system wrench of the i** body and in the
wrench terms due to the reaction wheel. In the treatment given below, the subscript
used is 7, which represents the i"* body of the multibody system, but this methodology
has also been extended to similar terms appearing in the wrench due to the reaction
wheel. The system wrench for the i** body, from equation (2.39), is rewritten below

for convenience as,

. . 1 M;
¢ = —M;v; — 2ATLT M, v; + 5AZ.T <v? aaq vi> (D.1)

Now terms — 2 A, LzT M, v; and % A} (v;f %%i vi) of the above equation are further

simplified to ease the process of coding the system wrench. Each of the terms in

equation (D.1) is a 6—dimensional vector.

e Term 1
T 1 0 0 O
—2A, L, M;v; = -2 r | Tt .7 | M;v;
0 A, 0o L
0
= T (D.2)
—2A L, (M*pe + M7 w)
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o« Term 2
1 M, 1]11 o 0
_AzT (VzTa—VZ) = 5 AT
2 dq; 2|0 A (VZT %1;4 w)
0
B LA, (vT OM,; V-) (D:3)
2 7 7 aq 7

The derivation given below was used in deriving equation (D.3) and in evaluating the

term v %L(fi v;, which is a 7— dimensional vector,
oM, | !
Vi aq VT { v g Vi }
B VZ-T %I;ii v;
i %héivi
0
= . (D.4)
V;F 351: Vi
The following relationship can be noted,
M M | [ p,
= viMivi = {pr W} 0 ’ (D.5)
M;¢ M;" wj
From the above equation, it can be inferred that,
oM, oM OM™ oM
T 2 o T P T 7 o T 1
= |V, == Vi] = C— D | + (w, ——wi| +2 (D ——wi
( " 04, ) (pz 94 p’) ( "4 ) (pz o4
oM[" oMY
T ] o T i
w; ——w; | +2 ‘ —— w; D.6
( booq; Z) (pz 04, Z) (D)
The simplification of the terms of equation (D.6) is treated in a more rigorous manner
by expressing v %1:.1’[? v; in the form a” %I\élb (Note: The subscript i, representing the

i'" body, has been neglected in the following derivation). If R is the rotation matrix,
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r
defined by the Euler Parameter and R is given by,
To

R=(2r—1)1+2rr" + 2r,1* (D.7)
Further if we define, W is a constant reference Matrix, then let,
M = RWRT (D.8)
and,
W = R"MR (D.9)

Let ¢ = R b, and using equations (D.7), (D.8), and (D.9) we get,

r oM ) _ 9 7 T
(a b) = o (@ RWR'D)
= ;—q(aTRWc)
= %((27‘3—1) a’ Wc + 2a"rr" We + 2r,a" r* W)
= L((?rﬁ—l) a’Wce+2(r"a) (r" We) — 2r,r"a* W)
9 T
To

2 (r"Wc)a+2(r"a) We — 2r,a"We
4r,a’ We — 2ra*We

2(r"R"Mc)a + 2 (r"a) R"Mc — 2r,a*R"Mc

- (D.10)

4r,aTRTMc — 2rTa*RTMc
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Now using the relations in equations (D.7), (D.8), (D.9), and (D.10) and substituting
them into (aT oM b),

04
7 OM _ Q T T
(a 94 b = 94 (a RWR b)
_ i T ThT
= 7 (b RW'R a)

/

2 (r"WR'b) a + 2 (ra) WR"b — 2r,a* WR” b
= { +2("W'R"a)b+2(:"b) W'R"a - 2r,b* W'R"a
\ 4r,a” WR™b — 2r’a*WR'b + 4r,bp" W'R"a — 2r'b*W'R"a

\

2 (" R"Mb) a + 2 (r"a) R"Mb
—2r,a*R"Mb+ 2 (f"R"M"a) b =3 x1
= ¢ | +2 (") R"M"a — 27,b*R"M" a > (D.11)
4r,aTRTMb — 2r’a*RT"Mb
+4r,b"R™M"a — 2r'b*R"M”a

=1x1

The above is a 4—dimensional vector.
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