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In this paper, an effort has been made to develop objects that can be combined to
formulate the complete dynamic equations of a spacecraft containing reaction wheels. In
order to generate the mathematical model and dynamical equations of the multibody sys-
tem, a variation of Lagrange’s method has been used, along with the concept of Natural
Orthogonal Complement, in order to eliminate the kinematic constraint force and mo-
ments. The designed objects would be part of a multibody system software package that
could simulate the complex dynamics of a spacecraft containing reaction wheels and any
arbitrary configuration of connected bodies. The objects have been designed such that
the spin rate of the wheels may be specified as a constant nominal rate, or as any function
of time, or in the form of a P.I.D. control law, wherein the wheel spin rate is a function
of the body quaternion of the motherbody. The accuracy, versatility, and adaptability of
the designed objects have been illustrated with numerous examples and compared with
results obtained using standard procedure. Maneuvers have also been simulated on the
designed model and compared with available spacecraft data in order to substantiate the
authenticity of the designed objects

Introduction

ATELLITES or space systems with connected

bodies or appendages belong to the regime of
multibody space systems whose dynamics are known
to be complex and challenging.  The governing
equations of motion for the motherbody and the
connected bodies can be derived in terms of non-
linear differential equations, by modeling them as a
multibody mechanical system. The connected bodies
may be in the form of solar panels, booms, antennas,
and/or manipulator arms. When bodies are attached
to the motherbody, there is an interaction between
its dynamics and the dynamics of the motherbody.
The motion of the connected bodies produces reaction
forces and moments on the satellite through the
motherbody base. These forces and moments produce
translation of the center of mass of the spacecraft
and rotation about its center of mass. Due to such
dynamic coupling between the motherbody and the
connected bodies, the position and the orientation
of the spacecraft are functions of the position and
orientation of the connected appendages.

Attitude control is one of the most important
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problems in spacecraft design, since there are always
disturbances due to dynamic interaction, gravita-
tional torques, orbital motion, etc.! The spacecraft
attitude stabilization is necessary in order to maintain
communication links, generate electrical power from
the solar panels, and to comply with the mission
objectives of the spacecraft. The dynamic coupling
between the attached appendages and the spacecraft
poses control problems. Reaction wheels are used
in many space applications in order to maintain
and/or reorient the attitude of the spacecraft. The
wheels are located at a fixed orientation with respect
to the spacecraft body axes. The motion of the
attached appendages of a multibody space system
causes variation in the attitude of the spacecraft,
which in turn causes the angular momentum of the
spacecraft to change. The spacecraft attitude is
controlled by absorbing the angular impulses from
the external torques into the reaction wheels during
slew or reorientation maneuvers. This transferral is
accomplished by applying control laws to the wheels.
These wheels are aptly called reaction wheels because
the equal and opposite torque from the wheels on the
spacecraft tend to cancel the external torque, leaving
the momentum of the spacecraft unchanged.?

Considerable effort has been directed towards
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the dynamics, modeling, and computer simulation
of multibody systems because the micro-gravity
environment of space is not easily amenable for
experimentation on the ground.> Most previous
investigations have considered specific models and
have adopted a procedure-oriented approach. In this
method of computation, the main task is broken
down into numerous simple instruction units that
are processed in a serial fashion. This method is
prone to errors and does not easily accommodate the
possibility of modifications, as it is too laborious.
The object-oriented modeling consists of identifying
objects and the computations done by those objects,
and creating simulations of those objects, their pro-
cesses, and the required communications between the
objects.* Such a formulation technique is less prone to
errors and is relatively easy to modify and/or upgrade.

Due to the apparent and numerous advantages of
using object-oriented modeling techniques, various
researchers have applied these concepts for the dy-
namic simulation of multibody systems.>?° Otter
and Hocke can be credited as one of the first research
groups who introduced the concept of object-oriented
programming into a data model for the exchange
of rigid multibody system descriptions.® Wallrapp
extended the work of Otter and Hocke by adding
classes that could represent the flexible members of
the multibody system.” Kecskeméthy applied object-
oriented modeling for the efficient generation and
solution of the equations of motion for rigid multibody
systems.® Liickel et al. adopted a computationally
efficient recursive Newton-Euler formalism for the
dynamic simulation of rigid multibody systems.? The
use of work-energy relations was the focus of research
for the dynamic simulation of multibody systems by
Anantharaman.!©

In order to accommodate the flexibility as well as
maintain the independent representation of each indi-
vidual body in a multibody system, Min et al. adopted
the formalism based on the Euler-Lagrange method in
conjunction with the use of the Natural Orthogonal
Complement of the kinematic constraint matrix.? In
that work, the multibody dynamics model has been
treated as a combination of Body, Joint, System,
and Solver classes. The objects defined in these
classes are refined from the generic types in a top-down
fashion by taking advantage of the inheritance concept,
as opposed to the procedure-oriented approach which
functions at a very specific level. The methodology
followed in this research is an extension of the work
done by Min et al. This paper involves the modeling
of objects that would simulate the dynamic response of

a spacecraft carrying reaction wheels. The spacecraft
could be a complex multibody space system.

Dynamical Equations of the System

The system under study is composed of a main
body (motherbody or satellite) containing reaction
wheels, that serves as a platform on which there is
provision for multiple appendages to be attached in
any open chain configuration. The main body or
satellite is modeled to be a rigid body, while the
multiple short appendages are modeled to be rigid
links. The joints are modeled as rigid and could be of
prismatic, revolute or free floating type.

The derivations of the dynamical equations of the
spacecraft with reaction wheels and any other con-
nected bodies has been done using a variation of the
Euler-Lagrange formulation method. In the case of
this variation of Lagrangian dynamics, the kinetic and
potential energies of each body are considered and
then the equations of motion are derived. The equa-
tions of motion of each body are then assembled to get
the dynamical equations motion of the whole system.
This method introduces the non-working constraint
wrenches, as in the case of the Newton-Euler formu-
lation, but they are eliminated using the concept of
Natural Orthogonal Complement.!!

Formulation of Equations of Motion for the ‘"
Body

The kinetic energy for each body, which could be the
spacecraft, motherbody, or any attached appendage is,

T; = T; (q;,4) (1)

, where in the 7—dimensional extended position vector,
q;, contains the position vector p; locating any point
on the i** body and the orientation §; of that body.
It is also referred to as the pose of the body. The
6—dimensional extended velocity vector v; consists of
the linear or translational velocity p; of any point on
the i** body and the angular velocity w; of that body.
It is also referred to as the twist. The twist v; and the
time derivative of the pose §; are related as,

vi = L; §; (2)

where q; is a 7 x 1 vector, and L; = L; (q;, t) which
isa 6 x 7 matrix. Also,

q = Aiv; (3)
where A; = A; (qi, t) is a 7 x 6 matrix. The kinetic
energy can be written in terms of the twist v; as,

1

T,' = 5 V;-F M,’ V; (4)
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where M; = M; (q;, t) is the 6 x 6 extended mass
matrix of body i. The expression for the extended
mass matrix can be derived from the kinetic energy
and is written as,

M M ]
M; = 4 d 5
7 [ erd Mzrr ( )
where,
M = /1dmi =m;1 (6)
K3
M = — /rfj dm; = —mjc, (7
K3
M = - / rX X dm = MY ®)
i

In the above equations m;, ¢,, and Mg’ are the total
mass, the position vector of the center of mass, and
the second moment of inertia of the i*"* body around
its center of mass, respectively.

The dynamical equations of body i are derived using
the Euler-Lagrange equation, which is given as,

d (9T)\ OTi
i (a) " oq = ©)

where, w; is a 6 x 1 dimensional vector accounting for
all nonconservative wrenches.

where,

e wil is the algebraic constraint wrench originating
from the fact that,

a & =1 (11)
° WF is the external wrench.

e wk is the kinematic constraint wrench.

The potential energy has been ignored in the Euler-
Lagrange equation (9). Such a consideration has been
done because of the fact that in a micro-gravity envi-
ronment the effect of the gravitational potential energy
is small compared to the nonconservative wrenches.
The equation of motion for the i** body, using the re-
lations derived by Misra et al. can be expressed as,'?

Mz\.IZ = —M,Vz—2AfL?Msz

1 r (0 OM;
+ 5 A; (vi a v,)
+o7 + B (12)

where,

E T _E
¢ = A;w;

K T_ K
¢ = A;w;

Equation (12) can be stated in a compact form as,
M;vi = ¢} + ¢ + &) (13)

which is the generalized Newton-Euler equation, where
q,’)f is the system wrench given by,

. . 1 M;

d)f = —M,’Vz'—2AzTL1TMin'+§AiT (v;raa ,Z vi)
q;

(14)

Dynamical Equations of Motion for a Spacecraft
with Reaction Wheels

The spacecraft can be regarded as a rigid body and
hence the concepts and formulation techniques that
were introduced in the previous section for a body i
could be extended to the spacecraft (subscript B). The
reaction wheels are mounted on a fixed axis frame with
respect to the body coordinate frame of the spacecraft.
The kinetic energy of a spacecraft containing a reaction
wheel is given by,

Tsc =T + Ty (15)
where,
e Tsc is the total kinetic energy
e T'p is the kinetic energy of the spacecraft
e T, is the kinetic energy of the reaction wheel

Thus the total kinetic energy T'sc can be separated
into two parts Tg and T,,. In the foregoing formulation
the Euler-Lagrange equation is applied to the sum of
Tp and T,,. However, for the ease of formulation the
contributions from T and T, are evaluated separately
and then the evaluated terms are added together in
order to get the complete dynamic equations of motion
of the spacecraft with the reaction wheels.

The Spacecraft

The kinetic energy (Tg) for the spacecraft is given

as,

1
TB = ivg MB vpB (16)

where,

e vp is the 6—dimensional twist of the spacecraft.

e Mp is the 6 x 6 extended mass matrix of the
spacecraft.
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On applying the Euler-Lagrange equation to equation
(16) and using the result obtained from equation (12),
the contribution of the kinetic energy of the moth-
erbody to the equation of motion of the considered
system is,

—MBVB — QAELEMBVB

1 OMp
Z AT =5
Tahp (vB dap VB)

+o5 + o5

Mpvp =

(17)

Reaction Wheel

The derivation presented below is for one reaction
wheel which can be extended to three reaction wheels.
The kinetic energy of the wheel is given as,

Fig. 1 Reaction wheel in the motherbody

(18)

where M, is the 6 x 6 extended mass matrix of reac-
tion wheel. ¢, is the position vector of the center of
mass of the wheel from the origin of the body frame
of the motherbody, as shown in figure 1. v, is the
twist of the wheel relative to the motherbody. The to-
tal twist of the reaction wheel, v,,, which is expressed
in the body frame of the motherbody is given by,

Vo = v + By (19)

By, is a 6-dimensional vector. All the elements of Bv,,

are zero, except one, depending on the axis of spin of
the reaction wheel. The fourth, fifth or sixth element
of the vector Bv,, constitutes the spin rate (relative
angular velocity) of wheel if it spins about its X-axis,
Y-axis or Z-axis, respectively. This relative angular
speed of the reaction wheel is denoted by wypeer and
it could be:

1. A constant nominal spin rate.

2. Any function of time.

3. In the form of a P.I.D. control law.

The inertia (Left hand) terms and the wrench (Right
hand) terms due to the kinetic energy of the reaction
wheel derived by Misra et al. are combined with the
inertia and wrench terms of the spacecraft to get the
dynamical equations of motion for the spacecraft con-
taining the reaction wheel.!? The inertia and wrench
terms of the spacecraft have been derived in equation
(17). Thus, the complete equation of motion of the
spacecraft with the reaction wheel is,

B T
—MBVB - 2A£L£MBVB

1 OMpg
AT [T 222
T3 s <VB Oas VB)

Mg ve +M,Vp + AL (

TTT 7 0Py ’

Jdqp
B
— 2AL1LT M, Bv, — ded%
d (0Bv T
— AL — YY) M,
B g ( das > Ve
' Vo
4 (2Yw) M, v,
dt o4g

(anw>T M dva‘|

—Ag

—_ AT v
B 945 dt

8Bv r
( dap ) Y ]
+é5 + o5

The equation of motion for any i** connected body ap-
pended onto the spacecraft is given in equation (12).
Equation (20) is the dynamic equation of motion of the
motherbody containing a reaction wheel. The inertia
and wrench terms of this equation have been converted
into programmable code and incoporated into func-
tional objects.

+ A%

Object-oriented Concepts

Kinematic Objects

As mentioned previously, multibody space systems
can be composed of many distinctive components, such
as solar panels, booms, manipulator links, antennas,
actuators, reaction wheels, control moment gyros, and
jet thrusters. The processes and operations for each of
these components can be identified and characterized
into objects. The following section describes the essen-
tial kinematic relationships that have been embedded
into objects for the transfer of motion states from one
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body to the next body via joints in a multibody sys-
tem. The objects mentioned in this paper are written
in dtalics.

The Generic Element

Kinematics is responsible for holding and passing
the motion states of the body. The transfer of motion
states can occur within a Link and within a Joint due
to the motion of the rigid body. The relationships
presented below are given in the most general form
for a generic kinematic element, during the transfer
of motion states from one frame to another. These
relationships have been extended to be incorporated
in the objects Link and Joint.

The fundamental motion states of the rigid body are
position (p), velocity (p) and acceleration (Py—¢) for
translation, and rotation matrix (R), angular velocity
(w), and angular acceleration (wy—g) for rotation re-
spectively. They are held in an object titled Frame. In
the above (-);_, stands for the evaluation of a quan-
tity when the generalized acceleration vector (¥) of
the multibody system is set to zero, where y is the
generalized coordinate vector of the system. These
values are used instead of real accelerations, because
they are useful for the assembly of the global system
dynamics. The kinematic motion states are expressed
with respect to the inertial reference frame O. The
frame O,, represents the local body frame of the rigid
body. O; represents the new frame after the relative
change in position and orientation due to rigid body
motion. p;, is the position vector that locates the ori-
gin of the frame O; from the origin of the inertial
reference frame O, while R, is the rotation matrix that
represents the orientation of the frame O, with respect
to the inertial reference frame O. p,, is the position
vector that locates the origin of the frame O,, from
the origin of the inertial reference frame O, while R,
is the rotation matrix that represents the orientation
of the frame O,,, with respect to the inertial reference
frame O. The fundamental operation of the generic
kinematic element is the transmission of motion states
from one frame into another as depicted in figure 2. It
consists of the following three transmissions.

e Displacement

R (pm + 1) = ps (21)
R,.R =R; (22)
e Velocity
R” (P + wir) = Ps (23)
R” (@ + @) = w, (24)

(s Ry)

(P Ra)

(8]

Fig. 2 Generic kinematic element

e Acceleration

R (Bmgey + 0

mgeo T T Wi Wiy r) = Psy_o
(25)

R” (Wngoo + wiw) = sy, (26)

In the above expressions, r and w represent the rela-
tive displacement and relative angular velocity, respec-
tively, between frames O,, and O, while the super-
script ‘x’ represents the cross product operation.
Link

Link is a kinematic object that transfers motion
states within a body. In order to provide some sim-
plicity while modeling complex multibody systems, the
objects Qutward Link and Inward Link are developed
for a rigid body. The Outward Link is responsible
for transfer of kinematic states from the local body
frame Op to the outside frame O (the term “outside
frame” represents the frame towards the terminal bod-
ies/outside of the multibody system, at the connection
point between the joint and the body). The Inward
Link transfers the motion states from the inside frame
O, (the term “inside frame” represents the frame to-
wards the base/inside of the multibody system, at the
connection point between the joint and the body) to
the local body frame Opg. The figure 3 depicts the
schematic of a generic Link (Outward Link and Inward
Link). r is the nominal length vector from the origin
of frame Op to the origin of the frame O, while R is
the rotation matrix of frame O with respect to frame
Op due to normal twist of the body. r is a constant
vector and R is a constant matrix and they are deter-
mined by the nominal body architecture.

Along with the transmission of motion states, the
link restrains the relative motion of a frame with re-
spect to another. The kinematic constraint equations
of the link can be obtained by the modification of
the velocity transmission relations, equations (23) and
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Fig. 3 Generic rigid link

(24). These constraint equations have been derived by
Min et al. and Misra et al.3: 1213

Joint

Joint is an object that transfers the kinematic
states between two interconnecting bodies. Joints can
be of revolute, prismatic, universal, or spherical types.
Figure 4 depicts the schematic of a generic Joint. O
and 05 represent the joint frames before and after
the joint has undergone motion (translation and/or
rotation), respectively. If r is a vector that represents
the translational displacement of the joint, as in the
case of a prismatic joint, and if R is a matrix that
represents the rotation of the joint, as in the case of
a revolute joint, then the state quantities of the Joint
are expressed below in table 1 as,

In table 1, 0 is the joint coordinate vector com-

| Translation | Rotation
r = r(0) R = R(6)
r=2,0 w=12,0

¥y—0 = 2,0 + Z,05_¢ | wy—0 = 2,0 + Z, 05

Table 1 State quantities of a joint

posed of the translational displacement and/or
rotational angles of the joint. Z,, Z,, Z,, and
Z, are the joint characteristic matrices and are
dependent on the type of joint.  For example,
(Zy,24,2,,2,) = (Zp,03%1,03x1,03x1) for a pris-
matic joint undergoing translation along the Z, axis,
while (Zva Zv7 Zw; Zw) = (03><17 03><17 ir; 03)(1) for a
revolute joint undergoing rotation about the z, axis.
A joint also defines a restriction on the relative
motion of a frame on one body with respect to a frame
on an adjacent body. As mentioned previously, from
the velocity transmission relations given by equations
(23) and (24), the kinematic constraint equation for
the joint has been derived by Min et al. and Misra et

Fig. 4 Generic joint

a].3:12,13

Dynamic Objects

Dynamic objects are responsible for yielding the
equation of motion of a body, which is given in the
general form as,!*

M(y) vV = ¢(y, v, 1) (27)
where,
e M is the 6 x 6 extended mass matrix of the body.

e ¢ is the 6—dimensional wrench of the body con-
sisting of the external forces and moments acting
on the body, and the mixed terms i.e. terms which
are functions of the generalized coordinate vector
y, extended velocity vector v and also time ¢.

The generic dynamics objects are Inertia and Wrench,
which represents the motion resistance and the motion
agent, respectively. The primary operation of Inertia
is to build the extended mass matrix and its time
derivative of the body, while Wrench is responsible
for evaluation of the right hand side of equation (27).

Assembly

Multibody systems in the most general form can be
considered to be composed of N bodies. After assem-
bling the individual body equations, which includes
the motherbody and the connected auxiliary bodies,
the dynamical equations of the complete multibody
system are obtained in the form!!:1%

Mv = ¢° + ¢F + ¢ (28)

where M is the 6 N x 6 N generalized mass matrix,
v represents the 6 N—dimensional time derivative
of the generalized twist, while qu , 7, and @& are
the 6 N—dimensional generalized system, generalized
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external, and generalized constraint wrenches, respec-
tively.

The dynamical equations of a multibody system
written in equation (28) contain non-working con-
straint wrenches due to the physical coupling between
adjacent bodies. These constraint wrenches introduce
additional variables in the dynamical equations, as
a result, the dimension of the system of equations
is increased. Thus the constraint equations are not
desirable and hence, have to be eliminated from the
dynamical equations. The Natural Orthogonal Com-
plement matrix N maps the generalized speed y and
the generalized twist v, such that,

v =Ny (29)

The Natural Orthogonal Complement matrix is de-
rived from the kinematic constraint equations of the
link and the joint.% 2 It has been shown that, by using
the principle of virtual work and the fact that the kine-
matic constraint wrench is a non-working wrench, the
Natural Orthogonal Complement matrix N is orthog-
onal to the kinematic constraint wrench ¢*.'"" Thus,

N7 ¥ =0 (30)

Taking the time derivative of the generalized twist v,
given in equation (29),

v =Ny + N§ (31)

Pre-multiplying the dynamical equation of motion (28)
of the multibody system with N7, and using the re-
lations derived in equations (29), (30), and (31), the
dynamical equation of motion of the multibody system
is,

(NT"MN) §# = -N"MNy + N7 ¢° + N7 ¢”
(32)
Evaluation of N7 involves extensive computations,
hence the following relation is used,

Ny = Vy=0 (33)

Using equation (33), equation (32) is rewritten in a
more compact form. This is the equation of motion of
the complete multibody system obtained in terms of
the minimal generalized coordinates as,

Iy =c(y,y) +7 (34)

where,
I=NTMN

c =N (—nyzo + ¢S)

T =N"¢"

Implementation

The multibody system under consideration has a
base or a motherbody to which a series of bodies can
be attached in any open chain configuration. The ap-
pendages are connected to each other via joints. The
kinematics and dynamics of these various elements of
the multibody space system have been formulated and
coded into objects. Objects having common func-
tionalities and characteristics can be grouped into a
class. In this research work, the multibody simulation
archetype constitutes of Body, Joint, System, and
Solver classes.!?

Body

The class Body is an abstraction of objects having
mass as well as finite dimensions. The objects
grouped in this class represent the functionality that
characterizes the complete kinematics and dynamics
of a rigid body. The objects Frame, Base, Link,
Inertia, and Wrench belong to the class Body.

The object Frame characterizes the local body
frame of the rigid body. It stores the kinematic
states of the body and is updated recursively from
the base to the terminal bodies of the system. The
kinematic states of the body include the position and
orientation, the linear and angular velocities, and the
linear and angular accelerations of the body. The
transmission of these kinematic states from one frame
to the next frame is through the objects like Link and
Joint.

A multibody system has an inertial reference frame.
The local body frame of each body in the multibody
system has been resolved in the inertial reference
frame, in order to enable the global dynamics assem-
bly of the system. The Base is reckoned as a special
type of the frame having a stationary kinematic state.
This implies that the coordinate frame associated
with the Base is regarded as the inertial reference
frame of the system. It is possible to induce motion
to the base or motherbody in the form of external
velocity and acceleration. This enables the simulation
of a gravity environment by providing an external
linear acceleration to the Base. Orbital motion of the
spacecraft can also be simulated by providing external
angular velocity to the Base.

In a complex multibody system each body can be
connected with one or more bodies. Hence the objects
must be designed so as to accommodate any such gen-
eral formulation. A body is separated into two parts
and is visualized as two distinguishable objects, viz.
Inward Link and Outward Link. As shown in figure
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5, the Outward Link of body i is connected to Inward
Links of bodies 7 + 1 and ¢ + 2, which characterizes the
fact that bodies i+1 and i+2 are both connected to
body i. The objects Inward Link and Outward Link
are designed to transfer kinematic states within a
body. The spatial transformation matrices derived,®'2
are computed in the objects Outward Link and Inward
Link, respectively, which are used for the formulation
of the Natural Orthogonal Complement matrix in the
System object.

Fig. 5 Abstraction of Inward and Outward Links

Inertia and Wrench are built for the dynamics of the
system. The dynamic equation of motion for any body
(motherbody or any connected appendage), in terms
of the extended velocity vector v;, is given by,!!

M;V; = ¢ + ¢ + @i (35)

where M; is the extended mass matrix of the body,
while ¢7, ¢F and ¢ are the wrenches due to the
non-inertial and relative motions of the body, the
external forces and moments, and the kinematic
constraints imposed by the links and joints connected
to the body, respectively.

The object Inertia computes the extended mass
matrix and its time derivative of any body attached
to the motherbody. The object Inertia (Body and
Wheel) computes the motherbody’s extended mass
matrix and its time derivative, and also the extended
mass matrix of the reaction wheels. The mother-
body’s extended mass matrix and its time derivative
are computed if the mass, mass moment of inertia,
and location of the center of mass of the motherbody

with respect to the local body coordinate frame are
supplied to the object. The extended mass matrix
of the reaction wheel is also computed once its mass
and mass moment of inertia are inputed to the object
Inertia (Body and Wheel).

The dynamic object Wrench computes the wrench
of any body connected to the motherbody. It com-
bines all the motion agents on the body and evaluates
the right hand side of equation (35). During the
global dynamics assembly of the system, another
term having dimension of wrench appears and it is
accounted for in the system wrench of the individual
body. This term appears due to the use of the
expression Ny = Vy—o, as derived in equation (33).
Therefore, the system wrench of the body which is
computed in this object is given by,

¢ = —Mivig_, + ¢ (36)

The noteworthy attributes of the object Wrench (Body
and Wheel) are:

1. Tt is feasible to place the reaction wheels in any
orientation with respect to the body coordinate
frame.

2. There is a capability to specify a constant nominal
spin rate of the reaction wheel.

3. One can specify the angular velocity of the reac-
tion wheel as any function of time.

4. Tt is possible to specify the angular velocity of the
wheel as a function of the body quaternion i.e.
the wheel velocity could be in the form of a P.I.D.
control law. Thus it is possible to specify the spin
rate of each wheel in the form,

wwheet = K1 qp + Ko /(lB dt + K34 (37)

where, K;, Ky and K3 are 1 x 4 control gain
vectors. The equations of motion of the spacecraft
with the reaction wheels have been formulated to
accommodate such a P.I.D. control law.

The objects in the class Body export the transfor-
mation matrix, as well as the inertia matrix and the
wrench vector to the system object.? They are used to
update the elements in the Inertia, Wrench, and Link
objects.

Joint

The bodies of a multibody system are connected to
each other via joints. The two fundamental joints are
the prismatic and revolute joints, which are developed
from the generic joint element. The joint objects
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have a maximum of six degrees of freedom. For each
joint, it is possible to provide external actuation that
could be in the form of joint forces or torques. The
joint objects export the transformation and Jacobian
matrices, which are used for the formulation of the
Natural Orthogonal Complement matrix in the object
System.

The translatory motion of a Prismatic Joint can be
expressed in one of three different coordinate systems
depending on the nature of the motion viz. rectangu-
lar, cylindrical, and spherical. The two sets of Euler
angles viz. 1 — 2 — 3 Euler angles and 3 — 1 — 3 Euler
angles are available to describe the rotational motion
of a Revolute Joint.> '3

Assembly

The process of assembling and solving the dynamic
equations of motion of the multibody system are done
in the classes System and Solver, respectively. The
class System contains an object System that assem-
bles the individual wrenches and inertia matrices of
each body and combines them to form the equations
of motion of the system. The equations of motion
are then multiplied by the Natural Orthogonal Com-
plement matrix in the System object. The Natural
Orthogonal Complement matrix is built in the object
System, by combining the spatial transformation ma-
trices from the Inward Link and Outward Link objects
and the spatial transformation and the local Jacobian
matrices from the Joint object, for each of the bodies.
Having gathered and computed the extended mass ma-
trices and wrenches from the bodies, as well as the said
Natural Orthogonal Complement matrix, the complete
dynamic equations of motion of the system are formu-
lated. The class Solver contains an object Solver that
numerically integrates non-linear differential equations
of motion of the system. The integrator is of Adams-
Moulton type.?

Each object is implemented as a class module with a
graphic icon in ROSE (Real-time Object-oriented Sim-
ulation Environment). The implementation in ROSE
provides several benefits such as, automated code gen-
eration, interactive execution control, and rapid model
development.? The actual modeling is achieved by the
interconnection of the pre-casted object modules in
an uncomplicated manner. Figure 6 depicts the in-
terconnection of various objects in order to model a
spacecraft mounted with three reaction wheels.

Simulations and Results

This section is concerned with the verification and
simulation conducted using the designed objects. In

i
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Fig. 6 ROSE model for a spacecraft with three
reaction wheels

order to verify the accuracy of the designed objects,
simulations were done using them and compared with
results obtained using standard procedure, which were
coded in MATLAB. So as to highlight the features and
the control aspect of the designed objects, simulations
for various examples have also been done.

The first set of simulations were done to verify the
validity of the designed objects. The methodology
used for coding the objects was that, initially objects
for rigid bodies were coded and then the procedures
were written for the dynamic coupling terms between
the motherbody and the reaction wheel. The exam-
ples considered were the R R manipulator, body with
two arms undergoing planar motion, and a spinning
satellite In all the three cases , the responses got from
MATLAB and ROSE are consistent.!?

The Cassini spacecraft was launched on October 15,
1997 and after an interplanetary cruise of more than
seven years, it will arrive at Saturn in February, 2005.
Slew maneuvers were done on the Cassini spacecraft,
using reaction wheels, on the seventy-fifth day of the
year 2000 i.e. March 15, 2000. In order to corrobo-
rate the accuracy of the designed objects, the reaction
wheels were given time histories, similar to the varia-
tion in spin rates of the reaction wheels located in the
Cassini spacecraft. Telemetry data were available for
the entire duration of the slews, at a frequency of once
every four seconds.'® The slew velocities of the Cassini
spacecraft obtained via telemetry are plotted in figure
7. The aim of this validation test was to replicate the
first slew maneuver about the Y-axis. The time histo-
ries that were given as inputs to the reaction wheels for
a period of 1400 seconds are shown in figure 8, which
are similar to the time histories of the reaction wheels
during the actual slew maneuver of the Cassini space-
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craft. As shown in figure 9, the spacecraft undergoes
an approximate slew of —2.7 x 1072 rad./sec. about
the Y-axis, which is the desired result. The angular
velocity of the spacecraft about the Y-axis (w,) fol-
lows the correct trend of rising to an approximately
constant slew rate about the Y-axis and then going
back to zero at the end of the slew maneuver. Dur-
ing the slew maneuver w, and w, are zero. There are
small differences between the actual slew velocity of
the Cassini spacecraft and the generated simulation
result due to the approximations made while prescrib-
ing the time histories to the reaction wheels.

Further simulations involving the reorientation and
sequential slew maneuver were conducted to highlight
the versatility of the designed objects, wherein the an-
gular velocity of the motherbody could be specified
and the reaction wheels would maintain that angular
velocity /slew velocity of the motherbody.!? In these
simulations, it was shown that by varying the spin rate
of the reaction wheels it was possible to reorient and
also slew the spacecraft about specific axes.

Day 75 Slew Data
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Fig. 7 Slew velocity of the Cassini spacecraft via
telemetry data

Since attitude control of the spacecraft or satellite
is of prime concern, reaction wheels are used as
attitude control devices. Reaction wheels are referred
to as momentum transfer devices. They compensate
for the change in angular momentum of the system,
when external torques are applied to the system. As
a result, it is possible to maintain a constant angular
momentum. The reaction wheels compensate for the
change in angular momentum by varying its spin
rate. In this section, the spin rate of the reaction
wheels have been considered to be functions of the
body quaternion of the motherbody. The objects
have been designed such that spin rate of the re-
action wheel can be in the form of a P.I.D. control law.

Clementine, the Deep Space Program Science Ex-
periment spacecraft, was launched in January 1994 to
map the surface of the moon.!” The attitude control
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Fig. 8 Time histories of the reaction wheels during
the slew maneuver

N8~<E xE

W, w, 0 [rad./sec.]

Xy Pz

-4

I I I I I I
0 200 400 600 800 1000 1200 1400
Time [sec.]

Fig. 9 Slew velocity of the Cassini spacecraft

system requirements and constraints led to the need
for small lightweight reaction wheels for the three-axis
precision control system. The total mass of the three
reaction wheels was 8.4 kg. The wheels were mounted
such that their axes were mutually orthogonal. In
the simulation presented here, the spacecraft was sub-
jected to small initial perturbation of 0.02 rad./sec.,
about all the three axes. The P.I. control law supplied
to the wheels is given in equation (38). Each element
of the 3 X 1 vector wypee; represents the spin rate of
one reaction wheel. It was possible to reduce the over-
shoot and settling time by applying this PI control law
to the reaction wheels.'?

Wwheel = —65€1 — 99 /th (38)

Attitude control of a spacecraft carrying two manip-
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ulators was also considered as an example.!? The joint
torque was applied to these appendages. A P.I.D. con-
trol law to the reaction wheel in order to maitain the
attitude of the spacecraft.

Conclusion

In this paper, three reaction wheels, each spinning
about a fixed axis and located in the spacecraft, are
considered for the attitude control and stabilization
of the motherbody. The development of objects
that can enable simulation of a spacecraft containing
reaction wheels has not been done prior to this
work. Hence, the essence of this research was to
develop a dynamics formalism which embraced the
object-oriented concepts and addressed the dynamic
simulation of a spacecraft with reaction wheels. This
involved the modeling, designing, and coding of
objects that would simulate the dynamic response
of a complex multibody space system, with the
motherbody containing reaction wheels.

The first step in this research work was to devise
a mathematical model for the system under consid-
eration. In order to frame the mathematical model
of the system, the underlying kinematic relationships
were first formulated. A variation of the Lagrangian
dynamics and the principle of Natural Orthogonal
Complement, in order to eliminate the kinematic con-
straints, were used to derive the dynamic equations
of motion of the spacecraft coupled with the reaction
wheels. Such a formulation technique has been proven
to be computationally more efficient for complex
multibody systems. The multibody system could be
in the form of a spacecraft with multiple appendages,
in an open chain configuration. The objects that
simulate the dynamic response of the motherbody
containing reaction wheels have been designed, so as
to be part of a standard multibody system software
package used in ROSE (Real-time Object-oriented
Software Environment).

In order to ascertain the functionality and precision
of the proposed objects, several validation tests were
conducted. These representative examples of rigid
body systems verified the definitiveness of the designe-
dobjects by comparing the simulated responses with
the results derived using standard procedure. Fur-
ther validation of the designed objects was done by
simulating a slew maneuver on the Cassini spacecraft,
in order to verify the accuracy of the coded objects.
The results obtained were similar to those available
from the actual spacecraft. In order to highlight the
adaptability and functionality of the coded objects,
the next set of simulations conducted considered the

motherbody containing a reaction wheel. It was shown
for a representative multibody space system, that the
motherbody’s attitude is better controlled by a P.I.D.
control law, applied to the reaction wheel, as opposed
to reaction wheels spinning at a constant high spin
rate.
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