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Abstract— The asymmetry of a bevel-tip needle results in
the needle naturally bending when it is inserted into soft
tissue. In this study we present a mechanics-based model
that calculates the deflection of the needle embedded in an
elastic medium. Microscopic observations for several needle-
gel interactions were used to characterize the interactions at
the bevel tip and along the needle shaft. The model design
was guided by microscopic observations of several needle-
gel interactions. The energy-based model formulation incor-
porates tissue-specific parameters such as rupture toughness,
nonlinear material elasticity, and interaction stiffness, and
needle geometric and material properties. Simulation results
follow similar trends (deflection and radius of curvature) to
those observed in macroscopic experimental studies of a robot-
driven needle interacting with different kinds of gels. These
results contribute to a mechanics-based model of robotic needle
steering, extending previous work on kinematic models.

I. INTRODUCTION

Percutaneous needle insertion is one of the most com-
mon minimally invasive clinical procedures. It is used for
diagnosis, localized therapeutic drug delivery, and tissue
sample removal from tumors deep within the body. For
effective medical diagnoses and treatments, the needle must
reach its intended target. However, tissue inhomogeneity and
anisotropy, organ deformation, anatomy obstructing needle
path, and physiological processes, such as respiration, flow
of fluids, and edema cause the needle to deviate from its
intended path. A possible method to mitigate needle targeting
errors is to use a needle that can be robotically steered inside
the body to reach the intended target.

Several groups have examined the use of robotically
steered flexible needles through tissue [1], [2], [3], [4],
[5], [6], [7]. Abolhassani et al. [8] provide a summary
of recent research being conducted in the area of robotic
needle insertion in soft tissue. Planning such procedures
requires an accurate model of the needle-tissue interaction. A
general survey of needle and tissue interaction models which
describes both physics- and non-physics-based interaction
models are provided in [9]. Further, experimental work has
identified forces (due to puncture, cutting, and friction) that
develop during needle insertion through tissue [10]. In [7],
a kinematic model specifically for bevel-tip needle steering
was presented whose parameters were fit using experimental
data. However, this model did not consider the interaction of
the needle with an elastic medium.
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Fig. 1. Schematic of a bevel-tip needle interacting with a soft elastic
medium. The two dimensional model incorporates tip forces generated by
rupture, tissue properties (toughness: GC , nonlinear elasticity: C10) and
needle properties (bevel angle: α and flexural rigidity: EI).

In this study, we present a two-dimensional model for a
bevel-tip needle embedded in an elastic medium, shown in
Fig. 1. The mechanics-based model is based on both micro-
scopic observations of the needle tip interacting with soft
gels and macroscopic observations of a robotically steered
needle inserted through various gels. The model accounts
for the needle’s geometric and material properties, and also
the medium’s nonlinear material properties. In addition to
capturing needle tip effects, our model attempts to provide a
physics-based understanding of the effect of the needle-tissue
interaction stiffness on the evolving shape of the needle.

II. OBSERVATIONS OF NEEDLE-TISSUE INTERACTIONS

In order to develop models for a needle embedded in
an elastic medium, we conducted micro- and macroscopic
experiments. Nitinol wires (Nitinol Devices and Compo-
nents, Fremont, CA, USA) of varying diameter were used as
flexible needles. Each needle had a bevel tip. A smooth and
sharp bevel was obtained by fixing the needles at an angle in
CrystalbondTM (Aremco Products, Inc., Valley Cottage, NY,
USA) mounting adhesive, which is a thermo-plastic, and then
polishing the edges. Plastisol (M-F Manufacturing Co., Inc.,
Ft. Worth, TX, USA) gels were used in the experiments; the
ratio of plastic and softener was varied to change the stiffness
of the gel.

A. Microscopic Observations

Microscopic observations of needle and elastic medium
interactions have been reported previously (e.g., [11]), but
most of the published literature focuses on observing the
damage to the gel or tissue surface after the needle has
punctured the medium. Sections of the gel have also been
observed, but again only after the needle has penetrated the
medium. In order to observe the interaction within the gel as
the needle is embedded in the medium, we used a Zeiss LSM
510 Meta laser scanning confocal microscope. The needle
and gel were visualized with differential interference contrast
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Fig. 2. Example DIC and epifluorescent images taken using a confocal microscope where the first row are in the axial configuration, while the second
row pertain to the perpendicular configuration. (a) Ø 0.38 mm, α = 26.4◦ (b) Ø 0.71 mm, α = 28.2◦. Rupture of the gel is observed close to bevel edge
of the needle, while the gel compresses against the needle shaft and the bevel face of the needle tip.

(DIC), epifluoresence, and reflected light using the 488 nm
line of an argon/ion laser and 0.3 NA Plan-Neofluar 10x
objective lenses (Carl Zeiss Inc., Maple Grove, MN, USA)
with pin hole diameter set at 9.33 Airy units.

The ratio of plastic to softener for Plastisol gel was 4:1.
The Plastisol gel (400 cm3) was doped with 20 µl of
10 mg/ml rhodamine green solution (Invitrogen, Carlsbad,
CA, USA). This dye was added to facilitate epifluorescent
confocal imaging of Plastisol gel. Since a very small amount
of dye was used, we assume that it does not significantly
change the material properties of the gel. Cubes of 0.5 cm3

were prepared and needles were manually inserted into the
gel and viewed under the microscope. Observations were
made in two configurations (axial and perpendicular), for
needles of 4 different diameters and bevel angles. In the axial
configuration, the laser light was along the needle axis, while
during the perpendicular observation the needle-gel sample
was configured such that the laser light was perpendicular to
the needle axis. DIC and epifluorescent images were obtained
for each configuration, two sets are shown in Fig. 2.

For all the needles, rupture or tearing is observed at
the bevel edge, while compression is observed along the
needle shaft. Rupture is observed in the DIC images while
compression is seen in the epifluorescent images. In the ax-
ial configuration, the needle cross-section appears crescent-
shaped because of the bevel edge. In the perpendicular
configuration, compression due to the needle tip pushing
against the gel is observed, and also slight rupture is seen at
the needle tip in the DIC images. Unlike brittle materials,
crack propagation (classical Mode-I fracture) is not seen
during the interaction of sharp needles and soft gels.

B. Macroscopic Observations

We used the setup described in [12] to measure the radius
of curvature for three needles inserted into two phantom
tissues. The device can rotate and insert a needle into
phantom tissues, and measure the forces and torques at the
base of the needle. Nitinol wires with diameters of 0.40 mm
(α = 38.0◦), 0.71 mm (α = 38.7◦), and 0.90 mm (α = 30.9◦)
were used. The two transparent Plastisol tissues have a plastic
to softener ratio of 4:1 (gel #1) and 32:9 (gel #2). Tracking
was performed at 7.5 Hz by triangulating images from a pair
of XCD-X710 firewire cameras (Sony Corporation, Tokyo,
Japan) mounted above the phantom tissue.

For each experiment, we inserted the needle 20 cm into the
gel at a constant velocity of 0.25 cm/sec. To determine the
radius of curvature throughout the insertion, we segmented
the needle tip position every 5 cm and calculated the radius of
curvature over three regions. The first 5 cm were not used in
the radius of curvature calculation because the pre-puncture
deformation, the interaction of the support sheath, and the gel
surface contaminate the initial needle deflection data. Fig. 3
shows the needle tip positions for three needles inserted into
both materials. The figures only show planar data since the
depth direction only varied by a maximum of 15 mm. The
radius of curvature for each insertion was determined using
a least squares three-dimensional fitting algorithm. Table I
shows the radii calculated over each section of the tissue.
The radius of curvature varies by an average of 10.7% for
these six insertions with most of this deviation found in
the Ø 0.90 mm needle. The other two needles only have
an average deviation of 5.7%. Given this low variation,
we assume a constant radius of curvature throughout the
insertion, which corresponds to the kinematic model of [7].
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Fig. 3. Needle tip position: During each 20 cm insertion, the tip position
is measured. The radius of curvature remains relatively constant throughout
the insertion. (a) Gel one (stiffest). (b) Gel two (less stiff).

III. MODELS FOR NEEDLE-TISSUE INTERACTION

We now present mechanics-based models that incorporate
and capture the observations from micro- and macroscopic
experiments described in the previous section. We derive
expressions that describe the deflection of a bevel-tip needle
embedded in an elastic medium. The analysis assumes a two-
dimensional model with the needle undergoing a single bend.
The derived expression incorporates the needle material and
geometric properties, as well as the local and global elastic
properties of the medium. Further, given the deflection, the
radius of curvature of the needle can be readily evaluated.
In the derivation presented below, the needle trajectory is
discretized into a series of steps, i, where the length of the
needle is li and the deflection is yi. Fig. 4 depicts the load
distribution of a needle of length li surrounded by an elastic
medium, where Pinput is the applied needle insertion force, P
and Q are the tip loads at the bevel edge, and KT is defined

TABLE I
RADIUS OF CURVATURE FOR NEEDLE PATH SEGMENTS

gel, Ø(mm) 5-10cm 10-15cm 5-20cm mean ρ max %
(mm) (mm) (mm) (mm) deviation

#1, 0.40 165.1 161.0 168.5 179.4 6.5%
#1, 0.71 201.0 176.8 191.5 196.6 5.9%
#1, 0.90 299.4 191.3 259.9 289.1 15.2%
#2, 0.40 278.1 264.2 272.8 276.0 2.0%
#2, 0.71 368.9 314.8 337.0 327.3 9.5%
#2, 0.90 541.7 340.2 428.7 404.1 26.4%

as the stiffness per unit length of the elastic medium. The
functional form for the deflection of the needle in an elastic
medium is initially assumed and the Rayleigh-Ritz approach
is used to evaluate the coefficients of the deflection equation.
The Rayleigh-Ritz method is a variational method in which
the minimum of a potential defined by the sum of the total
energy and work done by the system are calculated. The
system potential, Λ, of a needle, li, interacting with an elastic
medium, is given by

Λ = (NE +SE)︸ ︷︷ ︸
energy

+(−WQ−WP−WR)︸ ︷︷ ︸
work

+ Pinputli︸ ︷︷ ︸
inputwork

, (1)

where NE and SE are the energies associated with needle
bending and needle-tissue interaction, respectively, and WQ
and WP are the work due to transverse and axial bevel tip
loads, respectively, and WR is the work done to rupture the
tissue. We now derive explicit expressions for each of the
terms in (1).

A. Needle Bending

NE is the sum of energy due to pure needle bending, UB,
and bending due to axial load, UP, i.e. NE = UB +UP. The
expression for curvature is

1
ρ

=

 d2yi/dx2(
1+(dyi/dx)2

)3/2

≈ d2yi

dx2 . (2)

Fig. 4. Distributed load acting on a needle shaft as it interacts with an
elastic medium. Inset: Forces acting on the bevel tip, where P and Q are
the resultant forces along the bevel edge. KT is the stiffness of the elastic
medium per unit length, while Pinput is the insertion force.
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Fig. 5. Needle of segment dli and with needle tip loads P and Q.

Thus, for needle segments of length li, NE is reported in [13]
as

UB =
EI
2

∫ li

0

1
ρ2 dx =

EI
2

∫ li

0

(
d2yi

dx2

)2

dx. (3)

The bending due to axial load, P, is evaluated by considering
a segment, dli (Fig. 5), along the needle. The axial strain
due to P is dli

dx . Thus, E dli
dx = P

A , where A is the needle cross-
sectional area. Hence,

UP =
1
2

∫ li

0
Pds =

1
2AE

∫ li

0
P2 dx. (4)

Substituting (3) and (4) into the expression for NE gives

NE =
EI
2

∫ li

0

(
d2yi

dx2

)2

dx︸ ︷︷ ︸
UB

+
1

2AE

∫ li

0
P2 dx︸ ︷︷ ︸

UP

. (5)

B. Needle-Tissue Interaction

In (1), SE is a combination of energy stored in the system
due to compression of the elastic medium at the needle tip,
UC, and interaction of the elastic medium along the needle
shaft, UT . Thus,

SE = UC +UT . (6)

The compression of the gel due to the bevel-tip needle was
observed both at the needle tip and along the needle shaft in
microscopic images, as described in Section II-A. Pressure
is applied by the needle and ∆V is the resulting change in
volume of the elastic medium. Thus, UC is

UC = Pressure×∆V = K
(

∆V
V

)2

, (7)

where K is the bulk modulus of the elastic medium and the
change in volume of the medium is ∆V = Ali. For linear
elastic materials K = ET

3(1−2νT ) , where ET and νT are the
Young’s Modulus and Poisson’s ratio of the medium, respec-
tively. In order to express UC in terms of hyperelastic material
parameters, consider the Cauchy stress, σ22 = 2C10

λ

(
λ 3−1

)
,

for a body under uniaxial compression, as derived in [14].
Evaluating the slope, ∂σ22

∂λ
, for unit uniaxial stretch ratio,

λ = 1, results in ET = 6C10. Thus,

UC =
2C10 (Ali)

2

V (1−2νT )
. (8)

step i step i+1

y
i

yci

yci+1

y
i+1

step i+2

Fig. 6. Schematic for calculation of UT , energy due to the interaction
between the needle shaft and elastic medium.

As mentioned earlier, the needle trajectory is discretized
into a series of steps and UT is calculated at each step. In the
absence of an elastic medium surrounding the needle, no tip
forces would be generated and the needle would not bend.
This corresponds to the stress-free path of the needle and
the deflection in this case is denoted by yci . The key idea
in the calculation of UT is that the elastic medium interacts
with the needle shaft only when the needle deviates from
the rupture trajectory it has previously established. Fig. 6
provides a sketch of yci and yi, and the shaded area represents
UT at each step. Thus, for i = 1 and a needle segment of
length l1,

UT =
1
2

∫ l1

0
KT (y1− yc1)

2 dx, (9)

where KT is the stiffness of the elastic medium per unit
length and is calculated from the force-displacement or
stress-strain curve of a tested sample (height: h, width: w,
and depth: d) of the elastic medium. For an elastic medium
KT = ET

d
h = 6C10

d
h . yc1 is a function of the bevel angle, α ,

and for simplicity is assumed to be

yc1 = 0. (10)

Similarly for the needle segment of length, l2, UT is calcu-
lated as the sum of energies for needle segments 0 to l1 and
l1 to l2

UT =
1
2

∫ l1

0
KT (y2− yc1)

2 dx+
1
2

∫ l2

l1
KT (y2− yc2)

2 dx, (11)

where
yc2 = y1(l1) (12)

Thus, the general expression for UT for a needle of length,
ln, is

UT =
n

∑
i=1

1
2

∫ li

0
KT (yn− yci)

2 dx, (13)

where
yci = yi−1(li−1). (14)

The necessity of treating UT step-wise can be understood
through closer inspection of (13). The needle-tissue interac-
tion energy is a function of the square of the deformation
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in the medium itself. If the needle was embedded in the
tissue straight and then bent by tip loads, the deflection
in the tissue would be yi itself. However, since the needle
tears a path through the tissue, only the difference between
the ruptured path and the current needle trajectory, i.e.
yi− yci interacts with the tissue. As insertion continues, the
needle trajectory varies from the original ruptured path it has
taken, thus engaging the tissue. Prediction of this process
is handled step-wise; the previous path of the needle and
current predicted path of the needle are known for every
ith step. yci is a linear discretization of the ruptured path
employed to determine the tissue deformation. Note, the path
predicted by yci converges for smaller step sizes.

C. Work Done

In (1) the work done due to the transverse tip load, Q is

WQ = Qy(li) . (15)

The work done by axial tip load, P, is

WP =
∫ li

0
Pdu, (16)

where du = dli− dx, shortening of the needle, as shown in
Fig. 5. Using the series expansion it is possible to express
du in terms of dyi and dx

du = dli−dx =
√

(dx)2 +(dyi)2−dx≈ 1
2

(
dyi

dx

)2

dx. (17)

Substituting (17) into (16) results in

WP =
∫ li

0

P
2

(
dyi

dx

)2

dx. (18)

The work done to rupture the elastic medium, WR, is a
function of the effective rupture toughness, GC, and the
amount of tear or rupture, a. GC is defined as the work done
per unit needle cross-section area to rupture and cut through
tissue [14]. Thus,

WR = aGCli. (19)

IV. RESULTS

We now present the needle deflection simulation results
obtained using the model developed in the previous section.
As mentioned earlier, in the Rayleigh-Ritz method, the
functional form of the needle deflection is initially assumed.
We chose

yi = a0 +a1x+a2x2 +a3x3, (20)

where yi satisfies the boundary conditions yi (0) = 0 and
dyi(0)

dx = 0. Using the Rayleigh-Ritz method, the coefficients
a0, a1, a2, and a3 are evaluated by minimizing the system

TABLE II
SIMULATION INPUT PARAMETERS

Needle Ø (mm) I (m4) A (mm2) E (GPa) a (mm)
1.0 0.05 0.79 50.0 0.05

Tissue KT (kN/m) ν C10 (kPa) GC (N/m) V (m3)
25.0 0.45 4.0 20.0 0.0045

Fig. 7. Simulation result for needle deflection versus insertion.

potential, Λ (1). For each step of needle length segment,
li, NE , SE , WQ, WP, and WR are calculated using (5), (6),
(15), (18), and (19), respectively. The deflection equation
coefficients, a j (for j = 0,1,2,3), are calculated by setting

∂Λ

∂a j
= 0. (21)

The system parameters used for the simulation study are
provided in Table II and are based on mean values calculated
in [14].

Fig. 7 depicts the deflection of a needle of length 20 cm
embedded in an elastic medium with Pinput, P, and Q set to
2 N, 0.03 N, and 0.3 N, respectively. Fig. 7 provides the
deflection of needles for two additional cases with the same
tip and insertion forces. In the first case, needle deflection is
calculated in the absence of an elastic medium, i.e. UT = 0.
In the second case, needle deflection is computed when there
is an elastic medium surrounding the needle but no rupture
trajectory, i.e. UT = 1

2
∫ li

0 KT y2
i dx. As seen, the deflection in

the absence of a medium is greater than in the presence of
the medium, while the absence of a rupture trajectory results
in almost no deflection of the needle. For the approximate
material and needle properties, the final tip deflection of the
needle was iteratively calculated to be 9.2 cms, which is in
the same range as the observed deflection given in Fig. 3.
For this simulation case, the radius of curvature was also
observed to be almost constant at 140 mm. The radius of
curvature converges after approximately 18 iteration steps.

Fig. 8. Contribution of various components of the system energy.
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Fig. 9. Variation of the radius of curvature for changes in needle radius
and tissue stiffness.

During the initial needle insertion phase, the needle-tissue
interaction stiffness does not play a significant role in the
needle bending process. But as the needle is further engaged
in the elastic medium the importance of the needle-tissue
interaction stiffness increases. Fig. 8 shows the contribution
of the various energies in the system for a 20 cm insertion.
As seen, UT dominates the total energy contribution to the
system. UT and UB contain 76.4% and 23.5% of total stored
strain energy of the system. Simulation studies were also
performed where the needle radius and tissue stiffness per
unit length, KT , were varied, and the changes in the radius of
curvature, ρ , were observed. As seen in Fig. 9, for a medium
of fixed elasticity, as the radius of the needle increases, the
radius of curvature also increases. The numbers for the radius
of curvature observed in the simulation studies are in the
same range as those seen in the experimental studies given
in Table I, but clearly further refinement of material and
geometric parameters is needed.

V. CONCLUSIONS

We developed a mechanics-based model to determine
the deflection of a robotically steered needle interacting
with a soft elastic medium. The model was influenced by
observations made from microscopic images of the needle-
gel interactions. The simulation results concur with the trend
observed in macroscopic observations of a needle inserted
into a gel. The results indicated that the energy associated
with the needle-tissue interaction stiffness dominates the total
potential of the system, and energy due to compression and
work done due to rupture and tip loads are less significant.

Building upon our previous work [14], this model accounts
for the compression and tear observed in the microscopic im-
ages. The energy-based formulation used physically relevant
tissue and needle properties, and computes the deflection of
the needle by discretizing the needle length into segments.
The simulation results for tip deflection are in the same
regime as those observed from macroscopic experimental
observations of needle insertion. The simulation results for
the radius of curvature also converge to a constant value. The
method presented could be applied in general to a needle
interacting with an elastic medium and are not specific to
bevel-tip needles.

Preliminary validation work presented in this study
showed that the model and experimental data followed
similar trends for needle deflection and constant radius of
curvature. The variations in experimental and simulation
results could be attributed to: (1) gel properties (both elas-
ticity and toughness) that were not measured accurately, (2)
approximate value of the needle insertion force that was
provided as input into the simulation model, and (3) medium-
specific bevel tip loads that provided as input to the model.
Thus, immediate extension to this work includes detailed
validation, which would cover obtaining tissue- and needle-
specific material properties, and comparing the results of our
model to experimental studies.
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