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Abstract— Bevel-tipped flexible needles naturally bend when
inserted into soft tissue. Steering such needles along curved
paths allows one to avoid anatomical obstacles and reach
locations inside the human body which are unreachable with
rigid needles. In this study, a mechanics-based model is pre-
sented which predicts needle deflection for a needle undergoing
multiple bends during insertion into soft tissue. The model is
based on a Rayleigh-Ritz formulation, and inputs to the model
are a force at the needle tip and a distributed load which
acts along the needle shaft. Experiments are used to evaluate
the distributed load, and needle deflection is then predicted
using the model. The results of the model are compared with a
kinematics-based model. Maximum errors in final tip deflection
are found to be 0.5 mm and 0.6 mm for the mechanics-based
and kinematics-based model, respectively. Though both models
are found to be comparable, the mechanics-based model can
account for deflection when the needle radius of curvature is
not constant (e.g., biological tissue).

I. INTRODUCTION

Percutaneous needle insertion is one of the most common
minimally invasive surgical procedures. It is often used to
locally deliver drugs, perform biopsies or place radioactive
seeds at specific locations within organs during brachyther-
apy. A problem with these procedures is that the intended
target cannot always be reached by a straight path due
to anatomical obstacles (e.g., blood vessels, nerves, bones)
between the needle insertion point and the target. Using
thin, flexible needles with asymmetric tips, instead of the
traditional rigid needles, allows the needle to bend during
insertion and steer around obstacles using curved paths. The
possibilities of minimally invasive surgical procedures are
expanded by using flexible needles, since it allows to reach
locations which are not reachable with rigid needles.

Significant work on steering needles through soft tissue
has been done [1], [2]. In these studies needle steering
was done by maneuvring the needle base outside the tissue.
This causes the soft tissue to deform and enables to place
the needle tip at a desired location. Needle steering in
the current work is based on the principle that a flexible
needle with an asymmetric (bevel) tip naturally bends when
inserted into soft tissue due to an asymmetric distribution
of forces at the needle tip. By rotating the needle during
insertion, the direction of bending is changed and this allows
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Fig. 1. A flexible needle with a bevel tip can be steered through soft tissue
by performing 180◦ rotations during insertion. In this sketch, a flexible
needle with bevel angle (α) is steered around an obstacle 1©, towards a
target 2© by performing a rotation at 3©. Models which predict the needle
path are required for needle steering. Note, the force distribution at the bevel
tip which causes needle deflection.

steering of the needle (Fig. 1). A number of research groups
have investigated needle steering by using needles with an
asymmetric (bevel) tip [3]–[10]. To be able to accurately
steer such a needle around obstacles and towards a target,
knowledge about needle deflection is required.

In this paper, a mechanics-based model is presented which
predicts needle deflection for a needle with multiple bends.
The model builds upon work presented by the authors in [11].
The salient developments in the current work are using
a combination of tip force, distributed load and a series
of springs to model needle-tissue interaction. This enables
predicting needle deflection for multiple bends, which could
not be done with the previous model. To the author’s knowl-
edge, this is the first attempt of a mechanics-based model
for predicting deflection for a needle undergoing multiple
bends. Such a model is required for steering around obstacles
towards a target. Hence, this work contributes to research
into robotically steering of flexible needles with asymmetric
(bevel) tips.

Experimental deflection data is used to evaluate the dis-
tributed load along the needle shaft. The model is validated
by performing a series of experiments in which the experi-
mental needle deflection is compared with predicted needle
deflection. The kinematics-based bicycle model, presented by
Webster et al. [4], is also implemented and the results from
this model are compared with the mechanics-based model.

The paper is organized as follows: Section II presents
related work in the area of flexible needle insertion. Sec-
tion III describes the mechanics-based model. In Section IV,
the results of needle insertion experiments are presented
and compared to the predicted needle deflection. The paper
concludes in Section V and directions for future work are
provided.

II. RELATED WORK

Pioneering work on steering needles through soft tissue
has been done by DiMaio and Salcudean [1]. They presented
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Fig. 2. When a needle with an asymmetric (bevel) tip is inserted into a
soft tissue it interacts with the surrounding tissue. This is represented by
forces acting on the needle: The cutting effect is modeled by an effective
tip force normal to the bevel face (Ft), friction between needle shaft and
tissue is represented by a friction force (Ff ) along the length of the needle.
Furthermore, as the needle bends it will experience resistance from the
tissue, this is modeled by a distributed load

(
w(x)

)
. The insertion force is

shown by Fb.

a needle Jacobian and maneuvred the needle base outside the
tissue to position the needle tip inside the tissue. Glozman
and Shoham [2] also used base maneuvring to steer the
needle. They presented a virtual springs model to simulate
the interaction between needle and soft tissue.

When a needle is inserted into a soft tissue, it interacts
with the surrounding tissue and this causes forces which act
on the needle (Fig. 2). Research on the modeling of these
forces during insertion into a soft tissue has been done by
a number of groups [12]–[15]. These studies consider the
total insertion force at the needle base (Fb), after the tip has
punctured the tissue, to be a combination of friction along
the needle shaft (Ff ) and cutting at the needle tip (Ft).

Fb = Ff + Ft. (1)

A needle with an asymmetric tip has an uneven distribution
of forces at the tip, which causes the needle to deflect from a
straight path. Okamura et al. [15] found that needles with a
bevel tip result in the largest amount of deflection compared
to needles with a triangular pyramid tip or conical tip.

Both DiMaio and Salcudean, and Glozman and Shoham
did not consider needle steering using the natural bending
of a flexible needle with an asymmetric tip. A number
of research groups investigated models which can predict
needle deflection for flexible needles with a bevel tip [4],
[11], [16]–[18]. Webster et al. [4] presented a kinematics-
based approach to model needle deflection. They used the
nonholonomic kinematics of a bicycle to describe the needle
path (Fig. 3). Their model predicted needle deflection for a
single needle rotation experimental case, with a root mean
square error of 1.3 mm. The disadvantage of this kinematics-
based model is that it cannot account for needle-tissue inter-
action. Therefore, a mechanics-based model which includes
these interactions is preferred over a purely kinematics-based
approach. Work on mechanics-based modeling of needle
deflection has already been done by a number of research
groups. Katoaka et al. [16] presented a model which relates
forces to needle deflection. Abolhassani et al. [17] used tip
force and a triangular load function to model needle deflec-
tion. Misra et al. [18] proposed an energy-based approach
to approximate deflected needle shape. Tissue material prop-
erties, and needle geometrical and material properties were
considered. The Rayleigh-Ritz method was used to evaluate
the deflected needle shape. Roesthuis et al. [11] presented a
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Fig. 3. Kinematics-based bicycle model: The needle tip (t) is placed in
between the front wheel (wf ) and the rear wheel (wr) of a bicycle. A fixed
steering angle (ψ) results in a needle path with constant radius (rt). Needle
rotation is done by changing the sign of the steering angle: In this case from
−ψ to ψ. The circles describing the needle path before and after rotation
are shown in green and red, respectively [4].

needle deflection model using the Rayleigh-Ritz method, in
which needle tip force was used as input. A series of springs
along the needle shaft were used to simulate needle-tissue
interaction. However, it was found that there were limits to
use the model for multiple bends. In this study the previous
model is modified, instead of springs, a distributed load is
proposed to model the needle-tissue interaction due to needle
bending. This allows extension of the model for multiple
bends. None of the prior research using a mechanics-based
approach enables predicting needle deflection for a needle
undergoing multiple bends. The model is validated with
experiments and is compared to the kinematics-based bicycle
model.

III. MECHANICS-BASED MODEL

This section presents a mechanics-based model that pre-
dicts needle deflection for a bevel-tipped needle during
insertion into soft tissue. The needle is considered to bend
in-plane (two-dimensional).

As previously discussed in Section II, when a needle is
inserted into a soft tissue it interacts with the surrounding
tissue, resulting in interaction forces. The force resulting
from cutting of the tissue at the needle tip is modeled
by an effective tip force (Ft) perpendicular to the bevel
face (Fig. 2). As the needle bends during insertion, it will
experience a resistive force from the tissue. This force is
modeled by a resultant distributed load

(
w(x)

)
which acts

along the inserted part of the needle. In Fig. 2, this distributed
load is shown as acting in the positive y-direction, but it
can also act in the negative y-direction. The combination of
tip force and distributed load determine the deflected needle
shape. The needle is modeled as a cantilever beam, clamped
at the base (xb) in a holder outside the tissue (Fig. 4). The
needle is stiff in the axial direction, therefore shortening of
the needle is not considered.

The deflected needle shape
(
v(x)

)
is evaluated using the

Rayleigh-Ritz method. This is a variational method in which
equilibrium of the system is established using the principle of
minimum potential energy [19]. For any mechanical system,
the system potential is expressed as

Π = U −W , (2)
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where U represents the system’s potential energy, and W
is the work done on the system by external forces. The
Rayleigh-Ritz method requires an assumed displacement
(shape) function to determine the deflected needle shape.
In order to evaluate complex needle shapes (i.e. multiple
bends), the needle is divided (Fig. 4(a)) into a number
of elements (n), each described by their own shape func-
tion (vi(x))

v(x) =


vi(x), xi−1 ≤ x ≤ xi
vi+1(x), xi ≤ x ≤ xi+1

...
...

vn(x), xn−1 ≤ x ≤ xn

. (3)

Each element is described by a cubic shape function

vi(x) = a0,i + a1,ix+ a2,ix
2 + a3,ix

3, (4)

where a0,i . . . a3,i are the shape functions’ coefficients of the
i-th element. For the first needle element (i = 1), xi−1 equals
xb, and for the last element (i = n), xi equals xt. Each of
the shape functions (3) has to satisfy the geometric boundary
conditions of the system. Since the needle is fixed at the
base (xb), the following boundary conditions are applied

v1(xb) = 0 and θ1(xb) =
dv1
dx
|x=xb

= 0, (5)

meaning zero deflection and zero needle slope (θ) at the
needle base. Furthermore, the shape functions have to satisfy
continuity conditions, meaning continuous deflection and
needle slope at the boundaries of the elements

vi(xi) = vi+1(xi) and θi(xi) = θi+1(xi). (6)

Since only transversal needle deflection is considered,
the transversal component of the tip force (Ft,y) is re-
quired (Fig. 4). The transversal tip force is related to tip
force by bevel angle (α) and needle tip slope (θt)

Ft,y = Ft cos (α+ θt). (7)

When the needle is not rotated during insertion, the needle
has a single bend shape (Fig. 4(a)). The system potential for
this case is written as

Π = Ub︸︷︷︸
U

− (Wc +Wd)︸ ︷︷ ︸
W

, (8)

where Ub is the strain energy associated with transversal
needle bending, Wc is the work done by transversal tip
force and Wd is the work done by the distributed load.
Using Euler-Bernoulli beam theory [20], the strain energy
for transversal beam bending (Ub) is calculated using

Ub =
EI

2

∫ xt

xb

(
d2v(x)

dx2

)2

dx, (9)

where E (Pa) and I (m4) are the Young’s modulus and
second moment of inertia of the needle, respectively. The
work done by transversal tip force (Ft,y) is given by

Wc = Ft,yv(xt), (10)

v (x)i v (x)nv (x)i+1

x=i xb
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Fig. 4. Mechanics-based model: The needle is modeled as a cantilever
beam and divided into n elements, each described by their own shape
function

(
vi(x)

)
. (a) In the case of a single bend needle shape, the needle

deflects due to a combination of needle tip force
(
Ft,y

)
and distributed

load (w(x)). (b) Needle rotation is performed at xr , causing the tip force
to change direction. This results in the needle to deflect in the opposite
direction. The double bend needle shape is modeled by fixing the part of
the needle before rotation (x0 ≤ x ≤ xr) with a series of springs.

where v(xt) is the deflection at the needle tip. The work
done by the distributed load (w(x)) is given by

Wd =

∫ xt

x0

(w(x)v(x)) dx. (11)

When the needle is rotated during insertion, the orientation
of the bevel tip changes and causes the needle to bend in the
opposite direction. A single needle rotation results in the
needle having a double bend shape (Fig. 4(b)). This double
bend needle shape is modeled by fixing the part of the needle
before rotation (x0 ≤ x ≤ xr) with a series of springs.
This means that this part of the needle (x0 ≤ x ≤ xr)
is resting on an elastic foundation. An elastic foundation
can be approximated by a series of springs if the spacing
(∆l) between the springs is sufficiently small [21]. The
stiffness of the elastic foundation per unit length is given
by K0 (N/mm2). This stiffness depends on tissue elasticity,
and needle and tissue geometric properties. The stiffness of
the foundation (KT ) for a rotation at xr is calculated by

KT = K0 (xr − x0) . (12)

For a total number of m springs, the individual spring
stiffness (Ks) is calculated as

Ks =
KT

m
. (13)

Due to the elastic foundation, an additional term (Us) needs
to be included in the system potential (8)

Π = (Ub + Us)︸ ︷︷ ︸
U

− (Wc +Wd)︸ ︷︷ ︸
W

, (14)

where Us represents the potential energy stored in the springs

Us =

m∑
k=1

1

2
Ksv(xk)2, (15)
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Fig. 5. Deflection for single bend and double bend experiments. Five
insertions are performed for each experiment. The errorbars represent the
standard deviation. Average final tip deflection is -41.1 mm (σ = 1.1 mm)
and -2.4 mm (σ = 0.1 mm) for single bend and double bend, respectively.

where v(xk) is the deflection of the k-th spring with respect
to the bent shape as shown in Fig. 4(b).

The assumed shape functions defined in (3) are substituted
in the expressions for the energy and work terms in (9), (10),
(11) and (15). This results in the system potential being a
function of the coefficients defining the shape functions

Π = f(a0,i, a1,i, a2,i, a3,i). (16)

The equilibrium of the system is found by taking the partial
derivative of the system potential for each of the coefficients

∂Π

∂aj,i
= 0, (17)

for j = 0, 1, 2, 3 and i = 1 . . . n. The coefficients aj,i
are calculated by solving the system of equations in (17).
Substituting the coefficients back into (4) then gives the
deflected needle shape. Extension of the model to multiple
bends is possible by fixing the needle with a series of
springs after each rotation and applying the appropriate
distributed load.

IV. EXPERIMENTAL RESULTS

This section presents the results of needle insertion ex-
periments. First, experiments are performed to evaluate the
distributed load (w(x)) for the needle having a single bend
and double bend shape. With the distributed loads known,
the mechanics-based model is then used to predict needle
deflection in experiments for different multiple bend cases.
Needle deflection is also predicted using the kinematics-
based bicycle model, and these results are compared with
the mechanics-based model.

A. Materials and Methods

In the experiments, gelatine is used a soft-tissue simulant.
Gelatine phantoms are made by mixing 14.9% gelatine
powder with 85.1% water. Tissue elasticity was determined
using an Anton Paar Physica MCR501 (Anton Paar GmbH,
Graz, Austria) and is found to be 35 kPa. This value is
within the range that is found in a human breast [22]. Needle
insertions are performed using a Nitinol needle (E = 75 GPa)
with a 30◦ bevel angle (α) and a diameter of φ 0.8 mm.
A two degree of freedom (DOF) needle insertion device is
used to insert the needles into the gelatine phantoms [11].
The experimental setup allows translation of the needle along

and rotation about the needle’s longitudinal axis. The needle
is inserted at a velocity of 10 mm/s. Experiments have shown
that varying insertion velocity between 5 mm/s and 25 mm/s
only results in a small change in needle deflection [23].
Each insertion is done at a new location in the phantom
to avoid influence of a previous insertion. Videos of the
experiments are recorded using a Sony XCD-SX90 FireWire
camera (Sony Corporation, Tokyo, Japan) mounted 450 mm
above the phantom. After the insertion, a corner detection
algorithm is used to detect the needle tip [11].

B. Model Fitting

The mechanics-based model requires transversal tip
force (Ft,y) and distributed load

(
w(x)

)
as inputs. Measuring

tip force directly during insertion is not possible since the
insertion force (1) is a combination of tip force and friction
force. In [11], we have already shown a method of estimating
the tip force by determining the needle friction force. We
found that the tip force for a φ 1.0 mm diameter needle
was 0.40 N. Moreover, it was observed that tip force was
almost constant during insertion. Therefore, the effect of
changing needle slope on the tip force (7) is neglected here
and a constant tip force is used. Misra et al. [18] showed that
the magnitude of the tip force scales proportionally with the
bevel surface area. Therefore, it is assumed that the tip force
for a φ 0.8 mm needle is 0.25 N ( 0.8

2

1.02 × 0.40).
The distributed load is evaluated by fitting the model to ex-

perimental deflection data. This fitting is done by minimizing
the error (ε) between simulated needle deflection

(
vsim(x)

)
)

and experimental needle deflection
(
vexp(x)

)
ε = ε1 + ε2, (18)

where ε1 is the difference in deflection along the needle shaft

ε1 =
1

xt − x0

∫ xt

x0

(vexp(x)− vsim(x))2 dx, (19)

and ε2 is the difference in deflection at the needle tip

ε2 = (vexp(xt)− vsim(xt))
2. (20)

Since the profile of the distributed load (w(x)) is unknown,
several load profiles are evaluated (e.g., constant, linear and
quadratic loads). It is found that a cubic load profile gives
the best fit with the experimental deflection

w(x) = b0 + b1x+ b2x
2 + b3x

3. (21)

The error (18) is minimized to evaluate the coeffi-
cients (b0, . . . , b3). Both single bend and double bend ex-
periments (Fig. 5) are performed to evaluate the distributed
load. In both experiments, the Nitinol needle is inserted a
total distance of 140 mm. For the double bend experiment,
needle rotation is performed at an insertion distance of
40 mm. Variation in deflection between insertions is most
likely caused by differences in initial needle orientation.

In order to simulate the double bend needle shape, the
stiffness of the elastic foundation per unit length (K0)
needs to be known. For the needle-tissue combination used
here, K0 = 0.15 N/mm2 gives the best fit to experimental
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Fig. 6. Comparing predicted needle deflection between the mechanics-
based model ((a),(c)) and the kinematics-based bicycle model ((b),(d)) for
experimental needle rotation at 60 mm ((a),(b)) and 69 mm ((c),(d)). Five
insertions are done for each experiment.

deflection. The total number of elements (n) in the model
in chosen to be 3 and 5 for the single bend and double
bend experiments, respectively. Choosing a larger number
of elements did not influence the needle shape.

The predicted needle deflection using the mechanics-based
model is compared with the kinematics-based bicycle model.
To evaluate the bicycle model, the steering angle (ψ) and
the radius of the circle describing the needle path (rt) need
to be determined. The radius of curvature is determined
by fitting a circle to the experimental deflection using a
method described by Pratt et al. [24] and is found to be
332.4 mm (σ = 13.4 mm) for the single bend experi-
ment (Fig. 5). The steering angle is determined by fitting
the model to the deflection of the double bend experi-
ment (Fig. 5) and is found to be 2.7◦.

With the parameters known for the mechanics-based
model and the kinematics-based bicycle model, it is now
possible to predict needle deflection. In the next section, both
models are evaluated for multiple bend experiments.

C. Model Validation

First, two double bend experiments are performed. The
needle is inserted a total distance of 140 mm at 10 mm/s.
Needle rotation is performed at insertion distances of 60 mm
and 69 mm, in the first and second experiment, respectively.

Fig. 7. Image showing the deflected needle (φ = 0.8 mm) for rotations
performed at 1© 40 mm and 2© 71 mm. The dashed line represents
the predicted needle deflection using the mechanics-based model. Average
needle tip deflection is 21.0 mm (σ = 0.3 mm) and predicted needle tip
deflection is 18.3 mm, indicating a tip error of 2.7 mm.

For each experiment five insertions are done. Both the
mechanics-based and the kinematics-based bicycle model are
evaluated for these rotation distances using the parameters
determined in the previous section. The predicted needle
deflection is compared with the experimental needle de-
flection in Fig. 6. The differences between predicted and
experimental final needle tip deflection are presented in
Table I. It can be seen that both models are accurate in
predicting needle deflection. The maximum errors in final tip
deflection are 0.5 mm and 0.6 mm for the mechanics-based
and kinematics-based model, respectively. The maximum
error is larger for the kinematics-based model: 1.1 mm as
compared to 0.6 mm for the mechanics-based model.

The mechanics-based model is also evaluated when the
needle is rotated twice during insertion (triple bend). The
same Nitinol needle (φ = 0.8 mm) is used and rotation is per-
formed at insertion distances of 40 mm and 71 mm (Fig. 7).
The needle appears to be almost straight in the image.
This is due to the limited amount of curvature for this
needle, resulting in an almost straight shape when two or
more rotations are performed. The predicted needle shape is
similar to the experimental shape. Gelatine is observed to
become stiff with time, which affects the amount of needle
deflection. The tip error for the triple bend experiments is
larger than for the experiments in Fig. 6. This is probably
caused by the fact the model (used for the triple bend
experiments) are fitted to experiments done on different days.

V. CONCLUSIONS AND FUTURE WORK

This study presents a mechanics-based model for a nee-
dle undergoing multiple bends. The model is based on a
Rayleigh-Ritz formulation where shape functions are as-
sumed for the deflected needle. The unknown coefficients of
the shape functions are evaluated by minimizing the sytem
potential. The system potential consists of energy terms due
to needle bending and needle-tissue interaction, and work
terms due to forces acting on the needle. The forces are at
the needle tip due to cutting of the tissue, and a distributed
load along the needle shaft which accounts for the force
applied by the surrounding tissue as the needle bends.

TABLE I
EXPERIMENTS COMPARED WITH PREDICTED NEEDLE DEFLECTION USING THE MECHANICS-BASED MODEL AND THE KINEMATICS-BASED BICYCLE

MODEL. NOTE, ROTATION DISTANCE (xr ), EXPERIMENTAL TIP DEFLECTION (yT,exp), PREDICTED NEEDLE TIP DEFLECTION (yT,sim), TIP

ERROR (e(xT )), MAXIMUM ERROR (emax) AND THE STANDARD DEVIATION OF FINAL TIP DEFLECTION (σ(xT )).

Model xr (mm) yT,exp (mm) yT,sim (mm) e(xT ) (mm) emax (mm) σ(xT ) (mm)

Mechanics 60 -15.4 -15.3 0.1 0.3 0.4
69 -19.8 -20.3 0.5 0.6 0.5

Bicycle 60 -15.4 -15.3 0.1 0.5 0.4
69 -19.8 -20.4 0.6 1.1 0.5
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A. Conclusions
The mechanics-based model presented in this work re-

quires the tip force and the distributed load as inputs.
Experiments are performed using a flexible, Nitinol nee-
dle (φ 0.8 mm) with a bevel tip. Gelatine is used as soft
tissue simulant. The tip force is considered constant during
insertion, while the distributed load is evaluated by fitting
the model to experimental data. Double bend experiments
are performed to validate the model. We are able to predict
deflection for a needle undergoing a double bend with a
maximum tip error of 0.5 mm. The kinematics-based bicycle
model is also implemented and results in a maximum tip
error of 0.6 mm. The maximum error observed is smaller
for the mechanics-based model: 0.6 mm as compared to
1.1 mm for the kinematics-based model. The mechanics-
based model is also evaluated for a triple bend experi-
ment, and shows good agreement with experimental needle
deflection. These results indicate that the mechanics-based
model and kinematics-based bicycle model are comparable
for predicting delfection for needles with multiple bends in
homogeneous soft-tissue simulants. Though, the mechanics-
based model can account for deflection when the needle
radius of curvature is not constant. This is especially advan-
tageous for predicting needle deflection in non-homogeneous
biological tissue.

B. Future Work
In the current study, the distributed load is evaluated for a

single needle-tissue combination. For the triple bend case, it
was shown that needle deflection is sensitive to changes in
gel stiffness and the prediction is not quite accurate anymore.
Therefore, research into the distrituted load for different nee-
dles and soft-tissue simulants is required. Knowledge about
the relationship between distributed load, and needle and
tissue properties would enable predicting needle deflection
without having to fit the model to experimental data.

The model assumes in-plane (two dimensional) needle
deflection. Predicting needle deflection for the three dimen-
sional case using the presented framework is possible. For
this, the distributed load has to be adapted such that it acts
in all three directions.

The mechanics-based model presented has shown to pre-
dict deflection for a needle undergoing multiple bends. Such
a model is required to accurately steer needles in robot-
assisted needle insertion procedures where knowledge about
needle deflection is required for both path-planning before
the procedure, and control during the procedure.
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