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Abstract— Flexible minimally invasive surgical instruments
can be used to target difficult-to-reach locations within the
human body. Accurately steering these instruments requires
information about the three-dimensional shape of the instru-
ment. In the current study, we use an array of Fiber Bragg
Grating (FBG) sensors to reconstruct the shape of a flexible
instrument. FBG sensors have several advantages over existing
imaging modalities, which makes them well-suited for use in
a clinical environment. An experimental testbed is presented
in this study, which includes a tendon-driven manipulator. A
nitinol FBG-wire is fabricated, on which an array of twelve
FBG sensors are integrated, and distributed over four different
sets. This wire is positioned in the backbone of the manipulator.
Axial strains are measured using the FBG sensors, from
which the curvature of the manipulator is calculated. The
three-dimensional manipulator shape is reconstructed from the
curvature, which is used to steer the manipulator tip. We are
able to steer the manipulator along various trajectories (two-
dimensional and three-dimensional), and also reject disturbance
loads. We observe a minimum mean tracking error of 0.67 mm
for the circular trajectory in closed-loop control. This study
demonstrates the potential of steering flexible minimally inva-
sive surgical instruments using an array of FBG sensors.

I. INTRODUCTION

Recent studies have shown great interest in steering
a variety of flexible, minimally invasive surgical (MIS)
instruments. These instruments vary from small diameter
(�  1 mm) needles with bevel tips (e.g., for breast biopsies)
to flexible catheters (e.g., for beating heart surgery) [1]–
[12]. These instruments often have a flexible structure, which
causes them to bend when they are subjected to interac-
tion forces. Hence, this allows them to be steered around
obstacles, and enables targeting difficult-to-reach locations
in the human body. In order to steer such instruments to a
desired location, information is required about the shape of
the instrument.

Previous research used stereo-vision camera systems to
acquire information about the location of the instrument [2].
However, camera-based systems cannot be used in vivo.
Electromagnetic sensors have also been used to locate the
tip of the instrument [10]. Such sensors can be used in vivo,
but they are sensitive to distortion induced by metallic objects
and electrical noise. Hence, this limits the use of electromag-
netic localization in a clinical environment. Previous studies
used medical imaging techniques, such as ultrasound images,
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Fig. 1. A section of a flexible instrument (which could be a needle, catheter
or colonoscope) is shown. An array of co-located FBG sensors (i.e., FBG-
sets) are placed along the instrument shaft. (A) A set of three co-located
FBG sensors are used to measure axial strain, which is used to calculate the
curvature. (B) Instrument shape is reconstructed from the curvature ( =
1/r). (C) A cross-section of the instrument: The position of each fiber is
given by the distance from the center of the instrument (ra, rb and rc) and
the angle with respect to the other fibers (�a, �b and �c). The distance from
the fibers to the neutral axis is indicated by �a, �b and �c.

x-ray computed tomography (CT) scans and magnetic reso-
nance imaging (MRI), in order to aquire instrument shape.
However, these methods have several drawbacks: Ultrasound
has low tissue contrast. MRI has a low refresh rate and hence,
is not well-suited for real-time applications. CT exposes the
patient to high doses of radiation and hence, is also not
recommended for continuous use.

Fiber Bragg Grating (FBG) sensors can be an alternative
to acquire three-dimensional (3D) instrument shape in vivo.
FBG sensors have several properties which makes them well-
suited for biomedical applications, e.g., biocompatibility,
non-toxic, chemical inertness and electromagnetical inert-
ness [13]. Also, current technologies enable data acquisition
at rates up to 20 kHz with FBG sensors. Hence, this makes
them applicable for real-time applications. FBG sensors can
be used to measure mechanical strain [14]. Due to the small
size of FBG sensors (�  250 µm), they can be integrated
along the shaft of a flexible MIS instrument (Fig. 1). Inte-
grating an array of FBG sensors along the instrument shaft
enables measuring the strain caused by the bending of the
instrument. This strain can be used to determine the curvature
along the shaft of the instrument at the location of the FBG
sensors. This curvature is then used to reconstruct the 3D
instrument shape. Previous studies have used FBG sensors to
reconstruct the shape of a colonoscope and flexible surgical
needles [15]–[19]. These studies have shown that instrument
shape can be reconstructed with high accuracy using FBG
sensors.

In the current study, we demonstrate using an array of FBG
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sensors to steer a flexible instrument. Recently, Abayazid et
al. demonstrated flexible needle steering using an array of
FBG sensors [19]. However, the tip deflections in that study
were small (i.e.,  5 mm) compared to our study. The goal
of our study is to show that FBG sensors have the potential to
be used to control a large variety of flexible MIS instruments.
In order to demonstrate this, we have constructed a tendon-
driven manipulator. This manipulator is actuated by a total
of four tendons, allowing it to bend in all directions. A
flexible nitinol wire with an array of twelve FGB sensors
has been fabricated, and is placed in the hollow backbone
of the manipulator. This allows to reconstruct the shape of
the manipulator as it deflects. The reconstructed position of
the manipulator tip is then used as feedback in a closed-
loop control system. The forward and inverse kinematics of
the manipulator are derived, and are used in a closed-loop
control system to steer the tip of the manipulator to a desired
position. The performance of the system is demonstrated in
various trajectory tracking experiments. We also evaluate the
ability of the system to reject load disturbances.

The paper is organized as follows: Section II describes
the methods for reconstructing the 3D shape of a flexible
instrument using an array of FBG sensors. In Section III,
the kinematics of the robotic manipulator is presented. The
experimental setup is presented in Section IV, and the
experimental results are discussed in Section V. Finally, we
conclude the paper in Section VI, and directions for future
work are given.

II. THREE-DIMENSIONAL SHAPE SENSING USING FIBER
BRAGG GRATING SENSORS

This section describes the methods to reconstruct the 3D
shape of a flexible instrument using an array of FBG sensors.
First, we describe the method to calculate strain from an FBG
sensor. This is followed by the computation of curvature and
its direction from a set of FBG sensors. Finally, we describe
3D reconstruction of instrument shape.

A. Strain Measurement

An FBG has the property to reflect light of a specific
wavelength, called the Bragg wavelength (�B), which is
given by [14]

�B = 2n

e

⇤, (1)

where n

e

is the effective refractive index of the grating in
the fiber core and ⇤ is the grating period. The effective
refractive index and the grating period are affected by
changes in mechanical strain and temperature and hence, this
results in a change in the Bragg wavelength. This enables
an FBG to be used as a sensor for measuring mechanical
strain or temperature. Assuming constant temperature, the
shift in Bragg wavelength due to mechanical strain ("

x

) is
given by [20]

��B = �B (1� p

e

) "

x

. (2)

The axial strain of an instrument ("
x

) can be measured
using FBG sensors. This is done by placing an optical fiber
with FBG sensors parallel to the longitudinal axis of the

Fig. 2. A planar curve
�
r(s)

�
is parametrized by the arc length (s).

The slope of the curve with respect to the z-axis is denoted by ✓(s). The
Frenet-Serret vectors are also shown: The tangent vector (t(s)) and normal
vector (n(s)).

instrument (Fig. 1). Assuming pure bending, the following
relationship exists between the axial strain in the fiber and
the distance (�) of the fiber to the neutral bending plane of
the instrument [21]:

"

x

=

ds� dl

dl

= ��

r

= ��, (3)

where  and r are the curvature and radius of curvature
of the instrument, respectively (Fig. 1). Substituting (3)
into (2) gives an expression which relates the shift in Bragg
wavelength to curvature

��B = ��B (1� p

e

)�. (4)

In the next subsection, we describe the calculation of curva-
ture () and its direction (') using the strain measurements
from a set of multiple co-located FBG sensors.

B. Curvature Calculation

The curvature and its direction can be determined using
strain measurements from a set of multiple FBG sensors at
the same location along the instrument shaft (Fig. 1). In
theory, two strain mausurements are sufficient to determine
the curvature. In practice, temparature changes and axial
forces also contribute to the axial strain by an offset ("0).
Hence, three strain measurements are used to compensate
for this offset. The relationship between the axial strain due
to bending and the distance from the neutral bending plane is
given by (3). Thus, the following set of equations are derived
for the strains at the location of three fibers (denoted by a,
b and c) at a cross-section of the needle (Fig. 1):

"

a

= ��

a

+ "0 = �r

a

sin(') + "0,
"

b

= ��

b

+ "0 = �r

b

sin('+ �

a

) + "0,
"

c

= ��

c

+ "0 = �r

c

sin('+ �

a

+ �

b

) + "0,
(5)

where ' is the angle between r

a

and the neutral axis (Fig. 1),
and indicates the direction of the curvature. The posi-
tion (r

a

, r
b

and r

c

) and orientation (�
a

, �
b

and �

c

) of the
FBG sensors are assumed to be known and constant (i.e., the
neutral plane is always assumed to be at the center of the
needle). By solving the set of equations (5), the unknowns
are determined (i.e., , ' and "0). Since the curvature can
only be determined at the locations of the FBG sensors,
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interpolation needs to be performed to evaluate the curvature
along the entire instrument shaft. In the next subsection, we
explain the reconstruction of 3D instrument shape using the
curvature and its direction.

C. Three-Dimensional Shape Reconstruction

For this study, we consider the instrument to bend in
a single plane, and therefore it can be seen as a planar
curve. First, Frenet-Serret frames are used to reconstruct the
instrument shape. Next, the direction of curvature (') is used
to calculate the position of the planar curve in 3D space.

Let r(s) be a planar curve (Fig. 2) parametrized by the
arc length (s)

r(s) =


z(s)

k(s)

�
. (6)

The curvature of this planar curve is given by

(s) =

d✓(s)

ds

, (7)

where ✓(s) is the angle between the tangent at a point along
the curve and the positive direction of the z-axis (i.e., slope
of the curve). Using Frenet-Serret frames, the tangent vector
of this curve is defined as

t(s) =
dr(s)

ds

=

h
dz(s)
ds

dk(s)
ds

iT

=

⇥
cos(✓(s)) sin(✓(s))

⇤T .
(8)

Since the curvature is known from the FBG sensor mea-
surements, the slope of the curve

�
✓(s)

�
is calculated by

integrating the curvature (7)

✓(s) =

Z
s

0
(s) ds+ ✓0, (9)

where ✓0 is the intial slope (i.e., s = 0). The curve (r(s))
can then be calculated by integrating the tangent vector in (8)

r(s) =


z(s)

k(s)

�
=

Z
s

0
t(s) ds

=

"R
s

0 cos(✓(s)) ds+ z0R
s

0 sin(✓(s)) ds+ k0

#
,

(10)

where z0 and k0 are the initial deflections. The direction of
the curvature (') and deflection k(s) are used to calculate
the x-position and y-position of the curve

x(s) = k(s) cos('),
y(s) = k(s) sin(').

(11)

Thus, the 3D position of a point along the shaft of the
instrument

⇣
r(s) =

⇥
x(s), y(s), z(s)

⇤T
⌘

can be calculated
using the curvature and its direction.

III. KINEMATICS OF THE MANIPULATOR

This section describes the kinematics (forward and in-
verse) of the manipulator that will be used for closed-loop
experiments with the FBG sensors (Fig. 3). The manipulator
consists of a flexible backbone (of length l

b

) on which a
series of equally spaced tendon guides are mounted. Four

(a)

(b)

Fig. 3. (a) The manipulator consists of a flexible backbone on which tendon
guides are mounted. Actuating a total of four tendons (t1, . . . , t4) causes
the manipulator to deflect with a constant radius of curvature (r) and out-
of-plane bending angle ('). In this figure, the manipulator bends in the xz-
plane (i.e., ' = 0). (b) Top view of a section of the continuum manipulator
in a bent configuration. The manipulator is divided into n segments, where
each segment is defined between two subsequent tendon guides.

tendons are routed through these guides at 90� angles from
one another. The tendons are all connected to the tendon
guide at the tip. The manipulator deflects in a single-bend
shape when the tendons are actuated (i.e., pulled).

A. Forward Kinematics

We determine the forward kinematics of the manipulator to
derive the relationship between the tendon lengths (l1, . . . , l4)
and the position of the manipulator tip (x

t

, y
t

, z
t

). The for-
ward kinematics of such a continuum-style manipulator has
been described by Jones and Walker for a three-tendon driven
manipulator [22]. Further, Webster and Jones presented a
simplified derivation of these kinematics [6] both for the
case of three actuators and four actuators. Their approach
assumes that the manipulator bends with a constant radius
of curvature (r). We use the same approach to derive the
kinematics of our four-tendon driven manipulator (Fig. 3a).
The position of the manipulator tip is determined by the ra-
dius of curvature (r), and the out-of-plane bending angle (').
Note that this angle is equal to the direction of the curvature
(Section II-B), in case the first tendon (t1) is aligned with
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fiber a.
The length of a hypothetical center cable (Fig. 3b) is given

by
l

c

= 2nr sin

�
�/2n

�
, (12)

where n indicates the number of segments and � is equal to
l

b

/r. Further, the lengths of the individual tendons (l
i

, for
i = 1 . . . 4) are given by

l

i

= 2nr

i

sin

�
�/2n

�
, (13)

The radius of curvature (r
i

) at for each tendon is related to
the distance of the tendon to the neutral axis (d

i

) by

r

i

= r � d

i

, (14)

where d

i

is related to the out-of-plane bending angle by

d

i

= d

tb

cos

�
'+ (i� 1)⇡/2

�
, (15)

where d

tb

is the distance from the tendon to the back-
bone (Fig. 3a). Substituting (15) into (13), and combining
with (12) gives

l

c

= l

i

+ 2nd

tb

cos

�
'+ (i� 1)⇡/2

�
sin

�
�/2n

�
. (16)

Combining (16) for all four tendons, results in the following:

l

c

=

l1 + l2 + l3 + l4

4

. (17)

As was shown by Webster and Jones, the out-of-plane
bending angle is determined by [6]

' = tan

�1

✓
l4 � l2

l3 � l1

◆
. (18)

Applying trigonmetric relation to a section of the manipula-
tor (Fig. 3b), the following relationship can be derived for
the radius of curvature:

r = r

i

l

c

/n

l

i

/n

= (r � d

i

)

l

c

/n

l

i

/n

= d

i

l

c

l

c

� l

i

. (19)

Substituting (15) for d

i

(for i = 1), and (17) for l

c

into
(19) gives the radius of curvature as a function of the tendon
lengths. After simplifying, the result is given as:

r =

d

tb

(l1 + l2 + l3 + l4) (l1 � l3)

(l2 � 3l1 + l3 + l4)

q
(l2 � l4)

2
+ (l1 � l3)

2
. (20)

The position of the tip of the manipulator is now com-
pletely described by the out-of-plane bending angle (18), and
radius of curvature (20). In the next subsection, the inverse
kinematics are derived which are required for controlling the
manipulator.

B. Inverse Kinematics

In order to steer the tip towards a desired posi-
tion

⇣
pd =

⇥
xd yd zd

⇤T
⌘

, the inverse kinematics of the
manipulator needs to be derived. These provide the inputs
of the system (i.e., tendon lengths) as a function of the tip
position. Given the desired position of the manipulator tip,
the out-of-plane bending angle is calculated by

' = tan

�1

✓
yd

xd

◆
(21)

Fig. 4. Top view of the manipulator (with length lb) as it bends with a
constant radius of curvature (r). The angle � is related to the radius of
curvature by: � = lb/r. The deflection of the tip with respect to the base
is given by k.

The required radius of curvature is then given by (Fig. 4)

r = k +m, (22)

where k and m are

k =

p
(xd2 + yd2), (23)

and
m = r cos (�) = r cos

✓
lb

r

◆
. (24)

Substituting (23) and (24) into (22) provides us with the
following expression:

r =

p
(xd2 + yd2) + r cos

✓
lb

r

◆
. (25)

We solve (25) numerically to determine the radius of curva-
ture (r). Knowing the required radius of curvature and sub-
stituting the out-of-plane bending angle from (21) into (15),
we can calculate the individual tendon lengths using (13).

IV. EXPERIMENTAL TESTBED

This section describes the setup which is used as a testbed
for experiments with the manipulator. We also present the
controller which is used to steer the manipulator tip.

A. Setup

A setup (Fig. 5) is fabricated to actuate the four tendons
and allows insertion of the manipulator, whose kinematics
are presented in Section III. The manipulator is connected
to a carriage which is mounted onto a linear stage. The car-
riage holds four motors which enables independent actuation
of the tendons. The linear stage allows translation of the
manipulator along the insertion axis (z-axis).

The backbone of the manipulator consists of a niti-
nol tube (�

outer

1.6 mm and �

inner

1.2 mm) with a
length of 160 mm. The tendon guides are circular polymer
disks (� 20 mm), and these are glued onto the backbone.
The tendons are made from fishing wire (� 0.40 mm), and
are routed through the tendon guides at a distance of 7.5 mm
from the center of the backbone (d

tb

= 7.5 mm). A total of
eight tendon guides are glued onto the backbone, spaced
20 mm apart. This spacing is chosen such that the ratio
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(a)

(b)
Fig. 5. (a) The experimental setup consists of a linear stage which enables
translation of the manipulator in the insertion direction (i.e., z-axis). A
carriage is mounted on the linear stage, and holds the four motors to actuate
the four tendons. The manipulator itself is also mounted onto this carriage.
The top right picture shows the jig which is used to calibrate the Fiber
Bragg Grating (FBG) sensors. (b) The nitinol wire (� 1.0 mm) with the
array of twelve FBG sensors, distributed over four sets (FBG1, . . ., FBG4).
The inset shows the grooves at the tip of the wire in which the fibers are
integrated.

between tendon offset (d
tb

) and spacing of cable supports is
near the optimal ratio of 0.4 [23]. A nitinol wire (� 1.0 mm)
with an integrated array of FBG sensors is used to sense
the shape of the manipulator (Fig. 5b). This wire is inserted
into the hollow backbone of the manipulator. Additional
details about the fabrication of this FBG wire are presented
in Roesthuis et al. [18].

B. Controller Implementation

The system architecture of the experimental testbed is
shown in Fig. 6. The tip of the manipulator is controlled
along each axis using a Proportional-Integral-Derivative
(PID-) controller. The error between the desired tip position
and the reconstructed tip position using FBG sensors is
used as input for the PID-controller. The output of the PID-
controller is a modified tip position. Using the inverse kine-
matics of the manipulator (Section III-B), the corresponding
tendon lengths are determined.

The manipulator is controlled at a rate of 100 Hz. The
strain information is read from the FBG sensors using
a Deminsys Python Interrogator (Technobis Mechatronics,
Uitgeest, The Netherlands). This interrogator communicates
with a desktop computer using the UDP-protocol. A mul-
tithreaded C++-program is written which reads the UDP-
packets and calculates the appropriate control outputs. This
program also communicates with Elmo motor controllers
(Elmo Motion Control Ltd., Petach-Tikva, Israel) which drive
the motors to the desired position.

Fig. 6. The system architecture of the experimental testbed. The Fiber
Bragg Grating (FBG) sensors produce a change in Bragg wavelength as they
are subjected to strain. This change in wavelength is transferred through
the Deminsys interrogator to the C++-program, and is then converted to
strains. The shape reconstruction algorithm calculates tip position from these
strains. The output of the control depends on the error between the desired
tip position provided by the input, and the reconstructed tip position. The
steering algorithm calculates motor positions from the controller output, and
the manipulator is actuated accordingly.

V. EXPERIMENTAL RESULTS

This section describes the results of the various experimen-
tal studies conducted with our testbed. First, the FBG sensors
are calibrated and the gains of the PID-controller are tuned.
Next, experiments are performed to evaluate the trajectory
tracking performance of the system. Finally, the ability of
the system to reject disturbance loads are also evaluated.

A. Setup Calibration

The positions and orientations of the FBG sensors along
the shaft of the FBG wire are assumed to be known.
However, there are uncertainties during the fabrication of the
FBG sensors and therefore, calibration of the FBG sensors
are required. A calibration jig is made which consists of a
number of reference points which are distributed along a
circle (� 60 mm), as shown in Fig. 5. The FBG sensors are
calibrated by manually positioning the manipulator tip at the
reference points (xref, yref), and then reconstructing the tip
position. The reconstructed tip positions (x

t

, y

t

) are scaled
both along the x-axis and y-axis such that the error between
the reconstruction and the reference point is minimized.
Scaling factors of 0.89 and 0.87 along the x-axis and y-axis
are determined to give minimum errors. The errors before
and after the calibration procedure are provided in Table I.
The gains of the PID-controller are tuned by observing the
step-response of the system. The following gains result in a

TABLE I
THE MEAN ERRORS AND STANDARD DEVIATION (IN BRACKETS) ARE

PROVIDED BEFORE AND AFTER CALIBRATION OF THE FIBER BRAGG

GRATING (FBG) SENSORS. THE MANIPULATOR TIP IS DIRECTED

TOWARDS EACH REFERENCE POSITION (xREF, yREF ) IN MM. EACH

EXPERIMENT IS REPEATED THREE TIMES.

Before calibration (mm) After calibration (mm)
(xref, yref) x y x y

(30, 0) 1.97 (0.57) 0.48 (0.20) 1.06 (0.52) 0.42 (0.17)
(0, 30) 0.57 (0.49) 4.24 (0.35) 0.52 (0.44) 0.54 (0.31)
(-30, 0) 4.42 (0.53) 0.32 (0.28) 1.15 (0.48) 0.29 (0.25)
(0, -30) 1.21 (0.28) 3.06 (0.41) 1.09 (0.26) 0.51 (0.37)
Mean 2.04 (1.58) 2.03 (1.77) 0.96 (0.46) 0.44 (0.26)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Trajectory tracking with manipulator tip for a circle (2D), a
square (2D) and a helix (3D). Open-loop results (red) are compared with
closed-loop results (blue). (a) Circle (40 mm radius), speed is 2 deg/s.
(b) Circle (40 mm radius), speed is 30 deg/s. (c) Square (80 mm edges),
speed is 5 mm/s. (d) Square (80 mm edges), speed is 20 mm/s. (e) Helix,
(40 mm radius), speed is 2 deg/s. (f) Helix, (40 mm radius), speed is 30
deg/s. Please refer to the attached video that demonstrates the results of

the trajectory tracking experiments using our testbed.

fast reponse with little overshoot (1%): Kp = 2.2, Ki = 1.0
and Kd = 0.2. These gains are used in all of the following
experiments in this study.

B. Trajectory Tracking

The trajectory tracking performance of the system is
evaluated by controlling the tip of the manipulator for three
different cases; tracking a circle (two-dimensional (2D)), a
square (2D) and a helix (3D). The circle has a radius of
40 mm and is evaluated at a slow speed (2 deg/s) and a high
speed (30 deg/s). The square has edges of 80 mm, and is
also evaluated at a slow speed (5 mm/s) and a high speed
(20 mm/s). The helix has a radius of 40 mm and a pitch
of 10 mm, and is evaluated at a slow speed (2 deg/s) and
a high speed (30 deg/s). The experiments are done both
in open-loop and closed-loop control. The reference and

(a) (b)

Fig. 8. The response of the system to a load disturbance for open-
loop control and closed-loop control. A weight is added to the tip of the
manipulator at 5 s. (a) 20 g. weight. (b) 50 g. weight. Please refer to

the attached video that demonstrates the results of the load disturbance

experiments using our testbed.

experimental trajectories are shown in Fig 7. The resulting
tracking errors are provided in Table II. The mean errors
become significantly smaller for closed-loop control. Large
errors occur near the corners of the square due to change of
direction when the speed is increased.

It can be seen that in all the experiments the system
suffers from systematic errors which could be attributed
to the mechanical system. The holes through which the
tendons are routed are not smooth, and this results in a
erratic behaviour of the manipulator tip in some parts of
the trajectory. The larger spikes are the result of systematic
errors in the measurement of the tip position. The cause for
these measurement errors is currently unknown and requires
further investigation.

C. Load Disturbance Rejection

The ability of the system to reject load disturbances is
evaluated for two experimental cases. The manipulator is
commanded to a straight orientation (i.e., x

d

= y

d

= 0). In
the first case a weight of 20 g. is placed at the manipulator
tip, and in the second case of weight of 50 g. is used. The
resulting response of the system is evaluated both for open-
loop control and closed-loop control (Fig. 8). It can be seen
that in both cases the system quickly ( 7s.) reacts to the
load disturbance, and is able to maintain the desired position
without becoming unstable.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we demonstrated using an array of FBG
sensors for the closed-loop control of a flexible manipulator.
An experimental testbed is presented, which consists of a
flexible, four tendon-driven manipulator. A total of twelve
sensors, distributed over four different sets are embedded on
a flexible nitinol wire. This wire is introduced into the hollow
backbone of the manipulator. Strain measurements from the
FBG sensors are used to reconstruct 3D manipulator shape.
The reconstructed tip position is used as feedback in a PID-
controller to steer the tip of the manipulator to a desired
position.

A. Conclusions

The performance of the system is demonstrated for three
trajectory-tracking cases, evaluated at a slow speed and a
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TABLE II
COMPARISON BETWEEN THE TRAJECTORY TRACKING ERRORS (IN MM)

FOR OPEN-LOOP CONTROL AND CLOSED-LOOP CONTROL. THE MEAN

ERROR AND THE STANDARD DEVIATION (IN BRACKETS) ARE GIVEN.

Case Open-loop Closed-loop
Circle (2 deg/s) 10.47 (1.82) 0.67 (1.13)

Circle (30 deg/s) 8.79 (1.73) 2.96 (0.83)
Square (5 mm/s) 11.70 (1.91) 1.17 (1.02)

Square (20 mm/s) 10.38 (1.52) 2.48 (1.92)
Helix (2 deg/s) 14.00 (3.39) 0.87 (1.88)
Helix (30 deg/s) 11.67 (3.15) 3.93 (1.50)

high speed: circle (2D), a square (2D) and a helix (3D).
The trajectory tracking performance is shown to be greatly
improved when closed-loop control is applied. The mean
trajectory tracking errors for the open-loop at slow speeds
are; 10.47 mm for the circle, 11.70 mm for the square and
14.00 mm for the helix. Closed-loop control shows signif-
icant performance increase. The mean trajectory tracking
errors are: 0.67 mm for the circle, 1.17 mm for the square and
0.87 mm for the helix. Finally, the ability of the system to
reject disturbance loads is demonstrated for two experimental
cases: 20 g. and 50 g. weights are hung at the tip. The system
is able to maintain the tip at the desired location despite
the added load. The results of this study show that FBG
sensors can be integrated on a flexible instrument, and used
for closed-loop control of the instrument.

B. Future Work

In the current work, we demonstrated closed-loop control
using an array of FBG sensors on a manipulator with a single
bending segment. As part of future studies, we will inves-
tigate shape sensing (using FBG sensors) for instruments
with multiple bending segments. The current manipulator
did not suffer from non-linear effects such as backlash
or hysteresis. Hence, we were able to succesfully control
the manipulator using a simple (linear) PID-controller. In
practice, surgical instruments often suffer from non-linear
effects. A PID-controller will not suffice in those cases, and
we will investigate using a non-linear control method in
order to steer more clinically relevant instruments. While
we aim to continue to improve our controller architecture,
our current study demonstrates the feasibility and potential
of reconstructing the shape of flexible MIS instruments, and
steering them for a variety of clinical applications.

REFERENCES

[1] N. Abolhassani, R. V. Patel, and M. Moallem, “Needle insertion into
soft tissue: A survey,” Medical Engineering and Physics, vol. 29, no. 4,
pp. 413–431, 2007.

[2] D. B. Camarillo, C. R. Carlson, and J. K. Salisbury, “Task-space
control of continuum manipulators with coupled tendon drive,” in The
International Symposium on Experimental Robotics (ISER) (O. Khatib,
V. Kumar, and G. J. Pappas, eds.), vol. 54 of Springer Tracts in
Advanced Robotics, pp. 271–280, Athens, Greece, Springer, July 2008.

[3] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Journal
of Applied Bionics and Biomechanics, vol. 5, pp. 99–117, September
2008.

[4] J. Ding, K. Xu, R. Goldman, P. Allen, D. Fowler, and N. Simaan,
“Design, simulation and evaluation of kinematic alternatives for in-
sertable robotic effectors platforms in single port access surgery,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 1053–1058, Anchorage, USA, May 2010.

[5] P. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control
of concentric-tube robots,” IEEE Transactions on Robotics, vol. 26,
pp. 209–225, April 2010.

[6] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[7] B. Bardou, P. Zanne, F. Nageotte, and M. De Mathelin, “Control of
a multiple sections flexible endoscopic system,” in Proceedings IEEE
International Conference of Intelligent Robots and Systems (IROS),
pp. 2345–2350, Taipei, Taiwan, October 2010.

[8] A. Bajo, R. E. Goldman, and N. Simaan, “Configuration and joint feed-
back for enhanced performance of multi-segment continuum robots,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 2905–2912, Shanghai, China, May 2011.

[9] S. B. Kesner and R. D. Howe, “Position control of motion compensa-
tion cardiac catheters,” IEEE Transactions on Robotics, vol. 27, no. 6,
pp. 1045–1055, 2011.

[10] R. S. Penning, J. Jung, N. J. Ferrier, and M. R. Zinn, “An evalua-
tion of closed-loop control options for continuum manipulators,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 5392–5397, St. Paul, Minnesota, USA, May
2012.

[11] A. Reiter, A. Bajo, K. Iliopoulos, N. Simaan, and P. K. Allen,
“Learning-based configuration estimation of a multi-segment contin-
uum robot,” in Proceedings of the IEEE/EMBS International Confer-
ence in Biomedical Robotics and Biomechatronics (BioRob), pp. 829–
834, Rome, Italy, June 2012.

[12] E. Butler, R. Hammond-Oakley, S. Chawarski, A. Gosline, P. Codd,
T. Anor, J. Madsen, P. Dupont, and J. Lock, “Robotic neuro-
emdoscope with concentric tube augmentation,” in Proceedings IEEE
International Conference of Intelligent Robots and Systems (IROS),
pp. 2941–2946, Vilamoura, Portugal, October 2012.

[13] V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in
medicine: Current and emerging applications,” Sensors and Actuators
A: Physical, vol. 167, no. 2, pp. 279–290, 2011.

[14] A. Othonos, K. Kalli, D. Pureaur, and A. Mugnier, Optical Sciences,
ch. Fibre Bragg Gratings, pp. 189–262. Springer, 2006.

[15] X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An innovative
3d colonoscope shape sensing sensor based on fbg sensor array,” in
Proceedings of the IEEE International Conference on Information
Acquisition (ICIA), pp. 227–232, Jefu Island, Republic of Korea, July
2007.

[16] Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall,
R. Black, B. Moslehi, and M. Cutkosky, “Real-time estimation of 3-d
needle shape and deflection for mri-guided interventions,” IEEE/ASME
Transactions on Mechatronics, vol. 15, no. 6, pp. 906–915, 2010.

[17] K. Henken, D. van Gerwen, J. Dankelman, and J. J. van den Dobbel-
steen, “Accuracy of needle position measurements using fiber bragg
gratings,” Minimally Invasive Therapy & Allied Technologies, vol. 21,
no. 6, pp. 408–414, 2012.

[18] R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra,
“Three-dimensional needle shape reconstruction using an array of fiber
bragg grating sensors,” IEEE/ASME Transactions on Mechatronics,
2013. In Press, doi: 10.1109/TMECH.2013.2269836.

[19] M. Abayazid, M. Kemp, and S. Misra, “3d flexible needle steering in
soft-tissue phantoms using fiber bragg grating sensors,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 5507–5512, Karlsruhe, Germany, May 2013.

[20] O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals
and overview,” Journal of Lightwave Technology, vol. 15, pp. 1263–
1276, August 1997.

[21] J. Gere and S. Timoshenko, Mechanics of Materials. Stanley Thornes,
1999.

[22] B. Jones and I. Walker, “Kinematics for multisection continuum
robots,” IEEE Transactions on Robotics, vol. 22, pp. 43–55, February
2006.

[23] C. Li and C. D. Rahn, “Design of continuous backbone, cable-driven
robots,” Journal of Mechanical Design, vol. 124, no. 2, pp. 265–271,
2002.

2551


