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Three-Dimensional Needle Shape Reconstruction
Using an Array of Fiber Bragg Grating Sensors
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and Sarthak Misra, Member, IEEE

Abstract—We present a prototype of a flexible nitinol needle
(φ 1.0 mm and length 172 mm) integrated with an array of 12
Fiber Bragg Grating (FBG) sensors. These sensors measure the
axial strain, which enables the computation of the needle curva-
ture. We reconstruct the three-dimensional (3-D) needle shape from
the curvature. Experiments are performed where the needle is de-
flected in free space. The maximum errors between the experiments
and beam theory-based model are 0.20 mm (in-plane deflection
with single bend), 0.51 mm (in-plane deflection with double bend),
and 1.66 mm (out-of-plane). We also describe kinematics-based
and mechanics-based models for predicting the 3-D needle shape
during insertion into soft tissue. We perform experiments where
the needle is inserted into a soft-tissue simulant, and the 3-D nee-
dle shape is reconstructed using the FBG sensors. We compare
the reconstructed needle shape to deflection obtained from camera
images and our models. The maximum error between the exper-
iments and the camera images is 0.74 mm. The maximum errors
between the kinematics-based and mechanics-based models and
the camera images are 3.77 mm and 2.20 mm, respectively. This
study demonstrates that deflection models and needles integrated
with FBG sensors have the potential to be used in combination
with clinical imaging modalities in order to enable accurate needle
steering.

Index Terms—Fiber Bragg gratings (FBGs), kinematics-based
model, mechanics-based model, needle deflection models, shape
reconstruction, soft tissue.

I. INTRODUCTION

R ECENT studies have demonstrated a significant interest
in robotically steering a variety of minimally invasive sur-

gical instruments. Examples of such instruments are catheters,
flexible needles, and other (fully actuated) miniaturized manip-
ulators. In order to enable accurate control of such instruments,
it is essential to know the three-dimensional (3-D) shape of the
instrument. In the case of steering flexible needles through soft
tissue, previous research used medical imaging techniques, such
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Fig. 1. Fiber Bragg Gratings (FBGs) can be used as sensors to measure the
axial strain of a flexible needle. By placing a set of multiple FBGs (in this
case three) at a location along the needle shaft, one can determine the needle
curvature. In this sketch, an array of four FGB-sets is placed along the length
of the needle. Three-dimensional needle shape is reconstructed from needle
curvature.

as ultrasound images, X-ray computed tomography (CT) scans
and magnetic resonance imaging (MRI), in order to acquire nee-
dle shape during insertion [1], [2]. These methods have several
drawbacks: Ultrasound can be used in real time but has low
tissue contrast. MRI is slow, and hence cannot be used for real-
time applications. CT requires high doses of radiation, and can
also not be used in real time. More recently, studies have been
done in which Fiber Bragg Grating (FBG) sensors have been
used to estimate the shape of colonoscopes and needles [3]–[8].
Current technology allows FBG-data to be processed at high
speeds (up to 20 kHz), which is fast enough for real-time appli-
cations. Moreover, FBG sensors are small in size and therefore,
they can be integrated in small diameter surgical instruments.
FBGs are also electromagnetically inert, which allows them to
be used within a clinical setting without causing electrical in-
terference [7], [9].

FBGs are gratings etched onto an optical fiber, and they have
the property to reflect light of a specific wavelength [10]. FBGs
are sensitive to changes in mechanical strain or ambient temper-
ature, and these changes cause a shift in the reflected wavelength.
Hence, this enables using an FBG as a sensor to measure force,
pressure, vibration, or temperature. In previous studies FBG
sensors were used to measure axial strain at several locations
along the shaft of an instrument [3]–[8]. The curvature was de-
termined from the measured strain, and this curvature was used
to reconstruct the shape of the instrument. An example of such
an instrument is a needle. Park et al. and Henken et al. used
FBG sensors to determine the shape of a surgical needle which
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Fig. 2. Coordinate frame (Ψt ) is rigidly attached to the needle tip. The needle
tip describes a circular path with radius (rt ) and center (c). (a) Coordinate frame
(Ψt ) is alligned with the central axis of the needle. This represents the scenario
when the cutting of a soft tissue at an angle is not modeled. (b) Cutting of a
soft tissue at an angle is modeled by rotating the tip frame by the cut angle (β)
around the yt -axis. Needle rotation is indicated by Φ.

was deflected in free space [7], [8]. Such needles are used in
procedures where the goal is to steer the needle to a specific
location in the human body (e.g., for diagnosis or therapy) [2].
In order to robotically steer the needle toward a desired target,
the position and orientation of the needle during insertion needs
to be known. Information about the needle shape can be used as
feedback for models which predict the needle path and hence,
enable accurate needle steering.

Park et al. integrated two FBG-sets (with three FBG sen-
sors for each set) on a surgical needle [7]. They were able
to reconstruct the needle shape with a needle tip error of
0.38 mm for deflection applied at the tip of the needle. Henken
et al. also integrated two FBG-sets (with three FBG sensors
for each set) on the inner stylet of a trocar needle [8]. They
performed experiments for deflection applied at two locations
along the needle shaft, and they achieved a needle tip accuracy of
1.32 mm.

Although Park et al. and Henken et al. were able to reconstruct
the needle shape with high accuracy, they both only considered
needle deflection for the planar case (2-D) in free space [7],
[8]. The main contribution of this study is that the accuracy of
needle tip measurements using FBG sensors is also validated
for out-of-plane (3-D) deflections in both free space and a soft-
tissue simulant. Further, Park et al. and Henken et al. both
estimated needle curvature by measuring the curvature at two
locations along the needle shaft. In this study, three fibers with
four FBG sensors (i.e., four sets of FBG sensors) each are used,
which enables us to measure needle curvature at four different
locations along the needle shaft. These fibers are integrated on
a flexible nitinol needle with a bevel tip (see Fig. 1). Such a
flexible needle bends much more than a traditional (stiff) needle
when inserted into a soft tissue, which is desirable when steering
around obstacles. Using this array of four FBG sets, the 3-D
needle shape is reconstructed for two different experimental
cases for both in-plane and out-of-plane deflections.

First, the needle shape is evaluated for deflection in free space.
In the second case, a set of experiments is performed in which the
needle is inserted into a soft-tissue simulant (gelatine phantom).
Our objective is to combine shape sensing using FBG sensors
with models which predict needle deflection. This requires a

Fig. 3. Needle tip describes a path (blue) along a circle with center at ci
and radius (rt ). After performing needle rotation (Φ), the needle tip follows a
circular path (green) described by a circle with center at ci+1 .

model which can predict needle deflection in 3-D (i.e., out-
of-plane bending). Previously, we have presented a kinematics-
based model and a mechanics-based model for predicting needle
deflection only for the planar case [11], [12]. In the current
study, these models are modified to predict out-of-plane needle
deflection. Both deflection models are evaluated for the insertion
into gelatine phantoms. The predicted needle shapes and the
reconstruction using the FBG sensors are then compared with
the deflection determined using camera images. To the best of
the authors’ knowledge, no other studies have reconstructed the
3-D needle shape for insertion into a soft-tissue simulant using
FBG sensors.

The paper is structured as follows. Section II presents the
kinematics-based model and mechanics-based model for pre-
dicting the 3-D needle shape during insertion into soft tissue. In
Section III, the principle of using an array of FBG sensors to
reconstruct 3-D needle shape is presented. Section IV describes
the experimental setup and fabrication steps of the needle with
integrated FBG sensors. The method for calibrating the needle
is also presented in this section. The experimental results are
presented in Section V, and these include needle shape recon-
struction in free space, and within a gelatine phantom. Finally,
Section VI concludes, and provides directions for future work.

II. 3-D NEEDLE DEFLECTION MODELS

This section presents two different models for predicting
the 3-D deflection of a bevel-tipped flexible needle when in-
serted into a soft tissue. The first model is a kinematics-based
model which considers needle deflection to consist of constant-
curvature segments after each needle rotation. The second model
is a mechanics-based model which predicts needle deflection
based on needle-tissue interaction forces.

A. Kinematics-Based Model

Modeling needle deflection for the planar case using a
kinematics-based approach has been done by Webster et al. [13].
Needle deflection was described using the nonholonomic kine-
matics of a unicycle and bicycle. The needle tip was considered
to describe a constant-radius path. Furthermore, the tissue is as-
sumed to be stiff enough to ensure that the needle shaft follows
the path created by the needle tip. Duindam et al. [14] presented
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a model to describe the deflection of a bevel-tip flexible needle
in 3-D space and used this model to develop a path-planning
algorithm. A coordinate frame (Ψt) is rigidly attached at the
needle tip (Fig. 2(a)). The needle tip moves in the direction
of the xt-axis along a circular path with circle center (c) and
radius (rt). We assume that a bevel-tip cuts tissue at an angle
(denoted by cut angle (β)). This is modeled by rotating the tip
frame by the cut angle around the yt-axis (see Fig. 2(b)).

In Fig. 3, a section of the needle path is shown during which
rotation (Φ) is performed. The position of the needle tip at a
certain instant during insertion depends on the inserted needle
length (ds), the number of rotations performed and the angle
of each rotation (Φ). In order to describe the needle path, we
assumed that initial position and orientation of the needle tip
are known. The following homogeneous transformation matrix
describes the (initial) position (o0

t,s0
) and orientation (R0

t,s0
) of

the needle tip at initial location (s0) with respect to the global
coordinate frame (Ψ0):

H0
t,s0

=

[
R0

t,s0
o0

t,s0

0T
3 1

]
. (1)

After inserting the needle by ds into the soft tissue, the needle
tip is located at s1 along the circle (see Fig. 3). The position and
orientation of the needle tip in the global coordinate frame can
be determined by rotating the initial tip frame by an angle (dσs)
around circle center (ci). This angle is related to the bending
radius of curvature (rt) and increase in inserted length (ds) by

dσs =
ds

rt
. (2)

In order to determine the position of the tip frame at s1 , first
a frame is defined at the circle center (ci) with an orientation
equal to the tip frame at s0

H0
ci ,s0

=

[
R0

t,s0
o0

ci

0T
3 1

]
(3)

where o0
ci

is the origin of the circle expressed in the global
coordinate frame. The position of the needle tip at s1 can
now be determined by performing a rotation of dσs around the
yc -axis

Rt,s0
t,s1

= Ry ,ci (dσs) =




cos(dσs) 0 sin(dσs)

0 1 0
− sin(dσs) 0 cos(dσs)



. (4)

The needle tip position at s1 is o0
t,s1

, and is calculated as

o0
t,s1

= H0
ci ,s1

tci =

[
R0

ci ,s1
o0

ci

0T
3 1

]
tci (5)

where the rotation (R0
ci ,s1

) is given by

R0
ci ,s1

= R0
t,s0

Rt,s0
t,s1

(6)

and tci equals the position of the needle tip in the circle frame
(Ψci )

tci = [ 0 0 rt 1 ]T . (7)

Fig. 4. (a) As the needle is inserted it bends due to tip force (Ft ) and distributed
load (w(x)). (b) Deflected needle shape after a 90◦ rotation (Φ = 90◦) has been
performed. The tissue boundary, needle tip position, and the location at which
rotation takes place are denoted by x0 , xt , and xr , respectively. The part of the
needle prior to rotation (x0 ≤ x ≤ xr ) is fixed by a series of springs, and tip
force and distributed load are applied for the inserted length (x > xr ).

Needle rotation is performed by rotating around the central
axis of the needle (see Fig. 2(b)). The needle path is predicted
by using needle tip position (5) and orientation (6), and the
parameters characterizing the needle path (radius (rt) and cut-
angle (β)).

B. Mechanics-Based Model

When a needle is inserted into a soft tissue, it is subjected
to needle–tissue interaction forces. These forces have been in-
vestigated by the authors in [11] and [15]. A mechanics-based
model for predicting the in-plane deflection for a needle which
undergoes multiple bends is presented by the authors in [12].
The needle was modeled as a sectioned cantilever beam, and
was able to predict complex in-plane bends. The deflected nee-
dle shape was evaluated using the Rayleigh–Ritz method, and
inputs for the model are a concentrated force at the needle tip
and a distributed load along the needle shaft. The tip force is due
to cutting of a soft tissue at the needle tip. The distributed load
models the support of the needle provided by the surrounding
tissue. Deflection with multiple bends is modeled by fixing the
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Fig. 5. Flowchart shows the procedure of using an array of Fiber Bragg Grating (FBG) sensors to reconstruct the 3-D needle shape. The needle has a number (n)
of FBG-sets along its shaft (FBG1 , . . . , FBGn ), which consist of three FBG sensors each. These are used to measure the axial strain (εa , εb and εc ) in the needle
when it bends, and from this the needle curvature (κ(n)) and its direction (ϕ(n)) are evaluated. Interpolation is performed to compute the continuous curvature
(κ(s)) and its direction (ϕ(s)) (position along the needle is denoted by s), and these are used to reconstruct the needle shape.

needle after each rotation with a series of springs, and the next
bend is calculated using the tip force and distributed load.

In this study, the mechanics-based model presented in [12] is
modified to predict 3-D needle deflection. Since the needle is
cylindrical and thus, symmetrical, 3-D deflection can be calcu-
lated by separating needle deflection (v(x)) for the two planes
(vxy (x) and vxz (x)) of deflection. The deflection at a position
(x) along the needle shaft is given by

v(x) =
[

vxy (x)
vxz (x)

]
. (8)

The needle is modeled as a cantilever beam, where it is held
in a holder at the base (xb ) as shown in Fig. 4. Also, shown are
the tip force (Ft) and the distributed load (w(x)). Needle inser-
tion is modeled by applying tip force and distributed load each
time after a rotation of the needle is performed (see Fig. 4(a)).
When needle rotation is performed, the part of the needle prior
to rotation (x0 ≤ x ≤ xr ) is fixed by a series of springs (see
Fig. 4(b)). This means that after each needle rotation, the needle
is modeled to bend in plane. The direction in which the tip force
and distributed load are applied to the needle depends on the
rotation angle (Φ) of the needle.

The deflected needle shape is evaluated using the Rayleigh–
Ritz method, using tip force and distributed load as inputs. The
Rayleigh–Ritz method is a variational method based on the
principle of minimum potential energy [16]. The total potential
energy (Π) for a mechanical system is expressed as

Π = U − W (9)

where U is the energy stored in the system, and W is the work
done by external forces on the system. However, since needle
deflection is considered in both planes (xy and xz) separately,
the total potential energy can also be expressed independently
for both planes (Πxy and Πxz ) as

Π =
[ Πxy

Πxz

]
=

[
Uxy − Wxy

Uxz − Wxz

]
(10)

where Uxy and Uxz is the stored energy and Wxy and Wxz is
the work done by external forces in the xy-plane and xz-plane,
respectively.

When needle rotation is not yet performed, the needle is not
fixed by springs, and only energy is stored due to transversal

needle bending (U = Ub ). Using Euler–Bernoulli beam theory
[17], the strain energy due to transversal bending (Ub ) is found
to be

Ub =
EI

2

∫ xt

xb

(
d2v(x)
dx2

)2

dx (11)

where E and I represent the Young’s modulus and second mo-
ment of inertia of the needle, respectively. When needle rotation
is performed, energy is also stored in the springs, and the total
stored energy is now expressed as

U = Ub + Us (12)

where Us is the energy stored in the springs, which is defined as

Us =
m∑

k=1

1
2
kv(xk )2 (13)

where v(xk ) is the deflection of the kth spring with respect to
the bent shape, and k is the spring constant. The external forces
acting on the needle are the tip force and the distributed load.
Therefore, the work done by external forces on the system is
the sum of work done by the tip force (Wt) and distributed load
(Wd )

W = Wt + Wd . (14)

The work done by the tip force is defined as

Wt = Ftv(xt) (15)

where v(xt) is the needle deflection at the needle tip. The work
done by the distributed load is given by

Wd =
∫ xt

x0

w(x)v(x) dx. (16)

The Rayleigh–Ritz method requires an assumed displacement
function (va(x)) which satisfies the geometric boundary con-
ditions of the system. A cubic shape function was found to be
suitable to approximate the deflected needle shape. Since the
needle is divided into a number of elements (n), each element
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Fig. 6. Schematic of a Fiber Bragg Grating (FBG) sensor. An FBG sensor
reflects part of the light which is coupled into the fiber, while light of different
wavelength is transmitted. The wavelength of the reflected wavelength is called
the Bragg wavelength (λB ), and depends on the grating period (Λ). The different
plots show the power density spectrum (P ) of ©1 the broad-spectrum input light,
©2 the transmitted light and ©3 the reflected light. A change in temperature or
applying a mechanical (axial) strain on the fiber results in a shift of the Bragg
wavelength (∆λB ).

(i) is described by its own cubic shape function (va,i(x))

va(x) =






va,i(x), xi−1 ≤ x ≤ xi

va,i+1(x), xi ≤ x ≤ xi+1
...

...

va,n (x), xn−1 ≤ x ≤ xn

(17)

where va,i(x) equals

va,i(x) = a0,i + a1,ix + a2,ix
2 + a3,ix

3 . (18)

The assumed displacement functions (17) are substituted for
v(x) in the expressions for stored energy (11)–(13) and work
done on the system by external forces (15)–(16). Since 3-D
needle deflection is separated into the xy-plane and the xz-
plane, the shape function in (17) is defined for both planes
independently. This results in the total system potential energy
(defined in (9)) being a function of the shape functions and
hence, the unknown coefficients

Π = f(vi(x)) = f(a0,i , a1,i , a2,i , a3,i). (19)

The equilibrium of the system is calculated by taking the partial
derivative of the total potential energy with respect to each of
the shape functions’ unknown coefficients

∂Π
∂ak,i

= 0 (20)

for k = 0, 1, 2, 3 and i = 1 . . . n. The unknown coefficients ak,i

are calculated by solving the system of equations obtained in
(20). The deflected needle shape is calculated by substituting the
coefficients back into (17) and (18). The inputs for the model
to calcuate the deflected needle shape are the tip force, dis-
tributed load, and elastic foundation stiffness. In-plane insertion
experiments are performed to evaluate these parameters, and
this is used to predict deflection for an out-of-plane case (see
Section V-B).

III. SHAPE SENSING USING FBG SENSORS

This section discusses the procedure to reconstruct the 3-
D needle shape using sets of three FBG sensors each along

Fig. 7. Section of the needle (of length (dl)) is shown in a bent configuration.
A cross section of the needle is shown in the inset. The needle bends about its
neutral axis, and the distances from the center of the fibers (a, b, and c) to the
neutral axis are denoted by δa , δb , and δc , respectively. The distance from the
center of each fiber to the center of the needle are denoted by ra , rb , and rc .
The angles between fibers a and b, b and c, c and a are denoted by γa , γb , and
γc , respectively.

the length of the needle (see Fig. 5). First, strain is measured
from an FBG sensor, and then needle curvature is calculated
from multiple sets of three FBG sensors along the needle shaft.
Finally, the 3-D needle shape is reconstructed from the curva-
ture.

A. Fiber Bragg Grating Sensor: Theory

An FBG consists of a periodic modulation of the refractive
index in the core of a single-mode optical fiber [18]. It has
the property to reflect light of a specific wavelength, called the
Bragg wavelength (λB ), which is given by

λB = 2neΛ (21)

where ne is the effective refractive index of the grating in the
fiber core and Λ is the grating period (see Fig. 6). The effective
refractive index and the grating period are affected by changes
in mechanical strain and temperature and hence, this results in
a change in the Bragg wavelength (see Fig. 6). Thus, an FBG
can be used as a sensor for either measuring mechanical strain
or temperature. The shift in the Bragg wavelength (∆λB ) due
to applied strain (εx ) and change in temperature (∆T ) is given
by [10]

∆λB = λB



(1 − pe)εx︸ ︷︷ ︸
strain

+ (αΛ + αn )∆T︸ ︷︷ ︸
temperature



 (22)

where pe is a constant which contains the photoelastic contribu-
tions, and αΛ and αn are the thermal expansion coefficient and
the thermo-optic coefficient of the fiber, respectively.

Assuming constant temperature (i.e., ∆T = 0), only the
strain applied to the fiber causes a shift in the Bragg wavelength.
This means that (22) simplifies to

∆λB = λB(1 − pe)εx . (23)

The axial strain (εx ) in (23) can be measured by placing a fiber
with FBG sensors parallel to the longitudinal axis of the needle.
Assuming the needle can be seen as a beam in pure bending



1120 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 19, NO. 4, AUGUST 2014

Fig. 8. 3-D needle shape is reconstructed numerically by approximating the
needle with elements (ds) of constant curvature.

(see Fig. 7), the following relationship exists between the axial
strain in the fiber and the distance (δ) of the fiber to the neutral
axis of the needle [17]:

εx =
ds − dl

dl
=

(ρ − δ) dθ − ρdθ

ρdθ
= − δ

ρ
= −κδ (24)

where κ is the needle curvature, and ρ is its radius of curvature.
Substituting (24) into (23) gives an expression which relates the
shift in Bragg wavelength to needle curvature

∆λB = −λB (1 − pe) κδ. (25)

Using (24) and (25), we now determine the needle curvature,
and its direction from a set of FBG sensors at a position along
the needle shaft.

B. Needle Curvature Calculation

The needle curvature and its direction can be determined by
having multiple FBG sensors (in our case three) at the same
location along the needle shaft (see Fig. 7). The relationship
between the axial strain for a needle in pure bending and the
distance from the neutral axis is given in (24). Thus, the follow-
ing set of equations are derived for the strains at the location
of three fibers (denoted by a, b, and c) at a cross section of the
needle (see Fig. 7):

εa = −κδa = −κra sin(ϕ) + ε0

εb = −κδb = −κrb sin(ϕ + γa) + ε0

εc = −κδc = −κrc sin(ϕ + γa + γb) + ε0 (26)

where ϕ is the angle between ra and the neutral axis (see Fig. 7),
and indicates the direction of the curvature. A bias may be
present in the measured strains due to a change in temperature
during the experiment, or due to external forces acting on the
needle (e.g., needle–tissue interaction forces during insertion).
In (26), this bias is denoted by ε0 , and is assumed to be equal
for each FBG sensor in a set. The position (ra , rb , and rc ) and
orientation (γa , γb , and γc ) of the FBG sensors are assumed to
be known and constant (i.e., the neutral axis is always assumed
to be at the center of the needle). By solving the set of equations
(26), the unknown parameters (needle curvature (κ) and its
direction (ϕ), and the bias (ε0)) are determined.

C. 3-D Needle Shape Reconstruction

Continuous needle curvature (κ(s)) and its direction (ϕ(s))
are used to reconstruct the 3-D needle shape (see Fig. 5). For

Fig. 9. Experimental setup consists of ©1 a linear stage which allows insertion
of ©2 the needle into ©3 a gelatine phantom, and rotation of the needle during
insertion. Two cameras are used to track the needle tip in the ©4 xz-plane and
the ©5 xy-plane after needle insertion.

small deflections, the needle shape can be calculated by integrat-
ing the curvature ( d2 v

dx2 ) twice. However, for large deflections,
this method cannot be used since it does not account for deflec-
tion along the longitudinal axis of the needle (i.e., it is assumed
that x = s). Therefore, the needle shape is reconstructed using a
numerical method which approximates the needle with a num-
ber (k) of elements (ds) of constant curvature (see Fig. 8). Con-
tinuous needle curvature and its direction are first discretized
according to the number of elements

κ(s) → κ(i)

ϕ(s) → ϕ(i) (27)

where κ(i) and ϕ(i) are the discretized curvature and its
direction of the ith element (where i = 1, . . . , k), respectively.
The direction in which the needle bends is determined by the
direction of needle curvature. The element frames (Ψi) are ro-
tated by ϕ(i) around the x-axis such that each element is oriented
according to the direction of curvature. Discretized needle cur-
vature (κ(i)) is used to determine the origin of the frame (pi+1)
for the next element (see Fig. 8). This requires the angle (dθi),
which is related to needle curvature (κ(i)) by

dθi =
ds

ρi
= κ(i)ds (28)

where ρi is the radius of curvature. The origin (pi
i+1) of the next

frame (Ψi+1), expressed in the current frame (Ψi) is calculated
by

pi
i+1 = [ dx 0 dz ]T

= [ ρi sin(dθi) 0 −(ρi − ρi cos(dθi)) ]T . (29)

Finally, a homogeneous transformation (H0
i ) is performed to

calculate the position of the origin in the global coordinate
frame (Ψ0)

[
p0

i+1

1

]
= H0

i

[
pi

i+1

1

]
=

[R0
i p0

i

0T
3 1

][
pi

i+1

1

]
(30)

where p0
i and R0

i are the position and orientation of the current
element frame (Ψi) expressed in the global coordinate frame,
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Fig. 10. (a) Photograph of the experimental needle with integrated fibers
(FBG-needle). The needle is fixed in a holder which is mounted on the nee-
dle insertion device. ©1 –©4 The locations of the four Fiber Bragg Grating-sets
(FBG1 , FBG2 , FBG,3 and FBG4 ) along the needle shaft. ©5 Microscopic pho-
tograph of the tip with bevel angle (α = 30◦). ©6 Top view of the tip. The
grooves which hold the fibers are also shown. (b) Cross-sectional view of the
needle showing the grooves in which the fibers are glued along the entire length
of the needle.

respectively. By repeatedly doing the calculations in (28)–(30)
for all elements, the 3-D needle shape is reconstructed.

IV. MATERIALS AND METHODS

This section describes the experimental setup and the needle
equipped with FBG sensors (FBG-needle). Experiments to cal-
ibrate the position and orientation of the FBG sensors along the
needle are also described.

A. Experimental Setup

A setup was designed for needle insertion into a soft tis-
sue [15]. This setup has 2 DOFs: insertion of the needle along its
longitudinal axis, and rotation about the same axis (see Fig. 9).
Gelatine is used as a soft-tissue simulant. Phantoms are made
by dissolving gelatine powder (Dr. Oetker, Bielefeld, Germany)
into water, while heating it up to 40 ◦C. This mixture is then
placed in a refrigerator for about 12 h at a temperature of 7 ◦C
to allow the gelatine to stiffen. Insertion experiments are per-
formed immediately after taking the gelatine phantom from the
refrigerator. The stiffness of the gelatine phantom depends on
the mass ratio between the gelatine powder and water. A per-
centage of 14.9% gelatine and 85.1% water results in a phantom
with a Young’s modulus of 35 kPa. The Young’s modulus of the
phantom is determined by performing a uniaxial compression

Fig. 11. Calibration experiment is performed to determine the position and
orientation for each Fiber Bragg Grating (FBG) sensor. A known curvature (κ)
and its direction (ϕ) are inputs for the experiment. This results in a sinusoidal
strain measured by the FBG sensors. A sinusoidal function is fitted to the
measured strains, and from this the position (r∗, for ∗ = a, b, c) and orientation
(γ∗, for ∗ = a, b, c) of each FBG sensor is determined. The representative plot
depicts the strains measured by FBG1 for a tip deflection of 10 mm (∆y1 =
10 mm). The sinusoidals fitted to the measured strains are also shown.

test on samples of the phantom using the Anton Paar Physica
MCR501 (Anton Paar GmbH, Graz, Austria) rheometer. This
value is similar to the elasticity of human breast tissue [19].
Each needle insertion is performed at a different location than
the previous insertion, since gelatine is damaged after an inser-
tion. Two charge coupled device (CCD) cameras are mounted at
orthogonal angles to determine needle deflection in the xy-plane
and xz-plane. A corner-detection algorithm is used to track the
needle tip in the recorded videos after needle insertion [15].

B. FBG-Needle Fabrication

A nitinol needle is used for the experiments. Nitinol has a
Young’s modulus of 75 GPa, which makes it more elastic than
traditional steel needles (E = 200 GPa). Thus, nitinol is more
suitable for needle steering purposes, since it allows for larger
curvature bends. A nitinol wire with a length of 172 mm (φ
1.0 mm) is used for the fabrication of the FBG-needle. The
needle is shown in Fig. 10(a). Four FBGs are etched into three
fibers (φ 250 µm), resulting in a total of 12 FBGs. The last
FBG-set (FBG4) is at 18 mm from the needle tip, while the
other FBG-sets are spaced 30 mm from each other. In order to
integrate the fibers on the needle, three grooves are milled along
the length of the needle at 120◦ angles from each other (see
Fig. 10(b)). The fibers are glued into the grooves using X60 two
component adhesive (HBM Germany, Darmstadt, Germany).
Finally, a bevel angle of 30◦ is polished at the needle tip.

The fibers are connected to a Deminsys Pyton interrogator
(Technobis, Uitgeest, The Netherlands) which measures the re-
flected wavelength for each of the 12 FBGs. The measured
wavelength is processed at a rate of 100 Hz. The interroga-
tor in turn is connected to a computer via an ethernet cable, and
communication is done using a UDP-protocol. The relevant sen-
sor information is retrieved from the UDP-packets using C++.
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TABLE I
CALIBRATED VALUES FOR THE POSITION (r∗) AND ORIENTATION (γ∗) FOR EACH FIBER BRAGG GRATING (FBG) SENSOR (∗ = a, b, c)

IN THE FOUR DIFFERENT FBG-SETS (FBG1 , FBG2 , FBG3 , AND FBG4 ). MEAN VALUES AND STANDARD DEVIATION (IN BRACKETS) ARE REPORTED BELOW

Fig. 12. Experimental setup used for applying free-space needle deflection
at two different locations along the needle shaft: Near (6 mm) the needle tip
and at 67 mm from the base of the needle. Total needle length is 114 mm.
(a) Top view of the setup where deflection in the y-direction is shown (∆y2
and ∆y1 ). (b) Side view of the setup where deflection applied in the z-direction
(∆z2 and ∆z1 ) is shown. Three experimental deflection cases are considered:
Case I (in-plane – single bend), Case II (in-plane – double bend), and Case III
(out-of-plane).

Postprocessing of the experimental data is done in MATLAB
(MathWorks, Inc., Natick, MA, USA).

C. FBG-Needle Calibration

Each FBG sensor measures a strain which is related to needle
bending, given by the needle curvature (κ), and its direction (ϕ).
In order to determine the needle curvature from the measured
strains, the position (ra , rb and rc ) and orientation (γa , γb and
γc ) of each FBG sensor needs to be known. Due to limited
accuracy during the fabrication process of the FBG-needle (e.g.,
glueing is done manually), the position and orientation of the
FBG sensors are not exactly known.

A calibration experiment is performed to determine the posi-
tion and orientation of each FBG sensor. This is done by apply-
ing a known displacement at the tip of the needle, while rotation
is applied at the needle base. This rotation causes the direction of
curvature to change and hence, results in a sinusoidal strain for
each FBG sensor as shown in (26). The strains measured by the
three FBG sensors are shown in Fig. 11 for FBG1 . The applied
tip deflection for this experiment is 10 mm. A sinus function is
fitted to the measured strain. The amplitude of the sinus equals
the product of curvature and distance of the fiber from the center
of the needle (i.e., κr∗). Using Euler–Bernoulli beam theory, the
curvature along the length of the needle is calculated from the
applied tip deflection, and this is used to determine the position

TABLE II
ERRORS IN THE RECONSTRUCTED NEEDLE SHAPE USING FIBER BRAGG

GRATING (FBG) SENSORS FOR DEFLECTION IN A FREE SPACE (CASES I–III)

(r∗) of each FBG sensor. The angles (γ∗) between the fibers are
determined from the differences in phase between the measured
strains (see Fig. 11). The experiment is performed for different
tip deflections (10, 20, and 30 mm), resulting in the positions
and orientations of the FBG sensors as listed in Table I. These
values are used to calculate needle curvature for the experiments
in the next section.

V. RESULTS

This section describes the experiments conducted with the
FBG-needle. The needle shape is reconstructed for several ex-
perimental cases. These include both in-plane and out-of-plane
deflection for free space, and insertion within gelatine phan-
toms. The kinematics-based and mechanics-based models are
also validated with the soft-tissue simulant.

A. Free-Space Deflection

An experimental setup is built to apply deflection at two
different locations along the needle shaft (see Fig. 12). The
following experimental cases are considered for needle shape
reconstruction using FBG sensors in free-space.

I. In-plane—single bend: Deflection is applied near the nee-
dle tip (x = 108 mm) in the y-direction (∆y1). This results
in an in-plane deflection with a single bend. ∆y1 is varied
from −25 to +25 mm with a resolution of 5 mm.

II. In-plane—double bend: Deflection is applied along the
needle shaft (x = 67 mm) and near the needle tip (x
= 108 mm) in the y-direction (∆y2 and ∆y1 , respec-
tively). This results in an in-plane deflection with a double
bend. ∆y2 is fixed at −5 mm, while ∆y1 is varied from
−5 to +5 mm with a resolution of 5 mm.

III. Out-of-plane: Deflection is applied along the needle shaft
(x = 67 mm) and near the needle tip (x = 108 mm) in
both the y-direction and z-direction (∆y2 and ∆z2 , and
∆y1 and ∆z1 , respectively). This results in an out-of-plane
deflection. ∆y2 and ∆z2 are fixed at −5 and 0 mm, while
∆y1 and ∆z1 are varied from −5 to −10 mm and from
+5 to +10 mm, with a resolution of 5 mm, respectively.
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Fig. 13. Needle curvature and deflection for the experimental cases in a free space: (a) and (b) Case I (in-plane—single bend), (c) and (d) Case II (in-plane—double
bend) and (e) and(f) Case III (out-of-plane). The discrete curvature values are measured by the Fiber Bragg Grating (FBG) sensors. Linear spline interpolation is
used to compute continuous needle curvature. The needle shape is reconstructed using the method presented in Section III-C, and is compared to the theoretical
deflection using beam theory. For the purposes of clarity in Case III, deflection is separately shown in the xy-plane and xz-plane.

Discrete needle curvature is measured by the four FBG-sets,
and the results are shown in Fig. 13(a), (c), and (e). Continuous
needle curvature is computed using linear spline interpolation,
and theoretical curvature is calculated using beam theory. For
all deflection cases it is observed that there is a difference in
measured needle curvature using FBG sensors, and theoretical
curvature near the base of the needle. A cause for this difference
may be the assumption of zero needle slope at the needle base,
which is used in calculating theoretical needle curvature. There-
fore, a nonzero slope at the base of the needle is taken into
account for the reconstruction of the deflected needle shape.

Needle deflection is calculated using the method described in
Section III-C. The reconstructed needle shapes are compared to
theoretical deflection (see Fig. 13(b), (d), and (f)). The errors for
the reconstructed needle shape are calculated and provided in
Table II. The reconstructed deflection using FBG sensors shows
close agreement with Case I and Case II, resulting in maximum
errors of 0.20 and 0.51 mm along the needle shaft, respectively.
The error at the needle tip is 0.20 mm for Case I and 0.38 mm
for Case II. The errors for the out-of-plane experiments (see
Case III) are larger than the errors for the in-plane experiments.
Maximum errors for Case III along the needle shaft are 1.66 and
0.58 mm, and the error at the needle tip are 1.22 and 0.46 mm
for the xy-plane and xz-plane, respectively.

These results indicate that errors in reconstructed needle
shape become larger for complex deflections (i.e., multiple
bends and out-of-plane bending). These errors are dependent

on the needle curvature approximation technique. Linear spline
interpolation may not be sufficient to approximate needle cur-
vature, as can be seen from the nonlinear curvature for Case III
near the needle base (see Fig. 13(e)). Furthermore, we assume
that the neutral plane of bending is always at the needle center
due to needle symmetry. But due to the grooves in the needle,
the needle may bend asymmetrically. Hence, the position of the
FBG sensors are not constant during bending and this causes
errors in the calculated needle curvature.

B. Needle Insertion into Gelatine Phantoms

The FBG-needle is inserted 115 mm into the gelatine phantom
at 10 mm/s. The following experimental cases are considered
to evaluate both the needle shape reconstruction using FBG
sensors, and also validation of the kinematics- and mechanics-
based models.
IV. In-plane—single bend: The needle is inserted into the gela-

tine phantom without rotation. This results in an in-plane
deflection with a single bend.

V. In-plane—double bend: The needle is inserted into the
gelatine phantom with a 180◦ rotation at an insertion
distance of 35 mm. This results in an in-plane deflection
with a double bend.

VI. Out-of-plane: The needle is inserted into the gelatine phan-
tom with a 90◦ rotation at an insertion distance of 55 mm.
This results in an out-of-plane deflection.
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Fig. 14. Results for the needle insertion in gelatine. (a) Measured needle curvature using Fiber Bragg Grating (FBG) sensors and the computed linear spline
interpolant are shown for Case IV (in-plane—single bend) and Case V (in-plane—double bend). (b) Reconstructed needle shape using FBG sensors compared
with experimental deflection using camera images for Case IV and Case V. (c) and (d) Reconstructed needle shape is compared with experimental deflection for
Case VI (out-of-plane) in the xy-plane and xz-plane, respectively. (e) and (f) Predicted needle shape using the kinematics-based and mechanics-based models is
compared with experimental deflection for Case VI (out-of-plane) in the xy-plane and xz-plane, respectively. The errors in reconstructed and predicted needle
shape are provided in Table III.

The curvature measured by the FBG sensors for Cases IV
and V are shown in Fig. 14(a). Linear spline interpolation is
used to compute continuous needle curvature from the discrete
curvature values measured by the FBG sensors. The curvature is
almost constant until FBG3 , and then the curvature decreases at
the needle tip. The curvature for the double bend insertion (see
Fig. 14(a)) looks similar to double bend deflection in free space
(see Fig. 13(c)). However, as opposed to the deflection in a free
space, we do not have a direct method to compare the measured
needle curvature with the theoretical curvature.

The reconstructed needle shapes are compared to tip positions
that are tracked using a set of CCD cameras [20]. The deflections
for Cases IV and V are shown in Fig. 14(b). The resulting
deflection for the out-of-plane insertion are shown in Fig. 14(c)
and (d) for the xy-plane and xz-plane, respectively. The errors
between reconstructed needle shapes using FBG sensors and
deflections determined from camera images are presented in
Table III. The maximum errors in reconstructed needle shape
are 0.57 and 0.53 mm for Cases IV and V, respectively. The
maximum errors for Case VI are 0.47 mm in the xy-plane and
0.74 mm in the xz-plane.

The single and double bend experimental deflections (Case IV
and Case V, respectively) are used to fit the parameters of both
the kinematics-based model and mechanics-based model [12].
The bending radius of curvature rt is evaluated by fitting a circle
to the single bend deflection (see Case IV). The double bend
(see Case V) experimental deflection is used to determine the
cut-angle (β). Three insertions are performed for both the single
and double bend cases. The radius of curvature and cut angle are

calculated to be 366.9 mm (σ =13.1 mm) and 2.6◦, respectively.
These are provided as inputs to the kinematics-based model.

The mechanics-based model requires the tip force Ft and dis-
tributed loads (w(x)) as inputs. Furthermore, the stiffness K0
of the elastic foundation also needs to be known. The tip force
was determined in a previous study for a φ 1 mm needle and
in a gelatine phantom of the same composition [15]. The tip
force was found to be 0.40 N. The distributed load is evaluated
by fitting the model to experimental deflection data. This fit-
ting is done by minimizing the error between simulated needle
deflection and experimental needle deflection for both the single
and double bend cases. It is found that a cubic load profile gives
the best fit with the experimental deflection [12]. An optimized
(minimizing the deflection error between the experiments and
the model for the double bend case) value of 0.3 N/mm2 is
chosen for the stiffness of the elastic foundation.

Needle deflection is predicted for Case VI using both the
kinematics-based and mechanics-based models. The resulting
needle deflections in the xy-plane and xz-plane are shown in
Fig. 14(e) and (f), respectively. The errors for the predicted
needle shapes are provided in Table III. The maximum errors
for the kinematics-based model are larger than the errors for
the mechanics-based model: 2.20 and 3.77 mm, and 1.72 and
2.20 mm for deflections in the xy-plane and the xz-plane, re-
spectively. This could be attributed to the assumption that the
cut angle and radius of curvature are constant throughout in-
sertion. In Fig. 14(f), we observe that after needle rotation the
kinematics-based model assumes the needle continues in the
same direction. The mechanics-based model accounts for tissue
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TABLE III
ERRORS IN THE RECONSTRUCTED NEEDLE SHAPE USING FIBER BRAGG
GRATING (FBG) SENSORS, AND PREDICTED NEEDLE SHAPE USING THE
KINEMATICS-BASED (KB) AND MECHANICS-BASED (MB) MODELS FOR

INSERTIONS IN THE GELATINE PHANTOM (CASES IV–VI)

relaxation (via the elastic foundation) and hence, this results in
a change in slope when continuing insertion. The large error in
predicted deflection using the kinematics-based model may be
explained by the fact that the radius of curvature is not constant
when bending out of plane.

VI. DISCUSSION

A prototype of a Nitinol needle with an integrated array of 12
FBG sensors is introduced in this study. These sensors are used
to measure axial strain at several locations along the needle shaft,
and this is used to calculate needle curvature. The 3-D needle
shape is reconstructed from needle curvature. In this study, nee-
dle curvature is determined at four discrete locations using four
sets of FBG sensors, consisting of three sensors each. Thus, a
limited number of measurement points enables us to accurately
approximate needle curvature for simple bending cases (i.e., sin-
gle bend). For cases with multiple bend deflections, more FBG
sensors are required in order to better approximate needle cur-
vature. Linear spline interpolation of the measured curvatures
using FBG sensors proved to be effective for single bend and
double bend planar cases. However, for more complex bends
(i.e., out-of-plane cases), we observed larger discrepancies be-
tween the reconstructed needle shape and deflection measured
using camera images. These errors could be attributed to the
limited number of FBG sensors and usage of a linear spline
interpolation technique.

This study demonstrates the feasibility of using FBG sensors
to accurately reconstruct the shape of the needle in a soft tissue.
Information about needle shape during a surgical intervention
(e.g., biopsy) can be used in algorithms for robotically steer-
ing flexible needles. Besides feedback about the current needle
shape, such algorithms could benefit from models which provide
information about the future needle path. Therefore, kinematics-
based and mechanics-based models are presented in this study
which predict the 3-D needle path for a flexible needle with an
asymmetric (bevel) tip during insertion into a soft tissue. The
mechanics-based model has shown to predict the needle shape
more accurately for the out-of-plane insertion case than the
kinematics-based model. However, the kinematics-based model
is preferred, since it is easier to implement in a real-time con-

trol system for needle steering. In order to predict the needle
shape using the kinematics-based model, more investigation is
required about the radius of curvature and cut angle when the
needle bends out of plane.

A. Conclusion

The needle shape is reconstructed for deflections applied in
a free space, both for in-plane and out-of-plane needle deflec-
tion. Maximum errors for reconstruction in the free space are
0.20 mm (in-plane deflection with single bend), 0.51 mm (in-
plane deflection with double bend), and 1.66 mm (out-of-plane
deflection). Experiments are also performed in which the needle
is inserted into a gelatine phantom (both in-plane and out-of-
plane deflections). Reconstructed needle shapes are compared to
experimental deflections using camera images. Maximum error
in deflection for reconstruction using FBG sensors is 0.74 mm.
These errors are comparable to results obtained in earlier studies
where the shape of a surgical needle was reconstructed using
FBG sensors [7], [8]. However, those studies did not consider
out-of-plane needle deflection nor did they insert the needle into
a soft-tissue simulant.

We have also presented 3-D kinematics-based and mechanics-
based models for predicting needle deflection. Model parame-
ters are fitted using in-plane experimental data. The models are
validated using camera images as reference, but are also com-
pared to results from FBG sensors. The kinematics-based model
has a maximum error of 3.77 mm in predicted needle shape. The
mechanics-based model shows closer agreement with experi-
mental deflection: a maximum error of 2.20 mm is observed.

B. Future Work

We will investigate fabricating a prototype with more than
four sets of FBG sensors which enables us to measure curvature
at more locations along the needle shaft. We will also explore
other interpolation methods for complex, out-of-plane, bending
cases. In the current study, uncertainties introduced during the
needle fabrication process (e.g., the effect of glue and optical
fibers on the strain distribution) were neglected. These could also
affect the reconstructed shape and hence, should be investigated
in future studies.

As part of ongoing work, using the presented needle shape
reconstruction technique, Abayazid et al. used the output from
the FBG sensors in real time to steer the needle in 3-D space
to a target in a soft-tissue simulant [21]. In the future, real-
time reconstruction of needle shape using FBG sensors needs
to be combined with the deflection models to enable accurate
robotic needle steering in both soft-tissue simulates and biolog-
ical tissue. Further, for accurate shape reconstruction, data from
FBG sensors can also be coupled to a clinical imaging modality
(such as ultrasound images) in order the track the needle and
also motion of the target during insertion.
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