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Robot-assisted and ultrasound-guided needle insertion systems assist in achieving high targeting accuracy for different applications.
In this paper, we introduce the use of Automated Breast Volume Scanner (ABVS) for scanning different soft tissue phantoms. The
ABVS is a commercial ultrasound transducer used for dlinical breast scanning. A preoperative scan is performed for three-di-
mensional (3D) target localization and shape reconstruction. The ultrasound transducer is also adapted to be used for tracking the
needle tip during steering toward the localized targets. The system uses the tracked needle tip position as a feedback to the needle
control algorithm. The bevel-tipped flexible needle is steered under ABVS guidance toward a target while avoiding an obstacle
embedded in soft tissue phantom. We present experimental results for 3D reconstruction of different convex and non-convex objects
with different sizes. Mean Absolute Distance (MAD) and Dice’s coefficient methods are used to evaluate the 3D shape reconstruction
algorithm. The results show that the mean MAD values are 0.30 +0.13 mm and 0.34 £0.17 mm for convex and non-convex shapes,
respectively, while mean Dice values are 0.87+0.06 (convex) and 0.85+0.06 (non-convex). Three experimental cases are performed

to validate the steering system. Mean targeting errors of 0.54 %
gelatin phantom, biological tissue and a human breast phantom,
approach is sufficient for targeting lesions of 3 mm radius that can
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1. Introduction

Needle insertion into soft tissue is a minimally invasive
procedure used for diagnostic and therapeutic purposes
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0.24, 1.50 +£0.82 and 1.82 +0.40 mm are obtained for steering in

respectively. The achieved targeting errors suggest that our
be detected using clinical ultrasound imaging systems.

such as biopsy and brachytherapy, respectively. Examples
of diagnostic needle insertion procedures are liver and
lung biopsies to detect tumors [1, 2]. Therapeutic
applications of needle insertion include brachytherapy of
cervical, prostate and breast cancers [3]. Imaccurate
placement may result in misdiagnosis and unsuccessful
treatment during biopsy and brachytherapy, respectively.
Errors in needle placement can be caused by inaccurate
target localization. Initial target localization is of utmost
importance for accurate insertions. Imaging modalities
such as ultrasound, magnetic resonance (MR) and com-
puted tomography (CT) are often used during needle
insertion procedures to determine the positions of the
needle and the target [4]. X-ray based imaging modalities
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such as fluoroscopy, CT and mammography are used to
localize lesions [5]. Such imaging techniques expose the
patient to undesirable doses of ionizing radiation [6]. MR
imaging suffers from low refresh rate and incompatibility
with magnetic materials and tools [7]. The spatial reso-
lution of three-dimensional (3D) ultrasound images is
limited [8] with respect to CT and MR, therefore two-
dimensional (2D) ultrasound is commonly used since it is
real time, inexpensive and does not expose the patient to
harmful radiations. Needle-guides are usually attached to
the ultrasound transducer to facilitate needle visualiza-
tion, and hence control during insertion applications
such as biopsy [9]. Robotic assistance for needle-guid-
ance provides improved lesion localization and targeting
accuracy [10].

1.1. Robotic control of ultrasound transducers

Several researchers designed robotic ultrasound systems
for lesion and needle detection insertion proce-
dures [11-13]. An example of an early study that
explores the advantage of robotic ultrasound systems is
the development of Hippocrate, a robotic arm for medical
applications with force feedback [14]. One of the appli-
cations of Hippocrate is the manipulation of an ultra-
sound transducer on a patient’s skin to automatically
reconstruct the 3D profile of arteries. Nadeau and Krupa
developed a visual servoing method to control an in-
dustrial robotic system equipped with an ultrasound
transducer [15]. Janvier et al. presented an ultrasound
system to 3D reconstruct the shape of in vitro stenoses
using an industrial robotic arm with force feedback [16].
Chatelain et al. developed a real-time needle tracking
method by servoing images obtained from a 3D ultra-
sound transducer [17]. Vrooijink et al introduced a
three-degrees-of-freedom Cartesian robot for controlling
the ultrasound transducer for scanning flat surfaces and
3D needle tip tracking [12]. Abayazid et al designed a
rotational mechanism using force/torque feedback that
controls a 2D transducer to scan curved surfaces and
developed an algorithm to localize the target and re-
construct its 3D shape [18]. The reconstruction was done
by computing the convex hull of the point cloud obtained
with the contour points of each planar cross section.
However, this algorithm cannot reconstruct the shapes of
non-convex tumors or anatomical obstacles. In the pre-
viously mentioned studies, robotic devices were used to
control the ultrasound transducer during the scanning
process. It is a challenging task to bring these mechanical
and industrial robotic systems to the clinical environ-
ment due to safety restrictions. In the current study, we
propose a system that can replace such robotic devices
by a commercial ultrasound transducer which is the
Automated Breast Volume Scanner (ABVS) (Fig. 1). This
transducer is currently used in clinical settings, and it

ABVS ultrasound
transducer

ol

Needle

Soft-tissue phtom Needlebevelip

Fig. 1. The experimental setup shows the needle insertion
device ND and the ABVS. The ultrasound image is used for
three-dimensional needle tracking. The needle is inserted into a
soft tissue phantom including biological tissue. The ABVS is
used for preoperative scanning of the phantom and intrao-
perative bevel-tipped needle tip tracking. The associated cus-
tom-built electronics is used to synchronize the ABVS with the
reconstruction and steering systems.

performs an automated scan of the human breast to
generate a 3D volume of the scanned region. Further-
more, the proposed system adapts the commercial ul-
trasound system for needle tracking during the insertion
procedure. More importantly, our system can be used not
only for breast biopsy but also adapted for other various
types of needle-based procedures.

1.2. Flexible needle steering

Flexible needles are introduced as they improve the
steerablity and allow maneuvering around sensitive and
hard tissue such as blood vessels and bones, respective-
ly [19-21]. Such needles commonly have bevel tips that
naturally deflect during insertion into soft tissue due to
the asymmetric forces acting on their tips [22]. The di-
rection of needle deflection is controlled by rotating the
needle about its insertion axis to steer it towards a cer-
tain target location. In previous studies, control algo-
rithms were developed for needle steering in 2D and
3D space. DiMaio and Salcudean presented a path plan-
ning and control algorithm that related the needle motion
at the base (outside the soft tissue phantom) to the tip
motion inside the tissue in 2D space [23]. Vrooijink et al.
introduced an ultrasound-guided needle steering system
using duty-cycle technique where the needle is inserted
at constant velocity [12]. The transducer scanning ve-
locity was controlled to keep the needle tip visible in the

1640005-2



ultrasound image. In the current study, we are using a
commercial ultrasound transducer which scans with a
constant velocity. Therefore, we apply a closed-loop con-
trol to adjust the insertion velocity in order to keep the
needle tip always in the image-plane for steering and path
planning. Several 3D path planning algorithms have been
introduced based on Rapidly exploring Random Trees
(RRTs) for obstacle avoidance [24, 25]. The algorithm
developed by Patil and Alterovitz is integrated to compute
feasible collision-free paths in 3D-space [25].

1.3. Contributions

In the current study, we develop a system (Fig. 1) that
performs ultrasound scanning of various soft tissue
phantoms to localize and reconstruct different target and
obstacles shapes. The ABVS system then tracks a bevel-
tipped flexible needle intraoperatively to steer it toward
the localized target in 3D space while avoiding the
obstacles. The algorithms are validated by conducting
insertion experiments into a soft tissue phantom and
biological tissue (chicken breast and sheep liver) while
avoiding virtual and real obstacles. We also steer the
needle in a breast phantom used to train clinicians for
ultrasound biopsy procedures. This breast phantom has
similar mechanical and ultrasound visual properties of
human breast tissue, and it also contains amorphous
lesions. The major contributions of this work include:

e Replacing mechanical and industrial robotic devices
used for ultrasound transducer control with patient-
friendly commercial device for target localization and
shape reconstruction.

e Developing algorithms for preoperative target localiza-
tion, and reconstruction of non-convex target geometries.

o Adapting a clinically approved ultrasound imaging sys-
tem (ABVS) to be used to 3D track the needle intrao-
peratively for various needle-based clinical procedures.

e Experimental evaluation of needle steering towards a
physical target while avoiding an obstacle in different
soft tissue phantoms.

2. Target Localization and Shape Reconstruction

In this section, we present the algorithms developed for
3D target localization and shape reconstruction. Evalua-
tion methods are also described to validate the proposed
reconstruction algorithm. The ABVS system is used to
scan soft tissue phantoms containing targets with vari-
ous 3D geometries and sizes.

The soft tissue phantom is preoperatively scanned using
a Siemens Acuson S2000 (Siemens AG, Erlangen, Germany)
ultrasound device to localize the target and reconstruct its
shape. Ultrasound images are obtained using the ABVS
system (Siemens Medical Solutions, Mountain View, CA,

3D Needle Steering Using ABVS

USA). The ABVS scanner is composed of a cage that contains
a transducer (14LBV). This transducer translates automat-
jcally using a linear stage with constant velocities of
1.55 mmy/s or 2.55 mm/s. The transducer has 768 elements
and a frequency bandwidth of 5-14 MHz. The width of the
transducer is 154 mm and its maximum display depth is
60mm. The frame rate of the system is 25 frames per
second, and its voxel size is 0.09 x 0.16 x 0.44 mm? along
the axial, lateral and elevation planes, respectively.

2.1. Registration and synchronization

The ultrasound transducer is initially located in the middle
position of the ABVS cage then it moves to one ends of the
cage. The scan starts as soon as the transducer hits the end
of the cage, and the scan is completed as the transducer
hits the other end. The ABVS system is adapted by fixing
internally two buttons on each end of the cage. These
buttons are connected to a microcontroller board (Ardu-
ino Uno, Arduino, Italy) to determine the start time of the
scan. The ultrasound transducer presses the buttons when
it reaches one end of the cage. As soon as the button is
released, which means that the transducer started moving
from one end to the other, the algorithm starts capturing
the images and assigns them to their corresponding
transducer positions. The images are captured every
40 ms. The transducer position of each captured image
frame is determined using the starting time and the
scanning velocity. The output data is then processed for
target localization and shape reconstruction.

2.2. Localization

The images and their locations are analyzed to determine
the frames.that include the target. First, each image is
inverted, and then the contrast is enhanced using con-
trast-limited adaptive histogram equalization [26]. The
images are then converted to a binary image by adaptive
thresholding. Closed object selection is performed to
remove speckles and other image artifacts, resulting in
the segmented cross-sectional views of the target. The
centroid of the target cross section of each image frame is
calculated using image moments [27, 28]. The centroid of
the target volume is computed using all the centroids of
the image frames that contain the target. The contour
points of each segmented image is extracted. The target
reconstruction is accomplished using the point cloud
representing the contour coordinates of the segmented
ultrasound images. The point cloud is then used to re-
construct the 3D target shape.

2.3. Target reconstruction algorithm

The algorithms presented in our previous study could
only reconstruct convex 3D target shapes [18]. In the
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current study, we developed an algorithm that can re-
construct different non-convex and convex volumes.
First, the points of each image are sorted to draw the
contour of the 2D section by linking each point to the next
one. The outer points of the convex hull are deter-
mined [29]. Points that are not part of the convex hull are
used for minimizing the length of the contour when it is
possible. The step of minimizing the contour length allows
the algorithm to reconstruct non-convex shapes. This
results in connected points in each image frame (cross
section of the target) (Fig. 2(c)). The consecutive contours
are then connected to produce triangular meshing ele-
ments. Each triangular meshing element consists of one
segment on one contour and two segments linking this
contour to the next one. The sorting of points in the pre-
vious step facilitates the meshing process. The heuristic
method presented by Ganapathy and Dennehy is used to
connect different contours and forming the meshing ele-
ment [30]. The meshing elements are then added to the
surface connecting the contours (Fig. 2(d)). In the last
reconstruction step, the two planar cross sections at both
ends of the volume are meshed to close the 3D shape. The
target reconstruction algorithm is evaluated by quantify-
ing the spatial agreement of different convex and non-
convex 3D shapes with the 3D drawing of the molds
designed for making the shapes. Dice’s coefficient and
Mean Absolute Distance (MAD) methods are used for
shape comparison (Fig. 2(e)) [31, 32]. The results of
the evaluation methods are presented in Section 4. The
location of the reconstructed target is used as an input to
the control algorithm to steer the needle towards
the target.

3. 3D Needle Steering

The ultrasound-based needle tracking algorithm pro-
vides the path planning and needle control algorithms

Ultrasound image frame

Cross-sectional ultrasound view
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with the tip position during insertion. In this section, the
3D needle tip tracking and control algorithms are de-
scribed.

3.1. Needle tip tracking

The ABVS ultrasound system scans the phantom with a
constant velocity. The ultrasound images are used to vi-
sualize the cross-section of the needle tip during inser-
tion. A proportional-integral-derivative (PID) controller
is implemented to keep the needle tip in the ultrasound
image frame by adjusting the needle insertion velocity.
The needle tracking algorithm is divided into two main
parts. First, the image processing part that localizes the
needle tip in ultrasound images. Second, the needle ve-
locity control that synchronizes the needle and trans-
ducer velocities.

3.1.1. Image processing

The ultrasound transducer is placed perpendicular to the

needle insertion direction (Fig. 3). The resulting ultra-
sound image shows a radial cross-sectional view of the
needle. An image processing algorithm is used to localize
the needle in the ultrasound images. The image proces-
sing is divided to pre-processing and post-processing
phases. In the pre-processing phase, the ultrasound
images are enhanced and filtered to eliminate speckles
using a sequence of segmentation techniques, including
Gaussian filtering, dilation and thresholding. In the post-
processing phase, the contours of all objects in the image
are determined. These objects include the needle cross
section and other artifacts that appear mainly in bio-
logical tissue. Fourier descriptors are used to extract the
needle contour features in order to distinguish the nee-
dle from other artifacts [33]. The contour features are
extracted from a sample image prior to the experiments.

Contouring

Meshing 3D shape comparison

©

(e)

Fig. 2. (Color online) Target localization and shape reconstruction. (a) The soft tissue phantom is scanned and image frames that
contain the target are segmented. (b) The target cross section appears darker than the surrounding tissue in the raw ultrasound

images. (c) The contour points of the target cross section are obtained. The
computed (green “+”). The points of each frame are then connected to define

points are sorted and the centroid of each contour is
the contour shape. The ultrasound images are stacked

together for 3D shape reconstruction. (d) The contours are connected together to form the mesh elements, (e) The 3D recon-
struction algorithm is evaluated by comparing the reconstructed shape (green) with reference 3D shape (greyish) using MAD and

Dice’s coefficient methods.
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Fig.3. (Color online) The needle tip pose is determined in 3D space using a 2D ABVS transducer positioned to visualize the needle
tip where the ultrasound image plane is perpendicular to the needle insertion axis (x-axis). (a) The region of interest that contains
the needle tip is cropped and filtered and then contour of the needle cross section is obtained. The y-coordinate of the needle center
is the midpoint between the maximum and minimum y-coordinate values (green circles) of the points along the contour. Since the
needle radius is known, we subtract the needle radius (r) from the maximum z-coordinate (gray “x”) along the contour to compute
the center of the needle. The needle tip position (red “x”) is an input of the path planning algorithm to generate the optimal needle
path to avoid the obstacle and reach the target. (b) The path planner generates milestones along the path, and the control algorithm
steers the needle using the milestones to move along the planned trajectory.

The needle cross-section contour is then used to localize
its tip as shown in Fig. 3(a).

3.1.2. Velocity control

The ABVS transducer performs breast scans with a
constant velocity of 1.55 mm/s. Therefore, the x-compo-
nent of the needle tip velocity (v, ) has to be controlled
to keep the needle tip in the ultrasound image plane.
Assuming that the needle is not compressed along its
insertion axis, the x-component of the needle tip velocity

(vx,,) is calculated by v, = |/v*+ v;,, + Vi, where v,

v,, and v, are the insertion velocity and the corre-
tip ip

sponding needle y- and z-components of the tip velocity,
respectively. The tip velocities v, and Vg, are estimated
by the image processing algorithm. A Kalman observer is
used to filter the tip position information and to estimate
the needle tip position and velocity when the tip is not
visible in the ultrasound image frame. The system states
in the Kalman observer are the Cartesian needle tip
positions and velocities [12]. The gains of the observer
are tuned as presented by Vrooijink et al. [34]. The Kal-
man observer is also used to estimate the needle tip pose if
it is not visible in the ultrasound image due to the presence
of bones between the transducer and the needle.

The needle insertion velocity (v;) is adjusted by a
PID controller to maintain the x-component of the
needle tip velocity (v, ) in order to keep it equal to a
desired velocity (v, ), as shown in Fig. 4. The desired
velocity is increased if the needle is out-of-plane

+ PID A Ultrasound
7| Controller ’ ‘ I images

Vs, [ Velocity |t
( calculaﬁonl

v, = 1.5 mm/s e Tip

detected? >
.

Fig. 4. A PID controller is implemented in order to keep the x-
axis component of the needle tip velocity (v, ) equal to the
desired velocity (v,,_ ). The needle tip position (py;) detected by
the tracking algorithm is used as input for the Kalman observer
to provide the output vector composed by both the needle tip
positions (py,) and velocities (ty,). The controller output is the
insertion velocity (v;) performed by the NID. The velocity (v;,_)
is increased if the needle is not detected in the ultrasound
image plane, and it is decreased if the needle is detected in the
image plane.

V.= 2.0 mm/s

(ie. the tip is not detected, and the needle is lagging)
or decreased if the needle is in-plane (ie. the tip is
detected). This step is performed to ensure that the
tracking algorithm detects the tip of the needle and
not its shaft. The gains of the PID controller are ex-
perimentally tunned to assure fast reaction, prevent
overshoot and guarantee accurate needle tip tracking.
The needle pose obtained by the tracking algorithm is
the main input to the control algorithm and the path
planner.
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3.2. 3D needle path planning and control

The target and obstacle positions obtained from the
ABVS preoperative scan (presented in Sec. 2), and the
needle tip pose computed intraoperatively from
the tracking algorithm (presented in Sec. 3) are used as
input to the path planning and control algorithms.

The 3D path planning algorithm generates the optimal
trajectory to steer the needle toward the target while
avoiding an obstacle in 3D space [25]. The planning al-
gorithm is based on the RRT approach, which is a sam-
pling-based method for path planning [35]. The optimal
trajectory is replanned every second during needle in-
sertion to compensate for uncertainties or disturbances
in the system or environment. The path planner outputs
a sequence of milestones along the optimal path. These
milestones are used as an input to the needle control
algorithm. The algorithm steers the needle tip toward the
first milestone. As soon as a milestone is reached, the
control algorithm steers the needle toward the next
milestone until the target is reached (Fig. 3(b)).

The needle is assumed to move along arcs during its
insertion into a soft tissue phantom [22]. The direction of
motion along the arc depends on the bevel tip orienta-
tion, which is adjusted by rotating the needle about its
axis at the base. The needle tip pose obtained from the
tracking algorithm, the milestone positions computed
using the planner and the final target position calculated
from the preoperative scan are inputs of the control al-
gorithm. We refer the reader to the work by Patil and
Alterovitz and Abayazid et al. for additional details on the
planning and control algorithms [25, 36].

4. Experiments

In this section, we present the experimental setup used
for scanning the soft tissue phantom and also for needle
steering. Subsequently, the experiments performed for
evaluation of the reconstruction and control algorithms
are described.

4.1. Setup

The experimental setup is divided into two parts. First,
the two-degrees-of-freedom insertion device which
allows the needle to be inserted and rotated about its
axis [37]. Second, the ABVS transducer that scans the soft
tissue phantom to localize the target and reconstruct its
shape, as shown in Fig. 1. The ABVS is also used for
needle tip tracking during the steering procedure. The
needle is inserted into a soft tissue phantom made up of
a gelatin mixture, chicken breast and sheep liver. The
height of the gelatin phantom is 5.5 cm, and targets are
placed 2-3.5cm from the phantom’s surface. We also

steer the needle in a commercial human breast phantom
(CIRS, Norfolk, USA). This breast phantom contains
lesions of different shapes and sizes and it is used for
ultrasound biopsy training. The flexible needle is made of
Nitinol alloy (nickel and titanium). The Nitinol needle has
a diameter of 0.5 mm with a tip bevel angle of 30°.

4.2. Experimental plan

Various experimental scenarios are conducted to validate
the proposed target reconstruction and control algorithms.

4.2.1. Shape reconstruction

We assess the target reconstruction algorithm by scan-
ning different 3D geometries. Targets are made of an
aqueous solution of 20wt.% polyvinyl alcohol (PVA)
(Sigma-Aldrich Chemie B.V., The Netherlands) to mimic
the ultrasound visual properties of breast lesions [38,39].
The solution is cast in 3D printed mold with cavities of
bean shapes and spherical shapes of 3mm and 4 mm
radius. The final material is prepared undergoing two
freeze and thaw cycles. The output of the target recon-
struction algorithm is compared to the 3D drawings used
for designing the 3D printed molds. MAD and Dice’s
coefficient methods are used for shape comparison. The
reconstruction algorithm is applied on five samples of
each target shape.

4.2.2. Steering

The phantom is scanned preoperatively to localize the
obstacle and target in the soft tissue phantom. The nee-
dle is placed in a new insertion point of the phantom for
each experimental trial. The target and obstacle positions
vary depending on the results of the localization algo-
rithm applied before every experimental trial. The con-
trol algorithm moves the needle along the generated path
to avoid the obstacle and reach the target. Three exper-
imental cases are performed to evaluate the needle
steering system. Each sub-experimental case is per-
formed five times.

o Case 1: The needle is steered toward a virtual target in
(a) gelatin-based soft tissue phantom, (b) chicken
breast and (c) sheep liver (Fig. 5(a)). This experi-
mental case is performed to test the ability of the
ABVS-guided control algorithm to steer the needle
toward a certain position in different types of tissues.

o Case 2: The needle is steered towards a physical target
while avoiding a physical obstacle embedded in (a)
gelatin-based soft tissue phantom and (b) chicken
breast (Fig. 5(b)). This experimental case is performed
to validate the path planning and 3D localization
algorithms.
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Fig. 5. Experimental cases. (a) The needle is steered toward a virtual target in a gelatin-based soft tissue phantom (Case 1(a)),
chicken breast (Case 1(b)) and sheep liver (Case 1(c)). (b) The needle is steered towards a physical target while avoiding a physical
obstacle in gelatin-based soft tissue phantom (Case 2(a)) and chicken breast (Case 2(a)). (c) The needle is steered towards a physical
target while avoiding a physical obstacle in a human breast tissue phantom (Case 3).

Case 3: The needle is steered towards a physical target
in a breast tissue phantom that consists of several
lesions (Fig. 5(c)}). The phantom is partially embedded
in gelatin to restrict its motion during the scan. This
experimental case is performed to test ability of the
system to steer the needle in an environment similar
to human breast biopsy.

4.3. Results

The results of the MAD and Dice’s coefficient evaluation
methods for reconstruction algorithm are presented in
Table 1. The results show that the MAD values are less
than 0.5 mm for all 3D geometrical shapes while Dice’s
coefficient values are around 0.87 and 0.80 for convex
and non-convex 3D shapes, respectively. These results
show accurate shape reconstruction for such needle in-
sertion applications (i.e. biopsy and brachytherapy).

In the steering experimental cases, the error is de-
fined as the absolute distance between the tip and the
center of the target that is localized preoperatively. The
results of the experimental cases are presented in
Table 2. The needle tip reaches the target in each

Table 1. The target reconstruction is evaluated using the
MAD and Dice’s coefficient geometric comparison methods for
shapes with various sizes. The dimensions of the bean shape
are represented by the length, width and thickness, respec-
tively. The target reconstruction algorithm is applied on five
samples of each shape.

Geometry MAD (mm) Dice
Sphere 3 mm radius 0.28+0.12  0.8740.05
4 mm radius 0.31+0.16  0.87+0.07
Bean shape 9.6 x5.6 x4 mm?3 0.27+0.05  0.8740.03
12x7x5mm? 0.26+0.06  0.88+0.03
18x10.5%5.5mm?®  0.55+0.12  0.80+0.07

experimental trial (according to the images obtained
during insertion). The maximum targeting error is
2.53mm, and it is noted in Case 1(c). On the other
hand, the minimum targeting error is 0.42 mm, and it
is observed in Case 1(a). The results show that the
targeting error increases while steering in biological
tissue, especially sheep liver, due to its inhomogeneity.
The inhomogeneity of the biological tissue causes de-
viation of the needle from its predicted path and thus
increased targeting error. The targeting error increases
also while steering in the human breast phantom
(Case 3) (with respect to the other Case 1 and Case 2)
as the curvature of the bevel-tipped needle is limited
in such soft tissue.

5. Discussion

This study introduces a needle steering system that uses
the ultrasound-based ABVS system for scanning different
soft tissue phantoms including biological tissue and
human breast phantoms. The system combines preop-
erative 3D target localization and shape reconstruction
algorithms with intraoperative needle tip tracking, path
planning and ultrasound-guided control algorithms to

Table 2. The results of the needle path planning and steering
experiments. The mean and standard deviation of the targeting
error {e,) of each case are presented. Each experimental case is
performed five times.

Case Description e, (mm)
Case 1 E))] Gelatin-based phantom 0.42+0.14
(b) Chicken breast 0.96+0.39
(9 Sheep liver 2.53+0.40
Case 2 (@) Gelatin-based phantom 0.66+0.26
b) Chicken breast 1.01+0.27
Case 3 Human breast phantom 1.824+0.40
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steer a bevel tip needle towards a physical target while
avoiding a physical obstacle. The reconstruction algo-
rithm is capable of estimating different convex and
non-convex 3D shapes of various sizes.

The reconstruction algorithm is evaluated using MAD
and Dice’s coefficient methods. The reconstruction eval-
uation methods are applied on spherical (convex) and
bean-shaped (non-convex) geometries.

The proposed system is a step to bring advanced ro-
botic systems to clinical environments. The system uses
clinically approved system (ABVS) for 3D target shape
reconstruction and needle tip tracking. The system is
validated using various soft tissue phantoms and bio-
logical tissue. The obtained results are promising and
indicate the feasibility of using such a system in clinical
practice. However, further improvements are still needed
as real tumors are more challenging to detect in the
patient’s body. Advanced image processing techniques
should be used to localize tumors and reconstruct their
3D shapes. These techniques include background inten-
sity level determination and statistical segmentation
methods. Clinical data sets can be used to validate the
proposed algorithms and achieve improved reconstruc-
tion results. One of the limitations that should be con-
sidered is the shadowing effect in the ultrasound images
below bone tissue. This effect can distort the image if
bones are located between the transducer and the needle
tip or target. The image can also be affected by the dis-
tance between the target and transducer. The ABVS
system can be combined with other needle tracking
modalities for robust tip localization. Furthermore, ad-
vanced imaging techniques can be used if the target is
below bone tissue. The Kalman observer can estimate the
needle position if it is not visible in the image for a few
seconds but for longer periods different tracking meth-
ods can be used. The proposed system can be employed
in prostate, liver and kidney interventions using linear
and transrectal transducers for ultrasound guidance
where the needle should avoid the sensitive vessels.

6. Conclusions and Future Work

The 3D shape reconstruction evaluation results show
that the mean MAD values are 0.30+0.13mm and
0.34+0.17 mm for convex and non-convex shapes, re-
spectively, while mean Dice values are 0.874+0.06 and
0.85+0.06. Three experimental cases are performed to
validate the needle tracking, path planning and control
algorithms. The needle is inserted in gelatin-based soft-
tissue phantoms, biological tissue (i.e. chicken breast and
sheep liver) and also human breast phantoms. The
phantoms are scanned before every experimental trial to
localize the targets and obstacles. The experimental
results show that needle avoids the obstacle and reaches

the target in each experimental trial and the mean tar-
geting errors range between 0.42+0.14mm and
2.53+0.40 mm. It is observed that the needle curvature
in the human breast phantom is limited with respect to
gelatin while the needle deflection in biological tissue
varies due to its inhomogeneity. The results also show
that the proposed system that uses ABVS ultrasound
scanner which is compatible with clinical environments
canachieve high targeting accuracy as the target is reached
and the obstacle is avoided in all experimental trials.

The needle behavior in different tissues should be
investigated for improved planning of the insertion
procedure. Models should also be developed to estimate
the target motion and shape deformation intraopera-
tively. The steering system can be extended to detect the
patient movements that occur during needle insertion
such as respiration and fluid flow. Preoperative planning
can be introduced to optimize the insertion location and
angle in order to minimize the insertion distance and
facilitate the steering process. Clinical transducers can be
designed and adapted to the ABVS for other needle in-
sertion procedures. This opens the field for having au-
tomated scanners to assist in achieving improved
targeting accuracy.
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