
372 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 2, APRIL 2016

Steering of Multisegment Continuum Manipulators
Using Rigid-Link Modeling and FBG-Based

Shape Sensing
Roy J. Roesthuis, Student Member, IEEE, and Sarthak Misra, Member, IEEE

Abstract—Accurate closed-loop control of continuum manipula-
tors requires integration of both models that describe their motion
and methods to evaluate manipulator shape. This work presents
a model that approximates the continuous shape of a continuum
manipulator by a serial chain of rigid links, connected by flexible
rotational joints. This rigid-link model permits a description of
manipulator shape under different loading conditions. A kinematic
controller, based on the manipulator Jacobian of the proposed
rigid-link model, is implemented and realizes trajectory tracking,
while using the kinematic redundancy of the manipulator to
perform a secondary task of avoiding obstacles. The controller
is evaluated on an experimental testbed, consisting of a planar
tendon-driven continuum manipulator with two bending seg-
ments. Fiber Bragg grating (FBG) sensors are used to reconstruct
3-D manipulator shape, and is used as feedback for closed-loop
control of the manipulator. Manipulator steering is evaluated for
two cases: the first case involving steering around a static obstacle
and the second case involving steering along a straight path while
avoiding a moving obstacle. Mean trajectory tracking errors are
0.24 and 0.09 mm with maximum errors of 1.37 and 0.52 mm for
the first and second cases, respectively. Finally, we demonstrate
the possibility of FBG sensors to measure interaction forces, while
simultaneously using them for shape sensing.

Index Terms—Continuum manipulator, fiber Bragg gratings
(FBG), force sensing, motion control, obstacle avoidance.

I. INTRODUCTION

CONTINUUM manipulators consist of an elastic structure,
which allows them to bend along their length in a con-

tinuous manner [1]. Due to their inherent flexibility, continuum
manipulators can operate safely within delicate environments
such as the human body; hence, they have gained interest in
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Fig. 1. (a) Due to the flexible nature of continuum manipulators, steering
them is challenging: It requires both models that describe manipulator shape
and methods to measure manipulator shape during steering. (b) In this work, we
present a model that describes continuum manipulator shape by a serial chain of
rigid links, connected by flexible, rotational joints. Joint angles are calculated
by using the rigid-link model, and tendon lengths are calculated by using a
manipulator-specific model. (c) Array of FBG sensors measure bending strain
at several locations along the manipulator shaft. This is used to reconstruct 3-D
manipulator shape, which is used to provide feedback of manipulator shape
during steering.

research areas related to medicine [2]–[7]. Flexible continuum-
style surgical instruments can reach locations in the human body
that are inaccessible when using traditional straight devices. Ex-
amples of such instruments are steerable catheters for cardiac
surgery [2], [5] and instruments for laryngeal surgery [3] and
transurethral interventions [7]. Another example of continuum
manipulators for minimally invasive surgery (MIS) procedures
are concentric tube robots, which have been investigated for
cardiac surgery and skull base surgery [4], [6].

Accurately steering continuum manipulators with multiple
segments require models that describe the position and ori-
entation (i.e., kinematics) of the manipulator upon actuation.
A well-known method for describing the shape of continuum
manipulators is the piecewise constant-curvature approach [1].
This approach assumes constant-curvature bending for each seg-
ment such that manipulator shape can be described by a series
of constant-curvature arcs [1], [8]. The constant-curvature ap-
proach allows us to solve the inverse kinematics (IK) problem
for continuum manipulators with multiple segments. Neppalli
et al. presented a closed-form solution for the IK problem, as-
suming the end points of the segments are known [9]. In other
studies, the IK problem was solved through the use of the
manipulator Jacobian [10]–[13]. However, the constant-
curvature approach has its limitations when external loads act
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on the manipulator, in particular when they are not directed in
the bending plane of the segments. In some scenarios, accu-
rate knowledge of manipulator shape is required. In order to
accurately describe manipulator shape under external loading,
different studies have used the Cosserat rod model [14]–[16].
This model describes the manipulator as a thin elastic rod param-
eterized by the arc length. This description results in a boundary
value problem, consisting of a set of nonlinear differential equa-
tions with boundary conditions, which depend on the loading
conditions. Obtaining the manipulator Jacobian in an efficient
way is challenging, due to the complexity of the kinematics.
Jones et al. presented a method for obtaining the Jacobian us-
ing the Cosserat rod model by applying finite differences [15].
Rucker and Webster presented another method for computing
the manipulator Jacobian in an indirect way by introducing an
initial value Jacobian, which is either solved using finite differ-
ences or a derivative propagation approach [17].

In this work, we present a model that approximates the con-
tinuous shape of a continuum manipulator by a serial chain of
rigid links, connected by flexible rotational joints. This rigid-
link model can describe large manipulator deflections under
external loading conditions. The kinematics are simplified com-
pared with the Cosserat rod model, and the manipulator Jacobian
can be derived in a straightforward manner. We show that the
approximation by rigid links allows the description of manip-
ulator shape in a precise way, which is comparable with the
geometrically exact Cosserat rod model. We believe this mod-
eling approach provides insight into the modeling of continuum
manipulator under external loading conditions and offers further
possibilities of intrinsic force sensing and force control when
interacting with the environment [18].

A kinematic controller, which uses the manipulator Jacobian
of the rigid-link model, is implemented and realizes trajectory
tracking and obstacle avoidance. The controller calculates the
joint angles [see Fig. 1(b)] and from these the tendon lengths are
computed using a manipulator-specific model. The controller is
evaluated on an experimental testbed for two different steering
cases. The testbed consists of a planar tendon-driven manipu-
lator with two segments [see Fig. 1(a)]. Manipulator shape is
reconstructed using an array of fiber Bragg grating (FBG) sen-
sors, and this is used both for model validation and closed-loop
control [see Fig. 1(c)]. In a previous study, we have used an ar-
ray of FBG sensors to determine the shape of a single-segment
tendon-driven manipulator [19]. In this study, we also show that
FBG sensors can be used to measure interaction forces at the ma-
nipulator tip, while simultaneously sensing manipulator shape.

This paper is organized as follows. In Section II, we present
our rigid-link modeling approach of multisegment continuum
manipulators. Section III discusses the steering of a tendon-
driven manipulator, and shape sensing using FBG sensors is
explained in Section IV. The experimental setup is described in
Section V, followed by the experimental results in Section VI.
Finally, we conclude this study in Section VII, in which we also
provide directions for ongoing and future work.

II. RIGID-LINK MODELING OF CONTINUUM MANIPULATORS

This section presents the modeling of continuum manipula-
tors using a rigid-link approximation. We first describe the kine-

Fig. 2. (a) Three-dimensional shape of a continuum manipulator is approxi-
mated by a serial chain of rigid links, connected by rotational joints. Each link
describes a constant-curvature arc of fixed length (ls ). Each arc is defined by
a bend angle (θi ) and a bending direction (ϕi ). (b) Joint orientation is defined
by two angles: The first angle (qϕ , i ) is related to the bending direction, and
the second angle (qθ , i ) is related to the amount of bending. In order to model
manipulator stiffness, a rotational spring (Kθ ) is assigned to each joint.

matics, followed by shape calculation under external loading.
Finally, we present the derivation of the manipulator Jacobian
using the rigid-link model.

A. Rigid-Link Kinematics of a Continuum Manipulator

Manipulators designed for clinical procedures are often slen-
der, i.e., they are small in diameter compared with their length.
In such cases, shear strains are small compared with bending
strains. Hence, in the following derivation, we consider manip-
ulator deflection due to bending only. In addition, we assume
manipulator extension to be negligible, since displacements due
to extension will be small compared with deflections caused by
bending.

We propose a model that approximates manipulator shape by
a serial chain of rigid links, connected by rotational joints [see
Fig. 2(a)]. Choosing multiple links for a manipulator segment
enables the description of nonconstant curvature bending of the
manipulator segment, which occurs in the case of external load-
ing. Each link approximates a constant-curvature arc, defined by
the following arc parameters: a fixed arc-length (ls), the bend-
ing direction (ϕi), and the bend angle (θi). The rotation matrix
between two joints consists of three consecutive rotations, re-
sulting in the following rotation matrix:

Ri
i+1 = Rz (qϕ ,i)Ry (qθ ,i)Rz (−qϕ ,i) ∈ SO(3) (1)

where Rz ,Ry ∈ SO(3) are rotations about the z-axis and
y-axis of the rotated frame, respectively. Link rotation in (1) is
given by two angles: The first angle (qϕ ,i) indicates the bending
direction, and the second angle (qθ ,i) is related to the amount
of bending [see Fig. 2(b)]. Given the position (pi

i+1) of the
current joint with respect to the previous joint, the transforma-
tion matrix is given as

H i
i+1 =

[
Ri

i+1 pi
i+1

03 1

]
∈ SE(3). (2)
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Fig. 3. Bending moment (m∗
i ), at the location of the ith joint, is the sum of

moments due to actuation (Mj ), and moments due to external loads (F ) acting
on the manipulator.

The forward kinematics of a continuum manipulator, approx-
imated by n rigid links, is calculated by postmultiplying the
individual transformations of each link.

In order to account for manipulator stiffness, rotational
springs (Kθ ) are assigned at the origin and at the end of each
link [see Fig. 2(b)]. Due to the approximation of a constant-
curvature arc by a rigid link, the energy (Us,i) stored in the
springs can be described in terms of the bend angle (θi) as

Us,i =
1
2
Kθ

(
θi

2

)2

+
1
2
Kθ

(
θi

2

)2

=
1
4
Kθ θi

2 . (3)

The spring energy approximates the strain energy due to manip-
ulator bending. The strain energy (Ub,i) of a constant-curvature
arc, with fixed length (ls), is given by [20]

Ub,i =
1
2

EI

ls
θi

2 (4)

where E and I are the Young’s modulus and the area moment
of inertia of the manipulator, respectively. Since the spring en-
ergy (3) should equal the strain energy due to bending (4), the
following expression for the joint stiffness is found:

Kθ =
2EI

ls
. (5)

We assume the Young’s modulus (E) and the area moment of
inertia (I) to be constant along the length of the manipulator such
that the stiffness (Kθ ) for each joint is equal. For a joint located
between two rigid links, two rotational springs are connected in
series such that the equivalent joint stiffness (Kr ) is given as

Kr =
(

1
Kθ

+
1

Kθ

)−1

=
EI

ls
. (6)

Given this stiffness, the torque at the ith joint can be written as

τi = Krqθ ,i (7)

where qθ ,i is the joint angle related to the amount of bending.
In the next section, we relate both joint angles (qϕ ,i and qθ ,i)
of the rigid-link model to the internal bending moment of the
manipulator, which is used to calculate manipulator shape.

B. Shape Calculation

In the previous section, we presented a model that describes
manipulator shape by a serial chain of rigid links, connected
by flexible rotational joints. In order to determine manipulator
shape, the individual joint angles need to be calculated. The
internal bending moment (m(s)) of the manipulator defines the

Fig. 4. Rigid-link modeling of a manipulator with two segments (red and
green), approximated by ten rigid links. Moments are applied midway (M1 )
the manipulator and at the tip (M2 ) in different directions, resulting in four
different configurations. Two cases are shown for each configuration: Unloaded
case without external forces (light colored), and a loaded case (dark colored)
with an external force (Ft ) at the tip in the negative y-direction.

direction and the amount of bending. In the case of the rigid-link
model, we relate the internal bending moment at the location of
the ith joint (m∗

i ) to the joint angles by

Krqθ ,i = ∥ m∗
i ∥

qϕ ,i = ∠m∗
i (8)

such that qθ ,i and qϕ ,i are related to the magnitude and the di-
rection of the bending moment, respectively. The magnitude of
the internal bending moment (m∗

i ) is equal to the joint torque
as given by (7). Considering concentrated loads only, the bend-
ing moment at the ith joint is determined by the forces and
moments that act on the remaining part (i.e., s = si . . . L) of
the manipulator shaft (see Fig. 3):

m∗
i =

∑
M j + pi

F × F (9)

where M j is the moment resulting from actuation, and F de-
notes an external force. The position vector (pi

F ) in (9) depends
on the final manipulator configuration and can be expressed in
terms of the joint angles using the rigid-link kinematics. Sub-
stituting (9) into (8) for each joint results in a set of nonlinear
equations from which the joint angles need to be solved in order
to calculate manipulator shape.

In order to demonstrate the modeling approach, as an exam-
ple, we calculate the shape of a continuum manipulator with
two bending segments under different loading conditions. The
manipulator is approximated by ten rigid links, and actuation
moments are applied midway (M1 = − 150 N ·mm) the ma-
nipulator and at the tip (M2 = 100 N ·mm). Manipulator prop-
erties are provided in Table I in Section V. The direction of
the moments is varied, resulting in four different manipulator
configurations (see Fig. 4). For each configuration, we calculate
the shape for the unloaded case and for the loaded case with an
external force (Ft = − 0.1 N) at the tip. The model is evaluated
using MATLAB, and the function fsolve is used to solve the
joint angles from the set of nonlinear equations. In Section VI,
we compare deflection calculated using our rigid-link model
with the Cosserat rod model.
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C. Jacobian Calculation

In this section, we show the derivation of the manipulator
Jacobian of the rigid-link model, which will be used for control.
The manipulator Jacobian (J(q)) relates joint velocities (q̇) to
end-effector velocity (ve ∈ R6)

ve =

[
ωe

ṗe

]
= J(q)q̇ (10)

where ωe ∈ R3 and ṗe ∈ R3 are the end-effector angular veloc-
ity and linear velocity, respectively. For a manipulator approxi-
mated by a serial chain of n rigid links, there are a total of 2 × n
joints since each link (i) is described by two joint angles: the
direction of bending (qϕ ,i) and the bending angle (qθ ,i). Thus,
(10) can be rewritten as

ve = J1(q)

[
q̇ϕ ,1

q̇θ ,1

]
+ J2(q)

[
q̇ϕ ,2

q̇θ ,2

]
+ · · ·Jn (q)

[
q̇ϕ ,n

q̇θ ,n

]

(11)

where J i(q) ∈ R6×2 is the Jacobian for a single link of the
manipulator and can be written as

J i(q) =
[
ξ′

ϕ ξ′
θ

]
(12)

where ξ′
ϕ ∈ R6 and ξ′

θ ∈ R6 are the twist coordinates of the
joint twists related to the direction of bending and the bending
angle, respectively [21]. The twists in (12) are calculated by
transforming the unit joint twists (ξj ) to the current manipulator
configuration

ξ′
j = AdH0

j −1
ξj (13)

where AdH0
j −1

∈ R6×6 is the adjoint matrix, which depends on
manipulator configuration [21]. Since all joints are revolute, the
unit twist of each joint with respect to the previous joint is given
as

ξj =

(
ω̂

r × ω̂

)
(14)

where ω̂ ∈ R3 denotes the unit angular velocity, and r ∈ R3

is the position vector from the origin of the previous joint to
the origin of the current joint. In the next section, we propose
a controller based on the manipulator Jacobian of the rigid-
link model.

III. STEERING OF A TENDON-DRIVEN

CONTINUUM MANIPULATOR

In this section, we present a method for the steering of a
tendon-driven continuum manipulator based on the rigid-link
model. First, a kinematic controller is presented, which calcu-
lates the joint angles related to the rigid-link model. From the
joint angles, the actuation moments that need to be applied at
the end of each segment are calculated. Finally, we discuss a
manipulator-specific model that computes tendon lengths from
the actuation moments.

Fig. 5. Architecture of the controller: The primary task is trajectory tracking
of the manipulator tip. The secondary task consists of avoiding obstacles with
the manipulator shaft.

A. Kinematic Control

In order to steer the manipulator tip to a desired location,
the IK of the manipulator needs to be solved. Finding a closed-
form solution for the IK problem for a continuum manipula-
tor with multiple segments is not straightforward. However,
the IK problem can be solved by using the manipulator Jaco-
bian (J ) that was derived in Section II-C. A well-known method
for solving the IK problem is the damped least squares (DLS)
inverse [22]

q̇d = J⋆ ẋd (15)

where ẋd ∈ R6 is the desired manipulator tip velocity in the task
space, and J⋆ is the DLS inverse of the manipulator Jacobian.
The joint positions (qd ) can be calculated by integrating the
joint velocities (q̇d) over time.

We define a primary task that consists of steering the manip-
ulator tip along a reference trajectory, for which we propose the
following kinematic controller:

q̇d = J⋆ (ẋd + Ke) (16)

where K is a gain matrix, and e is the trajectory tracking er-
ror. Continuum manipulators with multiple segments often have
more degrees of freedom (DOF) than required for the intended
task, which means the manipulator is kinematically redundant
and this allows us to rewrite (16) as [22]

q̇d = J⋆ (ẋd + Ke) + P q̇0 (17)

where P is a matrix given by

P = (I − J⋆J) (18)

and projects a vector of arbitrary joint velocities (q̇0) into the
null space of the manipulator Jacobian. Joint velocities in the
null space do not cause motion of the manipulator tip; hence,
this can be used to define a secondary task of obstacle avoidance
along with the primary task of trajectory tracking.

In order to avoid obstacles, a motion (ẋcp ∈ R3) is defined
for the point (critical point) on the manipulator that is clos-
est to the obstacle. Given the position of the critical point on
the manipulator, the Jacobian (J cp ) that relates joint veloci-
ties to the velocity of the critical point can be calculated. Us-
ing this critical-point Jacobian, the joint velocities that result
in the desired motion of the critical point can be calculated
by

q̇cp = J⋆
cp ẋcp (19)

where J⋆
cp is the DLS inverse of the critical-point Jacobian.

Substituting this into (17) for the null space joint velocities (q̇0)
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gives the following solution of the IK with obstacle avoid-
ance (see Fig. 5):

q̇d = J⋆ (ẋd + Ke) + PJ⋆
cp ẋcp . (20)

The actuation moments that result in the desired joint angles
need to be calculated. Assuming quasi-static motion, we use
the following well-known relationship that uses the transpose
of the manipulator Jacobian (J ) to relate a wrench acting on
the manipulator tip to the joint torques in static equilibrium
[22]:

τ = JT f t (21)

where τ is the vector containing the joint torques, and f t ∈ R6

is the wrench applied at the manipulator tip, given by

f t =
[
M t F t

]T (22)

where M t ∈ R3 and F t ∈ R3 are the tip moment and tip force,
respectively. In the case of a manipulator with k segments, a
wrench (f i) is applied at the end of each segment; hence, the
joint torques (τi) are given by

⎡

⎢⎢⎢⎢⎣

τ1

τ2

...

τk

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

JT
1 JT

2 · · · JT
k

JT
2 · · ·

...

. . .
...

0 JT
k

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

f 1

f 2

...

f k

⎤

⎥⎥⎥⎥⎦
(23)

where J i is the Jacobian for the ith manipulator segment.
Rewriting (23) gives

τ = ΥF (24)

where Υ is a matrix containing the transpose of the Jacobian
of each segment (23), and F = [f 1 . . . f k ] is the vector with
wrenches (f i) applied at the end of each segment. The joint
torques can be calculated by multiplying the joint angles (qθ ,i)
that are related to the amount of bending with the corresponding
joint stiffness, as given by (7). The actuation moment that needs
to be generated at the end of each segment can then be calculated
by

F = Υ−1τ . (25)

In the next section, we describe a manipulator-specific model,
which calculates tendon lengths from the actuation moments.

B. Manipulator-Specific Model

Actuation moments in tendon-driven continuum manipula-
tors are generated by tendons that are fixed at the end of each
segment (see Fig. 6). Pulling on the tendons generates a moment,
and this results in constant-curvature bending of the segment.
Hence, each segment can be described by two arc parameters:
the bending angle (θi) and bending direction (ϕi). In the case of
multiple segments, tendon loads and tendon paths between seg-
ments are coupled. The model relates changes in tendon lengths
to the bending moment along the segments. As opposed to the
model presented by Camarillo et al., in the derivation below,
we do not consider axial shortening of the manipulator since we
consider the manipulator to be inextensible [23].

Fig. 6. Model of a multisegment tendon-driven continuum manipulator: Due
to tendon tension (T ) at a distance (dtb ) from the backbone, a moment (Mi ) is
generated at the end of the segment where the tendons are fixed. This moment
results in constant-curvature bending of the segment such that each segment can
be described by two arc parameters: The bending angle (θi ) and the bending
direction (ϕi ). Each tendon is modeled as a linear elastic spring (Kt ), such that
the change in tendon length (δl) depends both on manipulator shape and tendon
elongation.

At this stage of our derivation, we neglect the friction be-
tween the tendons and tendon guides. Therefore, upon actua-
tion, the tension (T ) in the tendon causes a moment (M t) equal
to

M t =

⎡

⎢⎣
dx

dy

0

⎤

⎥⎦ ×

⎡

⎢⎣
0
0
T

⎤

⎥⎦ =

⎡

⎢⎣
dyT

−dxT

0

⎤

⎥⎦ (26)

where dx and dy denote the x-position and y-position of the
tendon in the cross section of the manipulator (see Fig. 6)
and define the moment arm for the tendon. For a total of p
tendons for each segment, the total moment (M i) generated
at the end of the ith segment is the sum of the individual
moments

M i =
p∑

k=1

M t,k =

[
dy,1 dy,2 · · · dy,p

−dx,1 −dx,2 · · · −dx,p

]

︸ ︷︷ ︸
Di

⎡

⎢⎢⎣

T1

...

Tp

⎤

⎥⎥⎦

(27)
where Di is a matrix that contains the tendon moment arms.
For a manipulator with k segments, the bending moment along
the ith segment (mi) is calculated by summing the moments
generated at the end of distal segments

mi =
k∑

j=i

M j =
k∑

j=i

DjT j (28)

where T j ∈ Rp is the tendon tension vector for the jth segment.
Expanding (28) for all segments gives

⎡

⎢⎢⎢⎢⎣

m1

m2

...

mk

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

D1 D2 · · · Dk

D2 · · ·
...

. . .
...

0 Dk

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

T 1

T 2

...

T k

⎤

⎥⎥⎥⎥⎦
. (29)

Assuming position control, in which tendon length is controlled,
the relation between tendon tension and change in tendon length
needs to be found. The change in tendon length can be written
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as

δl = δlb + δlt (30)

where δlb and δlt are the changes in tendon length due to manip-
ulator bending and tendon elongation, respectively. The change
in tendon length due to bending is given by

δlb = l0εb = l0 (εb,x + εb,y ) = l0 (dyκx − dxκy ) (31)

where l0 is the tendon length in the reference configuration,
and εb,x and εb,y are the strains along the tendon path due to
bending about the x-axis and the y-axis, respectively. Tension
in the tendon results in elongation of the tendon by

δlt =
1

Kt
T (32)

where Kt is the tendon stiffness. Rewriting (31) and (32) for all
tendons in the manipulator and substituting into (30) gives the
following expression for the change in tendon lengths:

δl = l0D
T κ + K−1

t T (33)

where D is the matrix with the tendon moment arms for all
segments given in (29), and Kt ∈ Rpk×pk is a diagonal matrix
with the stiffness of the individual tendons on the diagonal. The
curvature vector (κ) can be written as a function of the bending
moment (mi) as

κ =

[
κx

κy

]
=

⎡

⎢⎢⎣

1
EI

0

0
1

EI

⎤

⎥⎥⎦

[
mx

my

]
(34)

where mx and my denote the components of the bending mo-
ment about the x-axis and y-axis, respectively. Combining (34)
with (28) relates the curvature to the tendon tension by

κ = K−1
m mi = K−1

m DiT i (35)

where Km is a diagonal matrix with the flexural rigidity (EI)
for each segment of the manipulator on the diagonal. Substitut-
ing (35) for the curvature into (33) allows us to write the change
in tendon lengths as

δl =
(
l0D

T K−1
m D + K−1

t

)
T = Cm T (36)

where Cm is the compliance matrix. The compliance matrix
allows us to calculate changes in tendon lengths from tendon
tensions.

In the next section, we describe 3-D reconstruction of manip-
ulator shape using FBG sensors. Closed-loop control is achieved
by feedback of manipulator shape in the controller presented in
this section.

IV. SHAPE RECONSTRUCTION USING FIBER BRAGG

GRATING SENSORS

In order to perform closed-loop control, information about
the position and orientation of the instrument is required. Differ-
ent medical imaging modalities exist that can give information
about instrument pose, e.g., computed tomography (CT), ultra-
sound (US) imaging, and magnetic resonance imaging (MRI).
However, these modalities are often slow (i.e., CT and MRI) or
they suffer from a low resolution (US). In addition, additional

Fig. 7. (a) Three colocated FBG sensors, placed in separate optical fibers
(a, b, and c), measure axial strain at different locations along the shaft. Ma-
nipulator curvature (κ) and its direction (ϕ) are determined from the measured
strains. (b) Manipulator is represented as a spatial curve (r(s)), of which the
shape is reconstructed by integrating the tangent vector (t(s)). The orientation of
the tangent vector is given by two angles, the bending angle (θ) and the bending
direction (ϕ), which are both computed from the FBG strain measurements.

image processing techniques are required in order to determine
3-D instrument shape from one or multiple images. A method
for shape sensing of continuum manipulators, which does not
rely on imaging, is presented by Trivedi and Rahn [24]. How-
ever, their methods are based on a geometrically exact model
and require knowledge about manipulator properties.

FBGs offer the possibility to determine the 3-D shape of a
flexible instrument. Due to the small diameter of optical fibers
(≤ 250 µm), they can easily be integrated in small-diameter
instruments. Current technology enables to read these strains at
rates up to 20 kHz, which is much faster than existing imaging
modalities. FBGs can be seen as optical strain gauges and can be
used as sensors to measure strain [25]. In previous studies, we
have investigated shape sensing using FBG sensors for needle
steering applications and for the control of a manipulator in free
space [19], [26]. In both cases, strain was measured from sets of
three colocated FBG sensors in optical fibers (a, b, and c) that
were placed along the length of the manipulator [see Fig. 7(a)].
The strain measured by each sensor, at a location (sk ) along the
shaft, is given by [26]

ε∗(sk ) = κ(sk )r∗ sin(ϕ(sk ) + α∗) + ε0(sk ) (37)

where r∗ and α∗ denote the position and orientation of the fiber
center (for ∗ = a, b, c) at the cross section, respectively. The
curvature (κ(sk )) and its direction (ϕ(sk )) are computed from
the set of measured strains (37). Interpolation of the discrete
curvatures (κ(sk )) and their corresponding directions (ϕ(sk ))
is performed in order to approximate them (i.e., κ(s) and ϕ(s))
along the length of the manipulator [26].

We consider the manipulator as a spatial curve, parameterized
by the arc length (s) and defined by the position vector (r(s)).
The tangent vector along the curve is defined as the derivative of
the position vector with respect to the arc length [see Fig. 7(b)]

t(s) =
dr(s)

ds
=

[
dx

ds

dy

ds

dz

ds

]T

. (38)
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Fig. 8. Experimental setup consisting of a planar tendon-driven continuum
manipulator with two segments, each with a length of 80 mm. Tendon guides
are glued along the manipulator backbone with a spacing of 16 mm. Each
segment is actuated by a pair of opposing tendons. Tendon offset (dtb ) from the
backbone is 7.5 and 6.0 mm for the first and second segment, respectively. The
manipulator is mounted on a linear stage to allow translation in the insertion
direction (i.e., z-direction).

The orientation of the tangent vector, with respect to the global
reference frame (Ψ0), is given by two angles [see Fig. 7(b)].
The first angle is the bending angle (θ) and is defined as the
angle between the tangent vector and the z-axis. The second
angle equals the bending direction (ϕ) of the manipulator and
is given by the orientation of the tangent vector in the xy-plane,
with respect to the x-axis. The bending direction is directly
measured by the FBG sensors, while integration of the curva-
ture (κ(s)) is required to compute the bending angle (θ(s))
along the manipulator shaft

θ(s) =
∫

κ(s)ds + θ0 (39)

where θ0 is the initial angle. Using goniometry, the tangent vec-
tor can be expressed in terms of the bending angle and bending
direction. Manipulator shape is then reconstructed by integrat-
ing the tangent vector

r(s) =
∫

t(s)ds + r(0) (40)

where r(0) is the initial position.
Each sensor measures a strain component that is independent

of bending, which is denoted by ε0 in (37). This component rep-
resents the axial strain due to compression and extension of the
manipulator shaft. Hence, this can be used for measuring axial
forces that act along the manipulator. In the experiments, FBG
sensors are used for shape sensing in order to enable closed-
loop control of the manipulator, and FBG sensors will also
be investigated for force sensing. In the next section, we dis-
cuss the experimental testbed, which includes FBG-based shape
sensing.

V. EXPERIMENTAL TESTBED

The experimental testbed consists of a planar tendon-
driven continuum manipulator with two segments (see Fig. 8).
Each segment is actuated by a pair of opposing tendons
made from Dyneema. The manipulator has a backbone made
from PolyEther Ether Ketone (PEEK) tubing (diameter φinner
1.07 mm, φouter 1.8 mm) with a length of 160 mm, with each

TABLE I
MODEL INPUTS FOR THE TENDON-DRIVEN CONTINUUM MANIPULATOR

Parameter Symbol Value

Young’s modulus Peek Ep 3.8 GPa [27]
Nitinol En 75 GPa

Tendon offset Segment 1 dt b 7.5 mm
Segment 2 6.0 mm

Tendon stiffness Segment 1 5.37 N/mm
4.15 N/mm

Segment 2 Kt 5.12 N/mm
3.92 N/mm

segment having a length of 80 mm. Tendon guides are laser
cut from Delrin and are glued along the backbone at a spacing
of 16 mm. The first tendon pair is routed through the tendon
guides at an offset (dtb ) of 7.5 mm, and the second pair has an
offset of 6.0 mm. Each tendon is actuated by a Maxon EC-max
22 motor (Maxon motor Ag, Sachseln, Switzerland). Each mo-
tor is controlled using an Elmo Whistle motor controller (Elmo
Motion Control Ltd., Petach-Tikva, Israel). The continuum ma-
nipulator and motors are fixed on a 3-D printed platform, which
is mounted on a linear stage to provide insertion along the
z-direction of the manipulator.

In order to provide shape sensing of the continuum manip-
ulator, an nitinol wire (diameter φ 1.0 mm) with an integrated
array of 12 FBG sensors is introduced into the hollow back-
bone of the manipulator. Three fibers with four FBG sensors
each are integrated onto this nitinol wire. Further fabrication
details of this wire with integrated FBG sensors are provided by
Roesthuis et al. [19]. The fibers are connected to a Deminsys
Python interrogator (Technobis Fiber Technologies, Uitgeest,
The Netherlands) in order to provide communication with a
desktop computer. The interrogator receives the reflected light
and measures the change in reflected Bragg wavelength for each
FBG sensor.

The interrogator is connected to a desktop computer via an
Ethernet connection, and communication is done using the UDP
protocol. Shape reconstruction and the controller are imple-
mented in a multithreaded C++ application, from which desired
motor positions are sent to the Elmo motor controllers via a
CAN bus. Packets are sent at a rate of 100 Hz, and the controller
operates at the same rate.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results with the tendon-
driven manipulator described in the previous section. First, the
modeling framework presented in Section II is validated. Next,
the controller presented in Section III is evaluated for two dif-
ferent experimental cases. Finally, we perform an experiment
in which we investigate the potential of using FBG sensors for
measuring axial tip interaction forces.

A. Rigid-Link Model Versus Cosserat Rod

We compare the rigid-link model to the Cosserat rod model
by evaluating the difference in tip position (i.e., tip error)
between both models for different loading conditions. Tendon
induced moments are applied midway the manipulator (M1) and
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Fig. 9. (a) Rigid-link model (n = 6) is compared with the Cosserat rod model
for different loading cases. The actuation moments midway (M1 ) the manip-
ulator and at the tip (M2 ) are the same, while the magnitude and direction of
the tip force is varied. (b) Difference in tip position (i.e., tip error) between the
rigid-link model and the Cosserat rod model versus the amount of rigid links.
The mean and the standard deviation of the tip error are shown for all cases
combined.

at the tip (M2). In order to investigate deflection under external
loading, a force is applied at the manipulator tip. We follow
the approach described by Rucker and Webster to calculate
manipulator shape using the Cosserat rod model for a planar
manipulator with two segments and a tip force [18]. Material
and geometrical properties are used from the manipulator
described in Section V.

Manipulator shape is computed for four different loading con-
ditions: one unloaded case and three loaded cases in which a
tip force is present [see Fig. 9(a)]. For each case, the actuation
moments are equal: The moment midway the manipulator is
150 N ·mm, while the moment at the tip is −125 N ·mm. The
mean and the standard deviation of the tip error, for all loading
cases combined, are presented in Fig. 9(b). It can be seen that
the tip error rapidly decreases when increasing the number of
rigid links. For 20 links, the mean tip error is less than 0.1 mm.
Further increasing the number of links does not increase accu-
racy drastically; hence, we will use 20 links for the rigid-link
model in our experiments.

B. Model Validation

The manipulator-specific model from Section III-B is verified
by commanding desired bending angles to the manipulator.
Tendon positions are calculated from the bending angles
using the manipulator-specific model, and these positions
are commanded to the manipulator. The resulting manipu-

Fig. 10. Validation of the continuum manipulator model using the recon-
structed shape from FBG measurements. The manipulator is deflected for the
single bend case [(a) and (c)] and double bend case [(b) and (d)]. Manipula-
tor tip deflection in the x-direction for (a) single bend and (b) double bend
cases. Manipulator shape comparison for maximum and minimum deflection
for (c) single bend and (d) double bend cases.

lator deflection, using the FBG sensors, is compared with
the deflection obtained from the model. The inputs to the
model are listed in Table I. The stiffness of each tendon
is experimentally determined in a manipulator deflection
experiment in which only the tendon under consideration is
tensioned.

Sinusoidal bending angles are commanded to both segments
of the manipulator at a frequency of 0.1 Hz with an amplitude
of 25◦. In the first case, the bending angles are equal and in the
same direction, resulting in a single bend shape. In the second
case, the bending angles are equal but of opposite direction,
resulting in a double bend shape. The transverse tip deflections
(x-direction) along the entire trajectory are shown in Fig. 10(a)
and (b). The maximum tip error is 6.51 mm for the single bend
deflection case, and 6.34 mm for the double bend deflection
case. Manipulator shape at maximum bending angles (25◦) is
shown in Fig. 10(c) and (d). In these cases, the mean errors
along the entire manipulator are calculated: Maximum errors are
2.66 mm for the single bend case and 2.15 mm for the double
bend case. These errors may be caused by friction between
tendons and tendon guides, which was not accounted for in the
model.

C. Trajectory Tracking Experiments With Obstacle Avoidance

Experiments are performed in which the manipulator tip is
commanded to track a reference trajectory, while the manipu-
lator shaft avoids obstacles (see Fig. 11). Our manipulator has
three DOFs: translation of the manipulator base (q1) and the
bend angles (q2 and q3) of the two segments. Since we con-
trol the position of the manipulator tip in a plane, the task is
two DOFs, and we have kinematic redundancy. We derive the
manipulator Jacobian (J(q)) using the methods described in
Section II-C. Three types of control schemes are evaluated:
First, steering is performed in open loop. Second, steering is
performed in closed loop according to the scheme in Fig. 5. Fi-
nally, the manipulator is steered in closed loop without avoiding
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Fig. 11. Manipulator tip is controlled to track a reference trajectory, while
the manipulator shaft avoids obstacles. A motion (ẋcp ) is defined for the point
closest to the obstacle when the manipulator is within the neighborhood of
the obstacle (i.e., ∥ d0 ∥≤ ϵ). Trajectory tracking error is denoted by et . The
manipulator has three DOFs: translation of the base (q1 ) and bending of the two
segments (q2 and q3 ).

obstacles (noa). Unit gains are chosen for the gain matrix (K)
in (20). In order to avoid obstacles, the following velocity is
defined for the critical point [28]:

ẋcp =

⎧
⎨

⎩
−vm

ϵ
d0 + vm

d0

∥ d0 ∥ , ∥ d0 ∥≤ ϵ

0, ∥ d0 ∥> ϵ

(41)

where d0 connects the points on the obstacle and manipulator
that are closest to each other, and ϵ is the threshold distance for
obstacle avoidance. The maximum velocity (vm ) for the critical
point is set to 500 mm/s, and the threshold distance is set to
5 mm. The velocity (ẋd ) of the reference point that defines the
desired trajectory is set to 5 mm/s.

The controller is demonstrated in two different scenarios:
steering along a reference trajectory around a static obstacle
(Case I) and steering along a reference trajectory with a moving
obstacle (Case II). The results of Case I and Case II are pre-
sented in Figs. 12 and 13, respectively. The mean and maximum
(absolute) tracking errors are reported in Table II. Note that the
coordinates (·, ·) presented are expressed in the manipulator base
frame in the initial configuration as (x, z). In both experimental
cases, the manipulator tip is initially located at (0, 160) mm.
For Case I [see Fig. 12(a)], the manipulator tip is commanded to
follow a reference trajectory around a static obstacle (φ 70 mm).
For Case II [see Fig. 13(a)], the manipulator tip is commanded
to follow a straight reference trajectory, while an obsta-
cle (φ 40 mm) is moving toward the manipulator. As expected,
open-loop control results in trajectory tracking errors and also a
steady-state error is present [see Figs. 12(a), (c) and Figs. 13(b),
(c) and also Table II]. These errors can be explained by friction
between tendons and tendon guides. Near-zero trajectory track-
ing errors are observed for both cases of closed-loop control:
The small errors can be attributed to noise in the measurements
of the FBG sensors. For both open-loop and closed-loop control
with obstacle avoidance, the manipulator successfully avoids the
obstacle [see Figs. 12(d) and 13(d)]. The minimum distance be-
tween obstacle and manipulator is 1.4 mm for Case I and Case II
is 1.1 mm. For closed-loop control without obstacle avoidance
(noa), we observe that the manipulator collides with the obstacle.
When approaching the obstacle (i.e., ∥ d0 ∥< ϵ), the bending
angles of both segments are adjusted such that the critical point

Fig. 12. Case I results. (a) Manipulator is steered along a reference trajec-
tory (dashed) around a static obstacle (circle). Three different types of control
are evaluated: open-loop (red), closed-loop (green), and closed-loop (black)
without obstacle avoidance (noa). Final manipulator configuration for the three
types of control is shown. (b) Tracking error in x-direction. (c) Tracking error in
z-direction. (d) Distance between obstacle and manipulator (∥ d0 ∥). The gray
area indicates collision with the obstacle, while the dashed line indicates the
boundary (i.e., ϵ = 5 mm) for obstacle avoidance. (e) Bending angles for both
segments: q2 (solid) and q3 (dashed). The accompanying video demonstrates
the results of these trajectory tracking experiments.

TABLE II
ABSOLUTE (∥ et ∥) TRAJECTORY TRACKING ERRORS (IN MM) FOR BOTH

EXPERIMENTAL CASES (I AND II) USING THREE TYPES OF CONTROL:
OPEN-LOOP (OL), CLOSED-LOOP (CL), AND CLOSED-LOOP WITHOUT

OBSTACLE AVOIDANCE (CL-NOA)

Type Case I (mm) Case II (mm)

Mean Max Mean Max

OL 1.64 (0.08) 3.69 (0.03) 0.35 (0.08) 0.80 (0.07)
CL 0.24 (0.01) 1.37 (0.05) 0.09 (0.02) 0.52 (0.04)
CL-noa 0.28 (0.02) 1.35 (0.10) 0.06 (0.03) 0.38 (0.09)

The mean errors (along the entire trajectory) and maximum (max)
errors are presented. Reported values are average values and standard
deviations (in brackets). Each experimental case is repeated five times.

moves in a direction away from the obstacle [see Figs. 12(e)
and 13(e)].

D. Feasibility of Force Sensing Using Fiber Bragg
Grating Sensors

Three colocated FBG sensors can measure axial strain
induced by an (axial) force besides measuring bending induced
strain as shown by (37). We demonstrate this in an experiment
in which the manipulator tip interacts with a compliant
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Fig. 13. Case II results. (a) Manipulator tip is steered along a reference
trajectory (dashed) while avoiding a moving obstacle (circle). Three differ-
ent types of control are evaluated: open-loop (red), closed-loop (green), and
closed-loop (black) without obstacle avoidance (noa). Manipulator configura-
tion (green) is shown, for the case of closed-loop control with obstacle avoid-
ance, at different time instants during the experiment: t = 0, 13, 15 and 18 s.
(b) Tracking error in x-direction. (c) Tracking error in z-direction. (d) Distance
between obstacle and manipulator (∥ d0 ∥). The gray area indicates collision
with the obstacle, while the dashed line indicates the boundary (i.e., ϵ = 5 mm)
for obstacle avoidance. (e) The bending angles for both segments: q2 (solid)
and q3 (dashed). The accompanying video demonstrates the results of these
trajectory tracking experiments.

environment. The compliant environment consists of a spring
which is mounted onto an ATI Mini40 FT-sensor (ATI Industrial
Automation, Apex, NC, USA).

Two experimental scenarios are considered. In the first sce-
nario, the manipulator tip indents the compliant environment
during a forward motion (i.e., no bending of manipulator). For
the second scenario, the manipulator is steered in closed-loop
control along a reference trajectory toward the environment.
The axial strain measured by the FBG sensor near the
manipulator tip is compared with the force measured by
the force sensor in the insertion direction (i.e., z-direction)
in Fig. 14. For the first scenario, the tip starts to interact with
the environment at 6 s and further indents it until 14 s with
a constant velocity of 0.5 mm/s [see Fig. 14(a)]. The strains
measured by the FBG sensor follows a trend similar to the
reference force. In the second scenario, the manipulator bends
prior to interaction with the environment at 24 s. As seen
in Fig. 14(b), fluctuations in strain are measured before impact.
This is caused by the actuation of the tendons, which results in
an axial force on the FBG wire. However, the instant of impact
is clearly discernable, as seen by the increase in the measured
strain.

Fig. 14. Interaction of the manipulator tip with a compliant environment. The
interaction force is measured by a force sensor, while axial strain in the manip-
ulator is measured by FBG sensors near the tip. Two scenarios are considered:
(a) Indentation of the environment without manipulator bending. (b) Steering
toward the environment along a reference trajectory. The accompanying video
demonstrates the results of these force sensing experiments.

VII. CONCLUSION AND FUTURE WORK

In this study, we have presented a framework for the control
of multisegment continuum manipulators using a modeling
approach based on a rigid-link approximation and FBG-based
shape sensing. We propose a rigid-link model that describes
manipulator shape by a serial chain of rigid-links, connected by
flexible rotational joints. As opposed to the constant-curvature
approach, the model can account for external loading. Com-
pared with the Cosserat-rod model, which also accounts for
external loading, the kinematics of the rigid-link model are
simpler such that the manipulator Jacobian can easily be
computed. A controller is implemented that uses the manip-
ulator Jacobian to steer the manipulator tip along a reference
trajectory while using the kinematic redundancy for obstacle
avoidance.

The proposed framework is evaluated using an experimen-
tal testbed consisting of a tendon-driven manipulator with two
bending segments. An array of 12 FBG sensors is integrated
into the manipulator backbone for shape sensing of the manip-
ulator. The controller is evaluated for two experimental cases.
The first concerns steering around a static obstacle, while in the
second case, an obstacle approaches the manipulator. Closed-
loop control results in mean trajectory tracking errors of 0.24
and 0.09 mm with maximum errors of 1.37 and 0.52 mm for
Case I and Case II, respectively. In both cases, the manipulator
successfully avoids the obstacle.

Finally, we have demonstrated the possibility of measuring
interaction force using FBG sensors while simultaneously per-
forming shape sensing. Although promising, force sensing using
FBG sensors is challenging and requires further study. Hence, as
part of future work, we will investigate using an FBG fiber with
a different distribution of FBG sensors, such that manipulator
actuation does not affect the measured strains.

In this work, we considered the manipulator to be torsionally
stiff and experiments were only performed for the planar case.
Therefore, we did not include torsion in the rigid-link model. In
future work, we will also consider spatial deformations and the
model needs to be extended to account for torsion. This could be
done by adding torsional springs to each joint, such that torsion
can be described by a rotation around the longitudinal axis of
the manipulator.

In our model, we did not consider friction between tendons
and tendon guides, which could be a possible source of the
error that is observed in the experiments. In future studies, we
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will consider nonlinear effects, such as friction and hysteresis,
and include them into the model. We believe that the rigid-
link modeling approach provides insight into the modeling of
continuum manipulators, since it can be extended to include
manipulator dynamics. In addition, it can account for external
loading which is useful when the manipulator interacts with
the environment. We did not consider this in the experiments;
hence, in future studies, we plan to use the rigid-link model for
force sensing and force control.
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