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Abstract—Applications such as micromanipulation and min-

imally invasive surgery can be performed using micro-sized

agents. For instance, drug-loaded magnetic micro-/nano- particles

can enable targeted drug delivery. Their precise manipulation can

be assured using a robust motion controller. In this paper, we

design a closed-loop controller-observer pair for regulating the

position of microagents. The prescribed performance technique

is applied to control the microagents to follow desired motion

trajectories. The position of the microagents are obtained using

microscopic images and image processing. The velocities of the

microagents are obtained using an iterative learning observer.

The algorithm is tested experimentally on spherical magnetic

microparticles that have an average diameter of 100 µm. The

steady-state errors obtained by the algorithm are 20 µm. The

errors converge to the steady-state in approximately 8 seconds.

I. INTRODUCTION

The developments in microfabrication technologies in the
last decade allowed the progress of microrobotics research on
applications such as minimally invasive surgery, microassem-
bly and environmental remediation [1], [2]. Among these
applications, there is a growing demand especially for less-
invasive and non-surgical medical interventions which aims
at reducing patient trauma and hospitalization time. Various
micro-sized agents such as sperm-driven Micro-Bio-Robots
[3], MagnetoSperm [4] and magnetic micro-/nano- particles
[5] can be utilized for minimally invasive surgical procedures
in the human body. For instance, precise manipulation of
magnetic micro-/nano- particles which are loaded with drugs
can enable targeted drug delivery, since they can be powered
and steered wirelessly by external magnetic field gradients.

The success of microrobots in minimally invasive surgery
can be assured by three aspects: (i) a propulsion mechanism
which can provide enough power to tackle uncertainties and
environmental disturbances; (ii) a real-time imaging modality
with adequate resolution; (iii) a robust and accurate motion
control system. This paper deals with the design of a robust
and accurate motion control system for micro-sized agents.
Magnetic microparticles with an average diameter of 100 µm
are selected for this purpose, since they can be controlled
wirelessly using external magnetic field gradients.

Microrobots were controlled initially in open-loop, by
means of pulling with magnetic field gradients [6], [7]. These
works assumed that the magnetic field direction did not vary
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Fig. 1. The Mobi-Mag electromagnetic system used for controlling different
type of magnetic microagents using microscope and camera feedback: (a)
Janus micromotors (b) Magnetotactic bacteria (c) Self-propelled microjets
(d) Sperm-driven micro-bio-robots (e) MagnetoSperm, and (f) Magnetic
microparticles [3]–[5]. In order to autonomously move towards a target or
follow a desired reference trajectory, these magnetic micro-sized agents need
a control algorithm which uses their position information and generates corre-
sponding currents. In this work, we use a prescribed performance controller for
this purpose and focus on magnetic microparticles. The electromagnetic coils
are used to transmit power wirelessly to the microagents, and the microscope
and camera are used to capture images, as shown above. Based on the error
between the desired target or trajectory and the actual position, the control
signals are generated. These control signals are sent to the DC servo drives
shown above which then generate the currents for the electromagnetic coils.

rapidly and neglected the dynamics of the microrobot and the
environment. Such assumptions are not valid to perform the
previously mentioned applications due to the (possibly nonlin-
ear) perturbations resulting from the environment dynamics,
e.g. variations in temperature and viscosity; parametric uncer-
tainties in the magnetic dipole moment [8]. Open-loop control
is not suitable to deal with (or rather reject) disturbances.
On the contrary, closed-loop control can deal with these
perturbations effectively. For microrobotic systems, different
closed-loop techniques such as linear control [5], adaptive
control [9], H1 control [10] and model predictive control
[11] have been investigated. For (standard) linear controllers,
problems such as instabilities and undesired oscillations have
been reported [12], [13]. As a remedy to problems associated
with linear controllers, adaptive control has been proposed
to estimate drag and electrostatic forces which result from



the environment dynamics [9]. Since, the drag force is a
nonlinear and time-varying function of the viscosity, it cannot
be estimated using the classical adaptive approaches [9].
Besides their influence on the closed-loop stability, perturba-
tions degrade the transient and steady-state error performance
of the aforementioned controllers. The previously mentioned
controllers cannot guarantee the desired transient and steady-
state errors without an explicit knowledge of the uncertainties
or their upper bounds, which is practically impossible.

A technique which can resolve the previously mentioned
stability issues while guaranteeing the desired performance
metrics is known as Prescribed Performance Control [14].
Here, prescribed performance refers to the convergence of
the control error to a predefined arbitrarily small residual set
with a prespecified minimum convergence rate and maximum
overshoot level. This technique has been applied to the robust
control of manipulators [15] and underwater vehicles [16].
A benefit of this method is due to the fact that contrary to
the standard robust and adaptive control methods the output
performance is isolated from the control gains selection.
Consequently, the robustness against model uncertainties is
greatly extended. In [17] the technique is extended with a high
gain observer to deal with the absence of the measurement of
the full state, i.e., velocities besides the position measurement.
State observers such as high gain observers, have also been
used in the control of microrobotic systems to estimate the
velocities [9]. However, they require an estimation of the
dynamics and the knowledge of the control inputs, which
depends on the knowledge of the magnetic field gradients.
High observer gains are often used to deal with the insufficient
knowledge of these variables. Consequently, the noise on
the estimated velocities is amplified. The adaptation of the
Iterative Learning Observer (ILO) method [18] introduced in
[19] does not depend on these variables and thus can deal with
the high gain issue.

In this work, we designed a prescribed performance closed-
loop position controller for microagents which can guarantee
the prespecified transient and steady-state error metrics. We
obtain the position of the microagents with respect to an
inertial frame using a customized feature tracking algorithm.
This position is utilized to estimate the velocity of the agents
using a first order iterative learning observer. These signals are
used in the design of the closed-loop controller. The effective-
ness of the controller and observer pair are demonstrated in
experiments on spherical magnetic microparticles (see Fig 1).

The major contributions of this work are:
• Deriving a robust closed-loop controller and observer pair

for microagents;
• Experimental evaluation of the algorithm using magnetic

microparticles.

II. MODELING MAGNETIC MICROPARTICLES

In this section, the equations of motion for the spherical
microparticles are derived. This is followed by the derivation
of the relation between the input currents and magnetic forces
used in the electromagnetic actuation.
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Fig. 2. Graphical representation of the microparticle and the free-body
diagram. Here, the frames { 

I

} and { 
B

} are related to the inertial and
body frames, respectively. For i 2 {x, y, z}, the terms F
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, F
m,i

, F
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and
F

g

represent the hydrodynamic drag force, the magnetic force, buoyancy force
and the weight of the microparticle, respectively.

A. Equations of motion

The spherical magnetic microparticles have negligible in-
trinsic anisotropy. They have an average diameter of 100
µm. The details of the kinematic variables and the free-
body diagram for the microparticles are shown in Fig. 2. Let
{ 

I

}, O
I

� x
I

y
I

z
I

be an inertial frame with the origin O
I

and { 
B

} a body-fixed frame with the origin O
B

located in
the center of mass of the microparticle. The position vector
pI

B/I

(t) 2 R3, pI

B/I

(t) =
⇥

x(t) y(t) z(t)
⇤

T is the distance
from { 

I

} to { 
B

} expressed in { 
I

} and RI

B

(t) 2 SO(3)

describes the orientation of the microparticle with respect to
{ 

I

}. Here, t 2 R represents the time. In what follows,
due to the negligible intrinsic anisotropy assumption and
the spherical geometry, we neglect the rotational part in the
dynamic equations. The equations of motion of the magnetic
microparticles are given as follows:

M
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where M
p

2 R
>0

is the mass of the microparticle. Further,
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(
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(t)) 2 R3, F
m

(pI
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(t)) 2 R3, F
b

2 R3 and
F

g

2 R3 are the hydrodynamic drag force, the magnetic force,
buoyancy force and the weight, respectively. An estimate of
the drag force can be computed by considering the geometry
of the microparticle, the fluid it is placed in and its maximum
velocity. Assuming a maximum velocity of max

t2R

�

�

˙pI

B/I

(t)
�

�

= 1

[mm s-1] and water as the fluid, a particle Reynolds number
of Re

p

< 0.1 can be computed for the microparticle which
indicates that it is in the low Reynolds regime. The drag force
experienced by a spherical particle moving parallel to direction
of the fluid flow for low Reynolds numbers can be computed
using Stoke’s law as follows:
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where ⌘
f

and r
p

are the dynamic viscosity of the fluid and
the radius of the sphere, respectively [20]. The weight and
buoyancy forces are given as follows:

F
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f

g (3)



where V
p

and g are the volume of the microparticle and
gravitational acceleration and ⇢

p

, ⇢
f

are the density of the
microparticle and fluid, respectively.
B. Magnetic Control Input

Besides the drag and buoyancy terms derived in the previous
section, the magnetic force applied by the electromagnetic
coils on the microparticles should be included into the dynamic
model [21]. The magnetic flux density for each electromagnet
generated at a position pI 2 R3, pI

=

⇥

pI,x pI,y pI,z

⇤

T

relative to the inertial frame is given by

B
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(pI

) = RI

i

B
i

(pi

), for i = 1, . . . , n (4)

where n is the number of coils, RI

i

2 SO(3) and B
i

(pi

) 2
R3 represents the rotation matrix describing the orientation
of the ith coil with respect to the inertial frame,  

I

and
the flux density in its associated local coordinates pi

=

⇥

pi,x pi,y pi,z

⇤

T , respectively [22]. The overall (global)
magnetic flux density can be determined by the superposition
of the contribution of the ith electromagnet as [21]
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X
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B
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with B
i

(pI

) given by (4). The magnetic force F
m

2 R3 that
the microparticle experiences acting at a point pI is given by

F
m

(pI

) = r(m ·B(pI

)) (6)

where m 2 R3 and B(pI

) 2 R3 are the magnetic dipole mo-
ment and the global magnetic field given by (5), respectively.
It is assumed that in the workspace where the microparticles
are controlled, the current varies linearly with the magnetic
field which can be expressed as

B(pI
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n
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eB
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)I
i
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where eB(pI

) 2 R3⇥n is a position-dependent matrix related
to the magnetic field evaluated at pI and I 2 Rn⇥1 is the
vector of applied currents. The individual elements of matrix
eB(pI

) depends on the coil parameters such as the number and
radius of the windings and the thickness of the coil wires. The
particles we consider in this work are superparamagnetic at
room temperature, thus the magnetic dipole moment is related
the magnetic field as
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)
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where �
m

and µ0 are the magnetic susceptibility and the vac-
uum permeability, respectively [5]. Consequently, the forces
are related to the currents via the following map:
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for j 2 {pI,x, pI,y, pI,z}. The currents corresponding to the
desired magnetic forces are obtained by solving the inverse
of the quadratic relation (i.e. h�1

(pI ,I)) in (11) using the
technique described in [23].

III. DESIGN OF A PRESCRIBED PERFORMANCE
CONTROLLER

In this section, we describe the prescribed performance
concept applied to the control of spherical microparticles.
This is followed by the design of the prescribed performance
controller for the position coordinates of the model derived in
Section II. Finally, a sketch of the stability proof is provided.
A. Prescribed Performance Concept

The prescribed performance concept ensures the conver-
gence of the position error to a predefined and arbitrarily
small set with a desired convergence rate and overshoot using
decaying functions of time. This is formally expressed as:

⇢
L

(t) < e(t) < ⇢
U

(t), 8t � 0 (12)

where e(t) is a scalar tracking error variable [16]. In (12), the
performance functions ⇢

L

(t) and ⇢
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(t) are sufficiently smooth
and bounded functions of time satisfying ⇢
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8t � 0 and lim
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allowable size of the error e(t) at the steady state. Moreover,
the decreasing rate of ⇢

L

(t), ⇢
U

(t) which is affected by
the constants l

L

, l
U

in this case, introduces a lower bound
on the required speed of convergence of e(t). In Section
III-B symmetric performance functions are selected for the
controller which satisfy ⇢

L

(t) = �⇢
U

(t).
B. Position Controller

We utilize the prescribed performance concept to generate
magnetic control forces to steer the microparticles to a desired
position or to follow a desired trajectory. For this purpose, let
us first define the position and velocity errors as
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for i 2 {x, y, z} with the gain �
p,i

2 R being a posi-
tive gain. According to the prescribed performance strategy,
using the combined error (15), the magnetic control forces
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ẋ, ẏ
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Fig. 3. Closed-loop control system and the cascade controller and observer
block diagram. The reference trajectories x

d

(t), y
d

(t) and their time deriva-
tives to be followed by the microparticle are used to compute the position (13)
and velocity (14) errors. They are used to compute the combined error (15) to
obtain the magnetic control forces (16). The forces are converted to currents
by solving the inverse relation h�1(pI

,I) which are sent to the coils. The
time dependence of the signals (e.g. x(t)) are neglected for brevity.

for i 2 {x, y, z} where k
p,i

> 0 is the control gain. Here, the
performance function ⇢

p,i

(t) on the combined position and
velocity error (15) is defined as

⇢
p,i

(t) = (⇢
p,i,0 � ⇢

p,i,1)e�l

p,i

t

+ ⇢
p,i,1. (17)

C. Iterative Learning Observer for Velocity Estimation
The controller developed in Section III-B makes use of

the time derivatives ẋ(t), ẏ(t) and ż(t). Different from the
configuration variables x(t), y(t) and z(t), these signals
cannot be obtained by feedback from the feature tracking
algorithm, using microscopic images. Thus, ẋ(t), ẏ(t) and
ż(t) are estimated using the Iterative Learning Observer (ILO)
technique, since numerical differentiation amplifies the noise
on x(t), y(t) and z(t) [24]. ILO is selected since it does
not require the accurate knowledge of the dynamic equations
of the microparticles. Further, it does not make use of the
control inputs which depend on the knowledge of the magnetic
parameters of the system. The ILO is designed for the x-
coordinate (Fig. 2) of the microparticle by considering the
following system:

ẋ(t) = �(t) (18)

where x(t) 2 R is the measurement signal (or the x-
coordinate) and �(t) 2 R is the unknown time-varying
parameter. The ILO for the system (18) is given as

˙x̂(t) = L
o

(x(t)� x̂(t)) + �̂(t) (19)
�̂(t) = K

1,o

�̂(t� ⌧) +K
2,o

(x(t)� x̂(t)) (20)

where x̂(t) 2 R and �̂(t) 2 R. Further, L
o

, K
1,o

and K
2,o

are
observer gains and ⌧ is the delay. The ILO for the y-coordinate
can be derived in a similar way to x. The block diagram of
the overall control structure is presented in Fig. 3.

D. Sketch of the Stability Proof
The following results are used to prove the closed-loop

stability of the control system described in Sections III-B and
III-C. Consider the initial value problem:

˙⇠ = �(t, ⇠), ⇠(0) = ⇠0 2 ⌦
⇠

(21)

with � : R
+

⇥ ⌦
⇠

! Rn where ⌦
⇠

⇢ Rn is a non-empty
open set.

Definition 1: A solution ⇠(t) of the initial value problem
(21) is maximal if it has no proper right extension that is also
a solution of (21).

Theorem 1: Consider the initial value problem (21), assume
that �(t, ⇠) is: a) Locally Lipschitz on ⇠ for almost all t 2 R

+

,
b) piecewise continuous on t for each fixed ⇠ 2 ⌦

⇠

and c)
locally integrable on t for each fixed ⇠ 2 ⌦

⇠

. Then, there
exists a maximal solution ⇠(t) of (21) on the time interval
[0, ⌧
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> 0 such that ⇠(t) 2 ⌦
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, 8t 2 [0, ⌧
max

).
Proposition 1: Assume that the hypothesis of Theorem 1

hold. For a maximal solution of ⇠(t) on the time interval
[0, ⌧

max
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max

< 1 and for any compact set ⌦0
⇠

⇢ ⌦

⇠

there exists a time instant t0 2 [0, ⌧
max

) such that ⇠(t0) /2 ⌦0
⇠

.
Theorem 2: Consider the linear system described by

ẋ(t) = Ax(t) +Bu(t) + F✓(t) (22)
y(t) = Cx(t) (23)

and the ILO described by
˙x̂(t) = Ax̂(t) +Bu(t) + L (y(t)� ŷ(t)) + Fv(t) (24)
ŷ(t) = Cx̂(t) (25)
v(t) = K

1

v(t� ⌧) +K
2

(y(t)� ŷ(t)) (26)

If there exists a positive definite matrix P satisfying

(A� LC)

T

P + P (A� LC) = �Q < 0 (27)

and the ILO parameters, K
1

and K
2

are selected such that

0 < ↵KT

1

K
1

 I, PF = ✏(K
2

C)

T ↵ > ✏ > 1, (28)

then both the state estimation error and the parameter estima-
tion error are bounded.
Considering these preliminary results, the stability of the
overall closed-loop control system can be summarized by the
following theorem.

Theorem 3: Consider
i) the system (1),

ii) the initialization set ⌦
⇠

⇢ R6,
iii) the appropriately selected performance functions (17),
The proposed position (16) controllers and the iterative learn-
ing observer (19) and (20) solves the prescribed performance
stabilization problem stated in Section III-A.

Proof: The stability of the position control loop can be
proved following the notions presented in [17]. The proof for
the controller using the full-state (position+velocity) informa-
tion without the observer is done first. This can be done in
two steps. First, it can be shown that for the system (15), if
the parameters of (15) and (17) are selected as l

p,i

< �
p,i

,
then for each i the error e

p,i

(t) converges exponentially fast
to the residual set E =

n

e
p,i

2 R : |e
p,i

| < ⇢

p,i,1
�

p,i

o

8t > 0.
In the second step, using Theorem 1 and Proposition 1, it can
be shown that the state trajectories of the closed-loop system
exists for all future times (t > 0) if the initial value of (15)
satisfies |s

p,i

(0)| < ⇢
p,i,0. The closed-loop stability with the

inclusion of the ILO can be done by utilizing Theorem 2 and
input-to-state stability from input x(t) to �̂(t) in (19)-(20).



IV. EXPERIMENTS
In this section, we start by briefly introducing our exper-

imental setup. Then, the experimental results related to the
prescribed performance controller are introduced.

A. Experimental Setup

Our experimental setup consists of an array of 6 electro-
magnetic coils with iron cores placed orthogonally around
a fluid reservoir. Four of these coils lie on the same plane
to manipulate the planar position of the microagents. The
bottom and top coils are not used in the experiments since
position information in the z- direction was not available.
Thus, only the position of the microparticles which are floating
in the surface can be controlled. For those microparticles, it
is assumed that the buoyancy force is balanced by the surface
tension force. Each coil is powered by an Elmo ’Whistle’
1/60 DC servo drive (Elmo Motion Control, Petach-Tikva,
Israel). A Blackfly 1.4 MP Color GigE PoE (Point Grey
Research Inc., Richmond, Canada) camera is mounted on a
Mitutoyo FS70 microscope unit (Mitutoyo, Kawasaki, Japan)
using a Mitutoyo M Plan Apo 2 / 0.055 Objective. This mi-
croscope and camera pair can provide the position information
regarding the x- and y- directions. We used superparamagnetic
microparticles, consisting of iron-oxide in a poly(lactic acid)
matrix (PLA Particles-M-redF-plain from Micromod Partikel-
technologie GmbH, Rostock-Warnemuende, Germany). Each
individual microparticle have a mass of M

p

= 7.33 ⇥ 10

�10

[kg] and a density of ⇢
p

= 1.4 ⇥ 10

3 [kg/m3]. The hydrody-
namic parameters of water are ⌘

f

= 1 [mPa·s] and ⇢
f

= 998.2
[kg/m3], respectively. The parameters regarding the magnetic
properties of microparticles and the coils are �

m

= 0.075,
µ0 = 4⇡ ⇥ 10

7 [T·m/A], max |B
i

(pI

)| < 15 mT. The details
of the image processing algorithm used to detect the center
coordinates of the microparticles can be found in [25].

B. Motion Control Results

We present the results of representative motion control
experiments for the prescribed performance controller and
Iterative Learning Observer (ILO) detailed in Section III. The
controller-observer pair’s performance is tested with a constant
setpoint obtained by clicking with the mouse on the graphical
user interface. The gains of the controller used during the
observer are selected as �

p,x

= 3.25, �
p,y

= 3.25, l
p,x

= 0.5,
l
p,y

= 0.5. The gains of the iterative learning observer are
selected as L

o

= 3, K
1,o

= 0.9, and K
2,o

= 0.5. These
values are selected considering the actuator limits such as
the maximum current and the cut-off frequency of the coils.
In all of the experiments we did, the combined error (15)
remained within the prescribed performance bounds (17). In
the following figures the results of a representative experiment
are presented. The recorded setpoint position and the micropar-
ticle position obtained by the feature tracking algorithm are
shown in Fig. 4. The positions and velocities estimated by
the ILO are also shown in Fig. 4. It can be realized that
there is negligible overshoot in both x- and y- directions and
the setpoints are reached in approximately 8 seconds. It can
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Fig. 4. Results of a representative experiment are shown. The setpoint position
(black dashed line), positions estimated by the Iterative Learning Observer
(ILO) (red solid line) and the feature tracking algorithm (blue solid line) for
x- and y- directions are shown in the top plots in (a) and (b), respectively.
The velocities estimated by the ILO for x- and y- are shown in the bottom
plots in (c) and (d), respectively.
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Fig. 5. Results of a representative experiment are shown. The combined
position and velocity error (solid line) (15) s

p,i

(t) for x- and y- directions
are shown in (a) and (b), respectively. The exponentially decaying performance
functions ⇢

p,i

(t) are also shown on each plot with dashed lines. The insets
show a zoomed version of the aforementioned variables at the steady-state.

also be observed that at steady-state, the standard deviation of
the positions estimated with ILO is half of the one obtained
using the feature tracking algorithm which indicates that the
ILO reduces the noise on the positions. The combined position
and velocity error (15) s

p,i

(t) for i 2 {x, y} are shown in Fig.
5. The exponentially decaying performance functions ⇢

p,i

(t)
for i 2 {x, y} are also shown on each plot with dashed lines
in Fig. 5. The trace of the microparticle trajectory on the x-y
plane is shown in Fig. 6.

V. CONCLUSIONS AND FUTURE WORK

We investigated the design of a controller and observer
pair for microagents. The prescribed performance concept is
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Fig. 6. The trace of x-y trajectory of the microparticle’s motion with the
initial point (2668,1275) µm and the final setpoint (1399,2402) µm. The red
arrows next to the actual trajectory of the microparticle represent the direction
of motion. The inset in the top right shows the top view of the setup and where
the inertial frame is located with respect to it.

utilized to control the position of a microagent to follow
a desired trajectory. The velocities required to compute the
control action are obtained using an iterative learning observer.
Representative experimental results on spherical magnetic mi-
croparticles with an average diameter of 100 µm are provided
which highlight the achievement of the prespecified error
metrics such as convergence time and steady-state error. The
steady-state errors obtained by the control algorithm are 20
µm. The errors converge to the steady-state in approximately
8 seconds.

As part of our future studies, we will investigate the
application of this control methodology to different micro-
sized agents including self-propelling ones. The robustness of
the control algorithm to environmental disturbances such as
fluid flow will also be evaluated. Furthermore, the performance
of the control algorithm will also be tested using different
imaging modalities.
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