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Abstract—Micro-sized agents can be used in applications such
as microassembly, micromanipulation, and minimally invasive
surgeries. Magnetic agents such as paramagnetic microparticles
can be controlled to deliver pharmaceutical agents to difficult-to-
access regions within the human body. In order to autonomously
move these microparticles toward a target/goal area, an obstacle-
free path must be computed using path planning algorithms.
Several path planning algorithms have been developed in the
literature, however, to the best of our knowledge, only few
have been employed in an experimental scenario. In this paper
we perform an experimental comparison of six path planning
algorithms when applied to the motion control of paramagnetic
microparticles. Among the families of deterministic and proba-
bilistic path planners we select the ones that we consider the most
fundamental, such as: A* with quadtrees, A* with uniform grids,
D* Lite, Artificial Potential Field, Probabilistic Roadmap and
Rapidly-exploring Random Tree. We consider a 2D environment
made by both dynamic and static obstacles. Four scenarios are
evaluated. Three metrics such as computation time, length of
the trajectory performed by the microparticle, and time to reach
the goal are used to compare the planners. Experimental results
reveal equivalence between almost all the considered planners
in terms of trajectory length and completion time. Concerning
the computation time, A* with quadtrees and Artificial Potential
Field achieve the best performances.

I. INTRODUCTION

Micro-sized agents, such as self-propelled microjets [1],
MagnetoSperm [2], magnetotactic bacteria [3], paramagnetic
microparticles [4], Janus micromotors [5], and sperm-driven
Micro-Bio-Robots [6] (see Fig. 1), can be used to carry
out limited minimally invasive surgeries in difficult-to-access
regions within the human body. Paramagnetic nanoparticles
and microparticles could be used as contrast agents and
localized drug delivery inside the human body. They have
an average diameter of 100 µm and can be controlled by
externally applying a magnetic field gradient thus eliminating
the need to carry an on-board power source [7].

For certain applications it is necessary not only to control
the micro-sized agent, but also to make it avoid collisions with
the environment. Path planners compute obstacle-free paths
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Fig. 1. The Mobi-Mag magnetic system used for the motion control of
several micro-sized agents: (a) Self-propelled microjets (b) MagnetoSperm
(c) Magnetotactic bacteria (d) Paramagnetic microparticles (e) Janus micromo-
tors, and (f) Sperm-driven micro-bio-robots [1]-[6]. In order to autonomously
move toward a target, these magnetic agents need an obstacle-free path which
can be provided by a path planner. In this work we focus on paramagnetic
microparticles. The Mobi-Mag system is composed by six coils (four on the
sides, one on the top, and one on the bottom) fixed in a frame around a
reservoir with the liquids. The microscope objective is positioned above the
reservoir. Magnetic forces are exerted on the microparticle to control its
position and reach a target/goal area. (Top inset) The image captured by
the camera shows an obstacle-free path (red) generated by a Probabilistic
Roadmap planner. The path is used to move the paramagnetic microparticle
(black) toward the goal area (green) while avoiding dynamic and static
obstacles (blue).

in order to move the microparticle from its initial position
to the goal region while avoiding collisions with static and
dynamic objects. Although several pathfinding algorithms have
been developed in recent years, only few have been applied



to magnetic agents in an experimental scenario. In [4] the
authors implemented a 2D path planner based on the A*
algorithm [8]. The path was calculated based on the initial
positions of the microparticle and of the obstacles; collision
avoidance was based on the Artificial Potential Field (APF)
approach [9]. In [10] a 3D probabilistic-based path planning
method for static obstacles was developed. The motion planner
explicitly considered uncertainty in the motion of the mi-
croparticle and maximized the probability to avoid obstacle
collisions and reach the target. The proposed motion planner
was successfully tested in a simulated 3D environment with
static obstacles.

Since path planners have been rarely implemented for mi-
cro/nano applications, in this paper we perform a comparison
between six path planners, when applied to paramagnetic
microparticles in a real-world 2D dynamic environment (see
Fig. 1). For each planner we report possible advantages and
drawbacks. Among the families of deterministic and proba-
bilistic planners (the former use a deterministic decomposition
of the configuration space, the latter use a random sampling of
it) we select the ones that we consider the most fundamental,
such as: A* [8], D* Lite [11], Artificial Potential Field (APF)
[9], Probabilistic Roadmap (PRM) [12], [13], and Rapidly-
exploring Random Tree (RRT) [14] (see Fig. 2). Regarding the
A* algorithm, it is used with both uniform grids and quadtrees.
The reasons to investigate deterministic path planning are the
following: (i) the simplicity to implement these algorithms;
(ii) the space analyzed which does not have a huge size to
require a very complex algorithm to calculate the path. On the
contrary, probabilistic path planners provide solutions to prob-
lems involving vast, high-dimensional configuration spaces
that would be intractable using deterministic approaches. The
proposed planners are evaluated in four experimental scenar-
ios, including static and dynamic obstacles and environments
where the information available concerning the environment is
incomplete. Three metrics such as computation time, length of
the trajectory traveled by the microparticle, and time to reach
the goal area are used to compare the planners. The results
of this paper should help future users of planning approach
applied to paramagnetic microparticles to choose the correct
techniques. It is worth noting that, although we evaluate the
path planners with paramagnetic microparticles, analogous
results can be obtained with other micro-sized agents having
motion equations similar to that of microparticles, i.e., hydro-
gel micro-grippers [15], [16], and metallic micro-grippers [17].
The motivation to use paramagnetic microparticles is related
to their reduced size which allows us to evaluate the planners
in more challenging scenarios.

The rest of the paper is organized as follows. Sect. II reviews
the dynamic model of paramagnetic microparticles. Sect. III
describes the techniques used to partition the configuration
space. In Sect. IV the path planning algorithms used in this
paper are reviewed, while in Sect. V they are evaluated via
experiments and results are given and discussed. Finally, in
Sect. VI we summarize the main contributions of the paper,
and we discuss possible avenues for future research.

Deterministic
path planners
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path planners

A* with uniform grid

A* with quadtree
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Fig. 2. Path planners can be classified into deterministic and probabilistic
planners. Deterministic planners use a deterministic decomposition of the
configuration space. They are simple to implement and suitable if the space
analyzed does not have a huge size to require a very complex algorithm to
calculate the path. On the contrary, probabilistic path planners use a random
sampling of the configuration space and provide solutions to problems in-
volving vast, high-dimensional configuration spaces that would be intractable
using deterministic approaches.

II. MODELING MICROPARTICLE DYNAMICS AND CONTROL

In this section we describe the 3D dynamic model of
paramagnetic microparticles. Let p = [x, y, z]T ∈ R3×1 be
the position of a microparticle in the 3D space. The state of
the microparticle is defined as x = [x, y, z, vx, vy , vz]T ∈
R6×1 where vx, vy , vz represent the velocity of microparticle.
Microparticles move under the influence of a magnetic force, a
drag force, and a buoyancy force. We can control the magnetic
force by applying currents to the magnets surrounding the
microparticle’s workspace. Let f(p) = [Fx, Fy, Fz ]T ∈ R3×1

be the magnetic force and let n be the number of electromag-
nets within the magnetic system, the magnetic force equals
[2], [4], [5]:

f(p) =
4

3µ0(1 + χm)
πr3pχm ∇(ITc B̃

T (p)B̃(p)Ic), (1)

where χm is the magnetic susceptibility constant, µ0 is the
vacuum permeability, B̃ ∈ R3×n is a matrix defining the
magnetic field that depends on the position where the magnetic
force is measured, Ic ∈ Rn×1 is the vector of the applied
current, and rp is the radius of the microparticle. To compute
currents for any desired magnetic force, a current-force map
that inverts Eq. (1) is used. Since the gradient of the magnetic
field is almost a constant in the workspace, we can write the
magnetic force as f . The drag force acting on the microparticle
is fd = [kvx, kvy, kvz]T ∈ R3×1, where k = −6πηrp is
a constant. We define the net buoyancy force acting on the
microparticle as Fb = V (ρb − ρf )g where V , ρb, ρf , and g
are the volume and density of the microparticle, the density
of fluid, and the acceleration due to gravity, respectively. The
continuous-time dynamics of the paramagnetic microparticle
can be written as

ẋ = Ax+Bf̃ , (2)

where

A =

[
03×3 E3×3

03×3
k
mE3×3

]
, B =

[
03×3
1

m
E3×3

]
,

f̃ = f + Fb[0, 0,−1]T , 03×3 ∈ R3×3 is a zero matrix,
E3×3 ∈ R3×3 is the identity matrix, and m is the mass of
the microparticle. From Eq. (2), it is worth noting that the
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Fig. 3. Space partition of a 1024×1024 units area via: (a) uniform grid, (b)
quadtree, (c) random sampling. Obstacles are depicted in blue. The uniform
grid divides the area in 324 obstacle-free quadrants with side of 60 units.
The quadtree generates 94 obstacle-free quadrants (the minimal side of the
quadrants is 60 units). Note: in (c) the area is randomly sampled with 200
samples using a uniform distribution.

microparticle is a holonomic system. The microparticle has
no kinematic constraints in its motion, on the contrary it has
dynamic constraints on its velocities and forces.

In order to properly understand the planning algorithms used
in this work, in the next section we describe how they represent
the environment in a way that they can easily manage it.

III. PARTITION OF THE CONFIGURATION SPACE

Path planners partition the world into a structure which
reduces the number of dimensions that a planner has to deal
with. The elements of such a structure are the states of the
planner and they are used to generate obstacle-free paths. Let
C be the configuration space, i.e. the space of all possible
displacements of the agent and let F be the free space (a
collision-free subset of C). In this work we consider three
methods to represent C and consequently F : (i) uniform grids,
(ii) quadtrees, and (iii) random sampling. We implement
A*, APF and D* Lite algorithms with uniform grids (Fig.
3 (a)); A* algorithm is implemented also with quadtrees
(Fig. 3 (b)); PRMs and RRTs use a random sampling of the
configuration space (Fig. 3 (c)). A uniform grid represents the
simplest way to partition the space. Regular grids perform
better than quadtrees in terms of space decomposition and
neighbor search, however quadtrees usually partition the space
in less cells than uniform grids (see Fig. 3 (a)-(b)). Quadtrees
have also the advantage that the larger blocks allow for a faster
search and the representation is easy to store. This properties
result very useful in relation to path planning algorithms since
less states need to be explored.

Uniform grids and quadtrees decompose the environment
into quadrants. Uniform grids decompose the 2D space in a
matrix of equal-size blocks, see Fig. 3(a). For uniform grids,
inserting a new point or searching for the neighbors of a given
quadrant are very fast and trivial operations.

A quadtree [18] is a tree data structure in which each
internal node has exactly four children. Quadtrees are based
on the principle of regular decomposition and they can be
used to partition a 2D space by recursively subdividing it into
four quadrants or regions. Each child represents one of the
four quadrants in which the original space was divided. The
algorithm stops when the tree reaches a maximal depth or,
equivalently, when the area of the quadrants is below a given
threshold. At each step, if the new node contains or intersects
obstacles, it is marked as full. On the contrary, if it does not
contain or intersect obstacles, it is not divided and it is marked
as free (see Fig. 3(b)). Inserting a 2D object into a quadtree

requires to explore the tree from the root. At each step, the
algorithm checks if the object intersects the current node. The
proposed approach is recursively applied until a leaf node is
reached. A similar approach is performed to search for the
neighbors of a given node.

The probabilistic planners considered in this work use a
random sampling of the configuration space C, i.e. a new
sample is created by choosing random values for all its degrees
of freedom and added to the graph (PRM) or to the tree (RRT)
if it is collision-free (see Fig. 3(c)).

IV. PLANNING ALGORITHMS

In this section we briefly report an overview of the planners
used in this work.

A. Deterministic planners

A* [8] is a standard algorithm which finds a least-cost path
from a given initial state to the goal state. A* has several
advantages: (i) it finds a path from the start to the goal if it
exists; (ii) it finds an optimal path as long as the heuristic is
admissible; (iii) it makes the most efficient use of the heuristic,
i.e., no search that use the same heuristic function to find
optimal paths examines fewer states than A*. A drawback
of A* is that, on a large map, thousands of states might be
stored, which can require a lot of memory. Moreover, A* is
most inefficient in determining that no path is possible between
the start and goal locations. In this case A* examines all the
possible locations of the map.

Several algorithms have been developed in order to speed up
the performance of the standard A* during the exploration and
replanning phases by reusing the information from previous
searches. In this work we consider the D* Lite algorithm [11].
D* Lite planner is based on the Lifelong Planning A* (LPA*)
[19] to mimic D* [20]. D* runs similarly to A* on the initial
run, however, as the unit moves from start to finish, D* is able
to quickly recalculate the best path from that unit’s position
to the finish, much faster than A*. D*, however, is considered
to be complex. D* Lite [11] uses LPA* to mimic D*. On
the initial run, D* Lite runs very similarly to A*. As the unit
moves from start to finish, D* Lite uses LPA* to very quickly
recalculate the best path from that unit’s position to the finish.
D* Lite is considered much simpler than D* and it is at least
as efficient as D* [11].

Different from A* and D* Lite, Artificial Potential Field
(APF) method is based on attractive potential field due to
the target and repulsive potential field due to the obstacles
of the world [9]. The sum of these two potential gives us the
current potential of the micro-sized agent. The agent moves
by following the negative gradient of the potential energy
function. We use two different attraction function: conic and
quadratic. The quadratic formula gives us distance-dependent
replacement vectors and it is used when the microparticle is
far from the goal. On the other hand, the conic formula is
not linear with respect to square of the distance and is good
for near-the-goal cases. The repulsive potential is calculated
according to each obstacle and the sum of them gives us
the total repulsive function. APFs are not computationally
expensive, however they are not optimal (it is not guaranteed
that they find the best solution) nor complete (it is not
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Fig. 4. The experimental scenarios contain a goal region (green) and virtual
dynamic and static obstacles (blue). The goal region is located at (0.4, 4.35)
mm and has a radius of 0.25 mm. The initial position of the microparticle is
shown in black. Dynamic obstacles are represented as circles while static
obstacles are depicted as line segments. The black arrows represent the
velocity directions of the dynamic obstacles. The size of the environment
is about 5.1× 5.1 mm2. The objective is to move the microparticle from its
actual position to the goal region while avoiding obstacles. (a) We consider 5
dynamic obstacles having speed of 0.25, 0.25, 0.25, 0.25, and 0.35 mm/s,
respectively for obstacle 1, . . . , 5. The initial position of the paramagnetic
microparticle is (4.1, 0.72) mm. (b) 10 dynamic obstacles are considered.
The speed of the obstacles are 0.12, 0.38, 0.27, 0.42, 0.41, 0.26, 0.16,
0.18, 0.39, and 0.42 mm/s, respectively for obstacle 1, . . . , 10. The initial
position of the microparticle is (3.7, 1.45) mm.

guaranteed that they find the best solution or a goal state if
one exists due to local minima).

While a deterministic planner would be overwhelmed by
the prohibitive cost of computing an exact representation of
the free space F , a probabilistic one builds only a simplified
representation of F . In the next subsection we describe the
two probabilistic planners used in this paper.

B. Probabilistic planners

Probabilistic planners represent a class of methods of re-
markable efficiency, especially in problems involving high-
dimensional configuration spaces. The downside of the prob-
abilistic methods is that they are only probabilistically com-
plete, i.e., the probability of finding a solution to the planning
problem when one exists tends to 1 as the execution time
tends to infinity. This means that, if no solution exists, the
algorithm will run indefinitely. In practice, a maximum number
of iterations is enforced so as to guarantee its termination.

PRM planners generate an extremely simplified represen-
tation of F , called a probabilistic roadmap. A roadmap is
a graph G whose nodes are configurations sampled from F
according to a suitable probability measure and whose edges
are simple collision-free paths, e.g., straight-line segments,
between sampled configurations. The PRM approach consists
of two phases: a preprocessing phase and a query phase. In
the preprocessing phase a roadmap graph G is constructed by
sampling F and adding the nodes to G. In the query phase,
the start and goal configurations are connected to G and the
path is obtained by performing a shortest path query on the
graph.

RRT is a well-established sampling-based motion planner.
The RRT is a tree T rooted at the microparticle’s initial state
xstart (Sect. II). At each iteration, the algorithm samples a
state xsample ∈ F , finds its nearest neighbors xnn in the tree,
and computes a feasible control f that grows the tree toward
the sampled state [21]. The tree is grown toward the sampled

state by applying the control input f to the dynamic model of
the micro-sized agent (2). The output of the RRT is a motion
plan [(xstart, fstart), . . . , (xS , fS)], where S is the number
of steps. The most important advantages of RRTs is that they
can deal with real-valued spaces of extremely high dimension
and they can handle dynamics.

V. EXPERIMENTAL VALIDATION

We conduct experimental studies in which we apply the path
planners to a microparticle moving in a real 2D environment.
The environment contains virtual dynamic and static obstacles
and a goal area (see Fig. 4). The objective is to move the
microparticle from its initial position to the goal region while
avoiding the obstacles. We use virtual dynamic and static ob-
stacle in order to evaluate the planners in similar environments
and thus provide a fair comparison among them; the video of
the experiments is available at: https://youtu.be/RuAQG8hFrGI.

The main components of the experimental setup are a fluid
reservoir for the paramagnetic particles and six orthogonally
oriented electromagnets (Fig. 1). Each electromagnet is pow-
ered by an Elmo Whistle 1/60 servo controller (Elmo Motion
Control, Petach-Tikva, Israel). A Blackfly 1.4 MP Color GigE
PoE (Point Grey Research Inc., Richmond, Canada) camera
is mounted on a Mitutoyo FS70 microscope unit (Mitutoyo,
Kawasaki, Japan) using a Mitutoyo M Plan Apo 2 / 0.055
Objective. We use paramagnetic microparticles, consisting
of iron-oxide in a poly(lactic acid) matrix (PLA Particles-
M-redF-plain from Micromod Partikeltechnologie GmbH,
Rostock-Warnemuende, Germany). These particles have radius
rp = 50 µm and mass m = 7.33 × 10−10 Kg. Concerning
the magnetic system, χm = 0.075, µ0 = 4π × 10−7 T.m/A,
η = 1 mPa.s, ρf = 998.2 kg/m3, ρb = 1.4 × 103 kg/m3,

maxIc = 1 A, and max|B̃(p)| = 15 mT. Four scenarios are
considered (see Table I). We evaluate the path planners using
three metrics:

• Computation time (it is the time to partition C plus the
time to compute the path).

• Length of the trajectory traveled by the microparticle.
• Time to reach the goal area.

Fig. 4 depicts the initial setup of the experimental scenarios.
Dynamic obstacles are represented as circles; it is a common
choice to represent obstacles by their bounding area or volume.
Static obstacles are represented as line segments. In order to
simulate tracking errors, we add zero-mean white Gaussian
noise with standard deviation σ = 50 µm to the x− and
y− coordinates of the dynamic obstacles. Concerning the path
planners, the quadrants of the uniform grid have a side of 300
µm. For the quadtree, we use a minimal cell side of 300 µm

TABLE I
THIS STUDY CONSIDERS FOUR EXPERIMENTAL SCENARIOS. IN

SCENARIOS II AND IV, WE SIMULATE LIMITATIONS IN THE SENSING

RANGE OF THE SYSTEM ASSUMING A SENSING RANGE OF 1 MM AROUND

THE MICROPARTICLE.

Scenario Static obstacles Dynamic obstacles Sensing range (mm)

I 3 5 ∞

II 3 5 1

III 3 10 ∞

IV 3 10 1
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Fig. 5. Representative experimental results of the A* with quadtree (top sequence) and the Rapidly-exploring Random Tree (bottom sequence) applied to the
motion planning of a paramagnetic microparticle. The top sequence shows the results of Scenario I while the bottom sequence shows the results of Scenario
IV. The objective is to move the microparticle from its actual position to the goal region (green) while avoiding static and dynamic obstacles (blue). The
planned trajectory is shown in red. In the bottom sequence, the red circle represents the sensing range of the system (the radius is about 1 mm). In this case,
only the obstacles which are within the sensing range are considered by the planner. The video of the experiments is available at: https://youtu.be/RuAQG8hFrGI.

and at each time frame we perform a full recalculation of the
quadtree rather than updating the moving entities in the tree
since we have more mobile entities than static. For the PRM
algorithm we sample F with 200 samples and we connect each
new sample with a maximum of 10 neighbors. Concerning
the RRT planner, we use a standard RRT-GoalZoom policy
[21] where the new random state is generated based on a
biased coin toss that chooses a random sample from either a
region around the goal or the whole space. Instead of extending
an RRT by an incremental step, we iterate until the random
state or an obstacle is reached. Moreover, we use a fixed
planning time interval of T = 0.1 s. At the beginning the RRT
computes the motion plan. Then, for each period of duration
T , the system executes the previously computed trajectory and
simultaneously the motion planner updates the plan that will be
ready for the next time interval. For each path planner except
for the RRT, we perform a path smoothing based on the line-
of-sight using a voxel traversal algorithm [22]. We test our
C++ implementations on a PC with an Intel Xeon CPU 3.2
GHz processor. For each scenario and for each path planners,
we perform 7 trials. Fig. 5 shows the motion of a paramagnetic
microparticle along an obstacle-free path generated by an A*
with quadtree and an RRT planner. The experimental results
are provided in Fig. 6.

In order to compare the six planners in the different
considered conditions, we run a three-way repeated-measures
ANOVA. The type of planner, number of obstacles, and sens-
ing range are considered within-subject factors. Ratings are
subjected to the arcsine square root transformation to stabilize
variance. All the transformed data pass the Shapiro-Wilk
normality test and Mauchly’s Test of Sphericity. Sphericity
is assumed for variables with only two levels of repeated
measures. The test reveals a statistically significant change
in the completion time due to the sensing range (F(1, 5) =
56.305, p = 0.001) and the type of planner (F(5, 25) = 6.082,

p = 0.001). For the type of planner, post hoc analysis with
Bonferroni adjustments reveals a significant difference in the
performance of A* with quadtrees vs. APF (p = 0.006). A
second ANOVA test shows a statistically significant change in
the trajectory due to the type of planner (F(5, 25) = 6.082,
p = 0.001). Post hoc analysis with Bonferroni adjustments
reveals a significant difference in the performance of A* with
quadtrees vs. APF (p = 0.012). We perform an additional
analysis on the conditions found non statistically different in
the previous ANOVA analysis. In order to understand if the
difference among them can be considered statistically negli-
gible, we use the two one-sided t-test approach (TOST) [23].
The null hypothesis of the TOST states that the mean values
of two groups are different by at least a certain amount ε.
In this work we evaluate ε as suggested in [23]. In order
to test for equivalence, the 90% confidence intervals for the
difference between the two groups are evaluated. The tests
reveal statistical equivalence between all the considered plan-
ners except D* Lite vs. APF and A* with quadtree vs. APF, for
both trajectory length and completion time. Statistical analysis
reveals that, with the exception of APF, there are no statistical
differences between deterministic and probabilistic methods,
mainly due to the fact that the space analyzed does not
have a huge size, the configuration space is low-dimensional,
and the simple dynamic model of the microparticle. For the
computation time, in all the scenarios A* with quadtree and
APF have the lowest computation time. For the APF, the
motivation is that some computation can be performed offline
and stored. For the A* with quadtree the motivation is that
less states had to be visited.

VI. CONCLUSIONS AND FUTURE WORK

Micro-sized agents can be accurately controlled to perform
minimally invasive procedures, such as targeted therapy and
drug delivery. These procedures require obstacle-free paths
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Fig. 6. For each path planner we evaluate the length of the trajectory per-
formed by the microparticle, the time to reach the goal, and the computation
time (mean and standard deviation are computed over seven trials). In each
graph, each bar represents a different planner, from left to right: A* with
quadtree (P1), A* with uniform grid (P2), D* Lite (P3), Artificial Potential
Field (P4), Probabilistic Roadmap (P5) and Rapidly-exploring Random Tree
(P6). In the graphs of the computation time we do not report the Rapidly-
exploring Random Tree (P6) since it has a fixed computation time of 100 ms.

to autonomously move these agents toward a target/goal area
while avoiding collisions. Obstacle-free paths can be provided
by path planning algorithms. In order to help future researchers
to choose the most suitable planning approach, in this paper
we perform an experimental comparison of six planning
algorithms applied to the motion control of paramagnetic
microparticles. The algorithms are chosen among the families
of deterministic (A* with quadtree, A* with uniform grid, D*
Lite, APF) and probabilistic (PRM, RRT) planners. Statistical
analysis reveals equivalence between almost all the considered
planners in terms of trajectory length and completion time.
Statistical differences are found between D* Lite and APF and
between A* with quadtree and APF. Statistical analysis of our
experimental data reveals that there are almost no statistical
differences between deterministic and probabilistic planners.
The main reason can be found in the fact that the configuration
space is low-dimensional and the simple dynamic model of the
microparticle. From our experiments, A* with quadtree and
APF show the lowest computation time.

In future work, we plan to extend the proposed evaluation by
considering moving targets and more complex environments.
We will extend our results to a 3D setup. Moreover, we will

consider clinically-relevant scenarios: the path planners will
be evaluated in scenarios in combination with clinical imaging
modalities which provide them with the position of the micro-
sized agents in situations where visual feedback cannot be
provided via a microscope system.
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