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Abstract

Background Ultrasound is an effective tool for breast cancer diagnosis.
However, its relatively low image quality makes small lesion analysis challen-
ging. This promotes the development of tools to help clinicians in the diagnosis.

Methods We propose a method for segmentation and three-dimensional
(3D) reconstruction of lesions from ultrasound images acquired using the
automated breast volume scanner (ABVS). Segmentation and reconstruction
algorithms are applied to obtain the lesion’s 3D geometry. A total of 140 artifi-
cial lesions with different sizes and shapes are reconstructed in gelatin-based
phantoms and biological tissue. Dice similarity coefficient (DSC) is used to
evaluate the reconstructed shapes. The algorithm is tested using a human
breast phantom and clinical data from six patients.

Results DSC values are 0.86±0.06 and 0.86±0.05 for gelatin-based
phantoms and biological tissue, respectively. The results are validated by a
specialized clinician.

Conclusions Evaluation metrics show that the algorithm accurately
segments and reconstructs various lesions. Copyright © 2016 John Wiley &
Sons, Ltd.

Keywords ultrasound; computer-assisted diagnosis; breast lesion segmentation;
three-dimensional reconstruction

Introduction

Breast cancer is one of the main mortality causes for women worldwide (1)
and the first cause of female death by cancer (2). Although the number of
cases is decreasing in developed countries, breast cancer occurrence is still
increasing globally (3). Breast cancer is most effectively treated when detected
at an early stage (4), resulting in at least 40% death rate reduction (5).
Therefore, there is need for effective diagnostic systems to enable prevention,
detection and monitoring of breast cancer. Several imaging techniques can be
used for breast cancer detection and diagnosis. Some examples are mammo-
graphy, ultrasound (US) imaging and magnetic resonance imaging (1).
Mammography has been the most commonly used screening modality (5,6).
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Nevertheless, there are limitations associated with this
technique: 1) lesions can be masked by a dense paren-
chyma (7); 2) it has low specificity, leading to unneces-
sary biopsies (8); and 3) the ionizing radiation can be
harmful to the patient (5).

Breast MR imaging is commonly used for lesion diagno-
sis. Its use is limited to women who are at high risk for
developing breast cancer, and also for monitoring treat-
ment. Breast US imaging is a helpful technique to com-
plement mammography (9–11). US images can help to
accurately discriminate benign and malignant masses
(10,12). Furthermore, US can be more sensitive in pa-
tients with dense breast tissues (13). The accuracy rate
of US imaging for cysts diagnosis is significantly higher
than mammography imaging. This helps reducing the
number of unnecessary biopsies (12). In addition, this
modality is non-invasive, cost-effective, has no known
side-effects and provides real-time diagnostic capability.
However, breast US images usually have poor quality
due to speckle noise, low contrast, blurred edges and
shadow effect (14). The analysis of US images by clini-
cians can be challenging (15,16).

Besides imaging properties, correct diagnosis also
depends on the clinician. The assessment of the lesion
shape is important for the diagnosis. Nevertheless,
manually sketching a breast tumor contour is significantly
time-consuming. Also, interobserver variation results in
different analyses even among well-trained clinicians
(17). This reality promotes the development of
computer-aided diagnosis (CAD) systems to help clini-
cians in the diagnosis (18). CAD systems allow reduction
of the operator-dependent nature of US imaging-based
diagnosis, increasing its reproducibility. The second
opinion provided by the CAD system can increase diag-
nostic accuracy and may speed-up diagnostic reading.

US CAD systems usually include four stages: image pre-
processing, segmentation, feature extraction and selec-
tion, and classification. Image segmentation is a funda-
mental step that separates the lesion from the
background and other imaging artifacts. A proper seg-
mentation preserves important lesion characteristics such
as shape and texture. Shape and volume of the lesion are
of great importance in the diagnostic process (19). Vol-
ume information can also be used to trace the lesion vari-
ant state in clinical applications (20,21). This knowledge
can be used to adapt patient treatment. Accurate lesion
segmentation and three-dimensional (3D) reconstruction
can improve breast cancer detection rate.

Related work

Several segmentation methods for breast lesions on US
images were proposed. Segmentation algorithms

functioning heavily depends on the image pre-processing
and segmentation methods used. Several authors used
histogram thresholding for segmentation (22–26). Horsch
et al. (22) pre-processed images using cropping, median
filtering and multiplication by a Gaussian constraint
function. The approach was based on maximizing a utility
function over partition margins defined through
thresholding. However, the determination of the center,
width and height of lesions is not automatic. Chen et al.
(23) pre-processed regions of interest (ROIs) with median
filtering and unsharp filtering. Binarization was per-
formed by histogram thresholding. Yeh et al. (26) used
adaptive thresholding and disk expansion to select and
refine the object. Histogram thresholding is a simple and
fast method. Still, binarization in non-bimodal histograms
lacks precision, resulting in imprecise boundaries. This
technique can be combined with methods like morpholo-
gical operations, disk expansion and function optimization
to refine the contour.

Model-based approaches are also used for breast US
images segmentation. These include active contours
(27,28), level-sets (29,30) and Markov random filters
(31,32). Madabhyshi et al. (27) used active contours.
Seed points were found using a method based on the
empirical rules used by radiologists to detect breast
lesions. Probabilistic classification and region growing
retrieved an initial contour. A deformable model using
the image gradient was then applied. Boukerroui et al.
(31) applied Markov random filters. The adaptive charac-
teristics were controlled by a weighting function account-
ing for both local and global statistics. Model-based
approaches are noise resistant. However, the iterative
process is time-consuming. Also, the algorithm can stop
on local minima states. Furthermore, many models are
semi-automatic and require pre-labeled ROIs or manually
initialized contours.

Watershed-based algorithms were applied to US breast
images (33,34). Gómez et al. (33) pre-processed and
multiplied images by a constraint Gaussian function.
Marker-controlled watershed transformation was used to
find potential lesion boundaries. Lesion contour was
detected using an average radial derivative function. The
method requires a heuristic estimation of the best
thresholding of markers. Zhang et al. (34) used fuzzy logic
theory and transformed the US image into fuzzy domain.
An iterative method was used to find the threshold.
Watershed segmentation was applied on the binary image
to get the final tumor boundary. Watershed approaches
show promising results. However, the over-segmentation
problem is not completely solved.

Machine learning methods are recurrent in US breast
lesion segmentation (35–39). Drukker et al. (35) trained
a Bayesian neural network with texture, gradient and
acoustic information. Seed points were found in the
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gradient image and region growing was used to obtain the
candidate regions. However, it is not robust for non-
compact or rounded lesions. Also, the number of hidden
layers for the neural network is empirically defined. In
Su et al. (37) the initial lesion contour was obtained with
a self-organizing map neural network and a modified Nor-
malized Cut approach. Active contours refined the seg-
mentation. The method lacks post-processing to reduce
shadow influence in ROI detection and lesion segmenta-
tion. Liu et al. (39) combined Support Vector Machines
with textural features. Although machine learning
methods show satisfactory results, both selection of a
good set of features and classifier training are time-
consuming. Also, training depends on the database.

The above methods were applied in 2D US images.
Other algorithms considered the 3D space (19–21,40,41).
Chen et al. (21) used active contour modeling for contour
detection. During the deformation process, edge informa-
tion was added as an image feature to define the external
force. This prevents the snake stopping in false positions.
Huang et al. (19) used 3D region growing to obtain the
tumor contour. Voxel nearest neighbor, Wiener and
unsharp filters were applied to pre-process the images.
Shadow regions were reduced with post-processing. The
algorithm is very time-consuming. In Chang et al. (42)
images were pre-processed with morphological operators.
A modified watershed algorithm was used for semi-
automatic contour extraction. In Kuo et al. (40) the initial
contour was estimated using radial gradient index
segmentation. An active contour model with a dynamic
stopping criteria was then used. Nevertheless, a seed point
in the center of the lesion must be defined manually. Also,
the method is not optimized for US.

Most of the algorithms developed depend on a manual
ROI selection (23,24,28,29,33,36) (in 2D) or a volume of
interest (VOI) (19,21,42) (in 3D) in order to produce
viable results (25). Even when a ROI is not clearly stated
to be needed, input US images usually have little non-
lesion area (20,27,31,41). VOI manual selection is
commonly done by selecting ROIs in the first, middle
and last 2D slices of the lesion. Also, the referred
algorithms did not appear to return a reconstructed shape
of the lesion. The lesion 3D shape and volume are of great
interest to the clinicians.

Contributions

In the current study, we develop a system that performs
ultrasound scanning of various soft-tissue phantoms to
segment and reconstruct different shapes of lesions. We
focus mainly on breast lesions. An intensity-based
segmentation method for breast lesions in a US image se-
quences is proposed. The principal technique applied is

histogram thresholding. After segmentation, the 3D con-
nected components between slices are found, i.e. 3D ob-
jects. Artificial lesions are reconstructed in gelatin-based
soft-tissue phantoms and biological tissue (chicken
breast) to test the algorithm. The proposed segmentation
and 3D reconstruction algorithm is also validated using a
commercial breast phantom that is used to train clinicians
for ultrasound biopsy procedures. This breast phantom
has similar mechanical and visual properties of human
breast tissue in US images, and it also contains amorphous
lesions. Clinical patient data is also analyzed and the
algorithm results validated by an experienced clinician.
Furthermore, a Graphical User Interface (GUI) for the
algorithm is proposed.

The major contributions of this work include:

• Development of an algorithm for lesion segmentation
and 3D reconstruction in US image sequences. The
main features of the algorithm are:
– no requirement for VOI selection;
– detection of lesions with different sizes and geome-
tries;
– reduced computation time.

• Development of a GUI to:

– retrieve the 3D shape and volume of a lesion for
clinicians;
– localize structures in the environment for biopsy
planning (43).

• Experimental evaluation of the proposed algorithm
using soft-tissue phantoms and clinical patient data.

Materials and Methods

A method for lesion segmentation and 3D reconstruction
in US image sequences is proposed. Tests are performed
in gelatin, biological tissue and commercial breast
phantoms, as well as in clinical patient data. This section
details the scanning procedure and the algorithm steps.
The segmentation and reconstruction algorithm is fully
implemented in MATLAB (R2015a, Mathworks Inc.,
Natick, USA). US image acquisition is performed using
an in-made C++ algorithm.

Ultrasound scanning

Phantoms and patient breasts are scanned using a
Siemens Acuson S2000TM(Siemens AG, Erlangen,
Germany) ultrasound device. US image sequences are
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obtained using the Automated Breast Volume Scanner
(ABVS) (Siemens Medical Solutions, Mountain View,
CA, USA). The ABVS system is composed of a cage that
contains a transducer (14LBV). The 14LBV transducer
translates automatically using a linear stage with constant
velocity. The system settings can be found in Table 1. An
overall view of the setup design is available in Figure 1.
Phantom US scans have a frame rate of 11 or 20 frames
per second. The spatial resolution of each slice is
720×480 pixels or 720×576pixels. The number of 2D
slices for clinical US scans is 318 and the resolution
565×698 pixels.

Segmentation and 3D reconstruction

The main steps of the segmentation and reconstruction
algorithm are shown in Figure 2. In this work, an
intensity-based segmentation is proposed. All US 2D slices
are segmented separately. Figure 3 illustrates the applica-
tion of the approach used. Prior to segmentation, dark
regions that result from the width difference between
the phantoms and the transducer are removed. An
algorithm that automatically detects the phantom region

is developed. Projections are performed in both horizontal
and vertical directions to detect high intensity transitions.
Then, the projections’ peaks are detected. The region of
interest lies between the peaks.

Pre-processing is used to remove speckle noise and
adjust contrast. The red channel of the RGB image is
selected since it generally has greater contrast between
objects and background. Speckle noise is removed by
applying a median filter with kernel size of 5. The image
is inverted if the object is brighter than the background.
Image contrast is adapted using linear histogram
stretching. First, the background intensity level, ζ , is com-
puted. Then, amapping function is determined based on ζ .

Background intensity determination is described in
Algorithm 1 and illustrated in Figure 4-I.

Table 1 ABVS system properties. FB stands for frequency band-
width and MDP for maximum display depth. Voxel size of the
system along the planes is shown in the following order: axial,
lateral and elevation planes

Velocity Width MDP

1.55 or 2.55mm/s 154mm 60mm

No. of elements FB Voxel size

768 5–14MHz 0.09× 0.16× 0.44mm3

Figure 1. The experimental setup used for phantom screening, showing the Automated Brest Volume Scanner (ABVS) and a
gelatin-based soft-tissue phantom
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The mapping function (g(f)) is determined based on
the estimated ζ :

g fð Þ ¼

gb $ gað Þ
f b $ f a

f $ f að Þ þ ga; if f a ≤ f ≤ f b

gc $ gbð Þ
f c $ f b

f $ f bð Þ þ gb; if f b ≤ f ≤ f c

8
>><

>>:
(1)

where f is the input intensity value, g the output intensity
value, fa=1, fb=1.1× ζ, fc=1, ga=1, gb=0.85 and
gc=1. An example of a mapping function is shown in
Figure 4-II. The mapping function adjusts the contrast
between objects and background by compressing high
intensity values (see Figure 4-III). If ζ= gb, no compres-
sion is performed.

The adjusted image is then binarized using an adaptive
method. Threshold values for each pixel are computed
based on the local neighborhood. Local threshold values
are found using the mean of the local intensity

distribution (44,45). Binarization steps (illustrated in
Figure 5) are described in Algorithm 2. The threshold de-
fault value is determined by trial and error experimenta-
tion. Results are successful in most of the cases.

Figure 2. Main steps of the segmentation and three-dimensional (3D) reconstruction algorithm. First, the stack of ultrasound images
is segmented. The resulting binary connected components are then transformed to 3D space using the transformation matrix H.
Finally, the alpha shapes of the obtained 3D point clouds are computed and the object surfaces smoothed

Figure 3. Segmentation algorithm steps applied to a patient breast lesion: image pre-processing, binarization and post-processing.
First, the red channel of the image is extracted since it generally shows greater contrast between objects and background. Then, a
median filter is applied in order to remove speckle noise. This is followed by a linear histogram stretching to adjust contrast. Image
binarization is then performed using an adaptive thresholding method. The resulting binary image is post-processed using closing
morphological operation to fill possible holes in the lesion and Gaussian filtering to smooth the contour. (Note that, although only
the region containing the lesion is shown, the whole image is considered during segmentation.)
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Finally, the binarized image is post-processed. A
morphological closing (disk, radius 3) is performed to
remove holes that result from poor image quality and
artifacts. A Gaussian filter (σ=2.5) is then applied to
smooth the contour.

The stack of binary images containing the object of in-
terest is reconstructed to 3D. First, all pixels are
reorganized in the 3D space (x, y, z) taking into account
the position of the ABVS transducer with respect to time
and the pixel scale. For that, the homogeneous transfor-
mation Hn (Equation (2a)) is applied to the pixel (xi, yi)
in frame n. The resulting coordinates, Pin , are obtained
using Equation (2b).

Hn ¼

0 0 $1 λn
$1 0 0 0
0 1 0 0
0 0 0 1

2

6664

3

7775 (2a)

Pin ¼ Hn&

xi&δx

yi&δy
0
1

2

66664

3

77775
(2b)

In Equation (2a), λn is the displacement of the slice n
relative to the first slice of the stack, in mm. In Equation
(2b), δx and δy (mm/pixel) are the width and height
scales, respectively.

The transformation results in points organized in a 3D
space, i.e. a 3D point cloud. Reconstruction is then per-
formed by determining the alpha shape of the point cloud.
Alpha shapes are a generalization of the convex hull of a
set of points (46). An alpha shape is not necessarily convex
nor connected. The behavior of the shape depends on a pa-
rameter α: for α=inf the alpha shape is the convex hull of
the point set; as the α value gets lower, cavities are formed.
If α is too low, holes appear in the reconstruction. When α
is zero an empty shape is produced. In this work, the α

Figure 4. Linear histogram stretching steps. I: Background intensity level determination. (a) and (b): US images from phantom and patient
breast, respectively; (c) and (d): (a) and (b) after median filter application and dark borders removal, respectively; (e) and (f): histograms of
(c) and (d), respectively. Detected peaks corresponding to the background intensity values (ζ ) are shown (red *). In (f), the mean intensity
value (μ) (dashed red line), the polynomial regression of the histogram (orange curve) and the intensity range for peak search ([0.7× μ 1])
(purple arrow) are also visible. ζ determination differs for the two types of images due to the highly nonhomogeneous and noisy nature of
patient breast images. In phantom images, the mode of the histogram is used to find the background intensity level. For patient breast images,
the mean is computed. A polynomial regression of the histogram is performed to avoid noise interference. ζ is the first peak detected within
the referred range. II: Mapping function for case I-(a), where ζ =0.6. The function g(f) is defined according to Equation (1): fa=1,
fb=1.1× ζ , fc=1, ga=1, gb=0.85 and gc=1. III: Application of the mapping function II to case I-(a). (a): Phantom US image; (b): (a) after
linear histogram stretching; (c) and (d): histograms of (a) and (b), respectively
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value used for a certain object point cloud is the critical
alpha, i.e. the smallest α that produces an alpha shape that
encloses all points. The overall shape of the reconstructed

objects is improved by applying a smoothing filter to the
object surfaces (see Figure 6). The smoothing algorithm
is based on (47,48) and was developed by (49).

Figure 5. Steps of image binarization through adaptive thresholding using the mean of the local intensity distribution. (a): Linear
stretched image; (b): image (a) after application of the average filter; (c): result of the subtraction (b) – (a); (d): resulting binarized
image; (e) and (f): histograms of (b) and (c), respectively

Figure 6. Smoothing of objects mesh surfaces. (a) and (b): object meshes before smoothing; (c) and (d): smoothed object meshes of
(a) and (b), respectively. (axes units: mm)
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Reconstruction evaluation

The reconstructed object and the ground truth are
compared. The evaluation is performed by: (1) registra-
tion of the point clouds to align the object with the
ground truth; and (2) evaluation using the Dice similarity
coefficient (DSC) and mean absolute distance (MAD)
metrics.

Point cloud registration is performed using the iterative
closest point (ICP) method (50). The algorithm estimates
a rigid transformation that minimizes the distance
between two point clouds (one object is fixed and the
other is transformed). The two views must be close to
each other, otherwise, the algorithm will probably stop
at a local minimum (51). This problem can be solved by
a pre-alignment of the two 3D shapes. For that, principal
components analysis (PCA) is used. First, both objects
are centered at the origin of the coordinate system using
their centers of mass. Objects are then aligned by their
major axes using PCA. However, using PCA results in a π
rad ambiguity in the direction of the objects’ principal
axes. This can be solved by studying all the 180° rotations
around their axes. Consequently, all combinations of one,
two and three elements of {rotx, roty, rotz} are performed,
where rotx , roty and rotz denote the rotations of π rad
around x, y and z axes, respectively. This results in eight

possible alignments. In the end, the alignment with
lowest root mean square error is chosen.

DSC and MAD evaluation metrics are calculated. DSC
(52) is a spatial overlap index and is defined by:

DSC ¼ 2&Vintersection

Vobject1 þ Vobject2
(3)

where Vobject1 and Vobject2 are the volumes of the
reconstructed and ground truth objects, respectively,
while Vintersection is the volume of their intersection. DSC
value ranges from 0 (no spatial overlap between the two
objects) to 1 (complete overlap). MAD (53) is related to
the average distance between the two surfaces. Both
measures are efficiently calculated using the MeshValmet
software. The general steps of the algorithms for
determining these measures can be found in Ref (54).
An algorithm is also developed to compute DSC values
in MATLAB.

Graphical User Interface (GUI)

A GUI for the proposed algorithm is developed. The GUI
can be used to segment an US image sequence, select an
object of interest (via mouse-click) and retrieve the object
3D shape (Figure 7). Segmentation parameters can be
adjusted if needed. A preview of the 3D reconstructed

Figure 7. Design of the developed graphical user interface
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object is shown. Objects can also be saved as .stl
(stereolithography) files for further processing and evalu-
ation. Clinicians can retrieve important information for
the diagnosis, such as lesion 3D shape and volume.
Furthermore, lesion localization can assist the clinician
for biopsy planning. (Please refer to the accompanying
video that demonstrates the experiments (Electronic
Supplementary Material).)

Experiments

Evaluation of the algorithm is performed by segmenting
different object shapes in: (1) gelatin-based phantoms;
(2) biological tissue (chicken) phantoms; (3) breast
phantom; and (4) clinical patient data. The procedures
for each type of data are discussed in this section.

Case I: Gelatin-based phantoms: Phantoms are pre-
pared as described in (55), in order to mimic tissue
properties (56–59). Targets and obstacles are pre-
pared using a solution of 2% agar powder (m/m)
(20768.292, VWR) in water. The solution is heated
to 90 °C and poured into molds. Figure 8(a) and (b)
shows a prepared phantom and a slice of the respec-
tive US scan. Objects with different shapes, sizes and
positions are used to evaluate the generality of the
algorithm.
Case II: Biological tissue phantoms: For phantom prepa-
ration, chicken breasts are submerged in gelatin
(prepared as in Case I). Prior to this, agar objects are
incorporated in the chicken through a incision along
its major axis. An overall view of a biological tissue
phantom and an example of an US image can be seen in
Figure 8(c) and (d).
The object shapes used in Case I) are evaluated in bio-
logical tissue phantoms.

Case III: Human breast phantom: A commercial human
breast phantom (CIRS, Norfolk, USA) is used. This
phantom contains lesions of different sizes and shapes.
Both dark and bright lesions are segmented and recon-
structed. Figure 8(e) and (f) shows the breast phantom
and a slice of the respective US scan.
Case IV: Clinical data: Clinical data is also analyzed. Pa-
tient breast US image sequences were collected at
Jeroen Bosch Ziekenhuis, Den Bosch, Netherlands. All
subjects involved in the study were informed and
consented to the use of the data in this experiment.
An example US image of a patient breast is shown in
Figure 8(g).

Results

In this section, the results obtained for each one of the
four cases studied are described and discussed. The statis-
tical analysis performed on the results obtained is also
described. Further, the algorithm computation time is
assessed for the shapes evaluated in Case I and II.

Evaluation of the obtained 3D shapes is performed
comparing the results with the ground truth using DSC
and MAD measures. Commercial breast phantom results
are visually confirmed. Patient breast segmentation and
reconstruction results are validated by an experienced
clinician.

Case I: Gelatin-based phantoms: The reconstructed
shapes are evaluated using DSC and MAD. The
ground truth corresponds to the original computer-
ized 3D drawing of the molds used to produce the
object shapes. Results from the screening of several
phantoms with multiple objects are shown in Table 2.
Examples of 3D reconstructed objects for each of the
shapes are also shown. A total of 70 cases is evaluated.

Figure 8. Overall view of the analyzed phantoms and slices of the respective US scans, as well as a patient breast ultrasound (US) im-
age. (a): Gelatin phantom; (b): US slice of (a) (Gain: -12 dB, Dynamic range (DR): 55, Map: E, Space/Time (ST): 1); (c): phantomwith
biological tissue (chicken); (d): US slice of (c) (Gain: 0 dB, DR: 55, Map: E, ST: 1); (e): breast phantom; (f): US slice of (e) (Gain: 0 dB,
DR: 55, Map: E, ST: 1); (g): patient breast US image
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The overall DSC is 0.86±0.06 and MAD 0.30±0.09mm.
The efficiency of the segmentation is qualitatively evalu-
ated by visually inspecting the objects contours. Examples
of the segmentation results for some objects are shown in
Figure 9-I.

Case II: Biological tissue phantoms: Examples of object
segmentation in chicken phantoms are shown in
Figure 9-II. Reconstruction evaluation results are shown
in Table 2. A total of 70 cases is evaluated. The overall
DSC is 0.86±0.05 and MAD 0.31±0.11mm.

Table 2 Evaluation results for seven different shapes reconstructed from gelatin-based and biological tissue phantoms. Both con-
vex and non-convex shapes are reconstructed. The evaluated objects have vessel-like shapes (small and big), spherical shapes
(small and big) and bean-like shapes (small, medium and big). Dimensions of the ground truth shapes bounding boxes are shown.
Dice similarity coefficient (DSC) and mean absolute distance (MAD) mean values and standard deviations for each of the shapes
are presented. Each shape is evaluated 10 times for each phantom type. The overall DSC values for gelatin phantoms and biolog-
ical tissue are 0.86±0.06 and 0.86±005, respectively. MAD values are 0.30±0.09mm and 0.31±0.11mm, in the same order

Ground truth
Reconstructed

shape Dimensions (mm)

Gelatin phantom Biological tissue

DSC MAD (mm) DSC MAD (mm)

29.43× 11.56× 4.63 0.76±0.04 0.40±0.07 0.77±0.04 0.41±0.07
41.21× 16.18× 6.44 0.84±0.03 0.38±0.06 0.82±0.02 0.44±0.07

Ø=6 0.88±0.03 0.24±0.06 0.91±0.02 0.18±0.03
Ø=8 0.91±0.03 0.24±0.07 0.91±0.03 0.24±0.07

10.24× 6.14× 3.62 0.85±0.04 0.29±0.08 0.85±0.03 0.28±0.05
10.25× 12.00× 7.78 0.89±0.02 0.26±0.04 0.86±0.02 0.31±0.06
19.19× 11.51× 6.80 0.92±0.02 0.28±0.06 0.88±0.03 0.37±0.08

Figure 9. Representative segmentation performed by the algorithm. First, middle and last slices containing the objects are shown. I:
gelatin phantoms: (a) object with shadow; (b) and (c) objects in both dark and bright low contrast images; II: biological tissue phantoms; III:
breast phantom: (a) bright object; (b) dark object; IV: clinical data.
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Case III: Human breast phantom: A total of 12 lesions
are present in the phantom. Due to the lack of ground
truth only qualitative evaluation is performed. This
evaluation is done by visually confirming the contour
of the object in each 2D slice. Examples of bright
and dark lesion segmentations are shown in Figure 9
-III and the reconstructed 3D shapes in Figure 10-II.
Case IV: Clinical data: US scans from six different
patients are analyzed. For each patient a lesion is
segmented and reconstructed. Similarly to Case III,
only qualitative evaluation is performed. Lesion
segmentation and reconstruction results are validated
by an experienced clinician. Two examples of lesion
segmentations are shown in Figure 9-IV. The
reconstructed shapes of these lesions are shown in
Figure 10-I. Please refer to the accompanying video that
demonstrates the experiments (Electronic Supplemen-
tary Material).

Statistical analysis: A statistical analysis of the gelatin-
based phantoms and biological tissue reconstruction
results is performed to determine if they are statistically
equivalent. In order to test for equivalence, the 90%
confidence intervals for the difference between the two
groups are evaluated. The null hypothesis that the groups
differ by at least ε is rejected if the limits of the interval
fall outside the± ε bounds. Conversely, comparability is
demonstrated when the bounds of the 90% confidence
interval of the mean difference fall entirely within the
± ε bounds (60–62).

The design of equivalence tests can be challenging
since the acceptance criterion ε must be defined on
the basis of prior knowledge of the measurement. For
a sample data set of p independent measurements with
standard deviation δ, for instance, ε must be greater
than δ/√p, otherwise the test may fail because of im-
precision, rather than because of a true difference. Fur-
ther, it must also be less than any specifications or
standards that the testing is challenging, or the test
will not discriminate adequately. In this work we eval-
uated ε as suggested in (61).

The tests revealed statistical equivalence between DSC
values for gelatin phantoms and biological tissue. MAD
values for these two types of data are also statistical
equivalent.

Computation time: The computation time of the
segmentation and reconstruction algorithm for a single
object is assessed. Scripts are processed in a Dell
Optilex 980 desktop computer with 8.00G RAM
memory and Intel®CoreTMi7 CPU 860@2.80GHz using
MATLAB®2015a. The average computation time for
the evaluated objects (Table 2) is 4.7 s, considering
only the slices containing the object. The longest com-
putation time (10 s) occurs for big vessel segmentation
and reconstruction (∼200 slices) and shortest (1.9 s)
for the small sphere (∼30 slices). A total of 32.15
±7.86 s are needed when the entire ABVS scan
(700–1030 slices) is considered.

Figure 10. Example of reconstructed shapes of breast lesions and respective bounding box dimensions (mm). I: reconstruction of
lesions from clinical data. (a) and (b) correspond to the reconstruction of the lesions shown in Figure 9-IV- (a) and (b), respectively. II:
reconstruction of lesions from the breast phantom. (c) and (d) are the reconstructed shapes of the lesions shown in Figure 9-III- (a) and
(b), respectively.
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Discussion

Results show that objects of significantly different sizes
and shapes are accurately delineated and reconstructed
in both gelatin-based phantoms (Figure 9-I) and biologi-
cal tissue phantoms (Figure 9-II). Statistical analysis of
the results obtained show that the algorithm works
similarly for these two types of data (Table 2). This
proves that the presence of biological tissue texture does
not affect the algorithm’s performance. The method is
robust against shadowing (Figure 9-I-(a)), low contrast
and different background brightness (Figure 9-I-(b) and
(c)). Further, the inspection of all object 2D slices
indicates that the detection of the first and last slices of
the object is being correctly performed. However, DSC
and MAD values are affected by the non-total correspon-
dence between the casts and the ground truth: 1) during
the fabrication process casts can retain air bubbles near
their surface, affecting the reconstructed shape; 2)
demolding can damage the casts, slightly altering their
shape; 3) the lack of rigidity of the casts can result in
shape deviations relative to the ground truth (specially
noticeable in vessel-like shapes, that are elongated and
thin); and 4) the objects are compressed during the scan
(notice Figure. 9-II-(b), where a sphere is slightly
deformed).

Object segmentation in breast phantom scans visually
corresponds to the expected. The wide variety of object
shapes is accurately reconstructed. Segmentation and
reconstruction results for patient breast US images are
visually confirmed by an experienced clinician. The verifi-
cation of the detected lesion contours in all the 2D slices
shows that the algorithm correctly segments patient
breast lesions. As the 3D reconstruction algorithm is
validated using gelatin and biological tissue phantoms,
the reconstructed shapes of the accurately segmented
breast lesions are correct. The similarity between clinical
data and biological tissue further validates the use of
the algorithm for breast lesion segmentation. Lesion
reconstruction enables clinicians to visually assess the
3D appearance of the tumor and retrieve the volume of
the lesion. The volume plays an important role in the
diagnosis assessment and can be used to trace the evolu-
tion of the state of a tumor. The GUI is a useful tool for
clinicians to easily assess this information, and thus
improve the diagnostic process.

Conclusions

In this study, a method to perform segmentation and 3D
reconstruction of lesions in breast-US images is proposed.

The presented algorithm does not require VOI selection
and has low computation time. A GUI integrating the
developed segmentation and reconstruction algorithm
is also proposed. The algorithm is tested in gelatin, bio-
logical tissue (chicken) and commercial breast phan-
toms, as well as in clinical patient data. The evaluation
of the reconstructed shapes shows that the algorithm ac-
curately segments and 3D reconstructs lesions in the
tested environments. DSC for gelatin-based phantoms
is 0.86±0.06 and MAD is 0.30±0.09mm (n=70).
For biological tissue, DSC is 0.86±0.05 and MAD is
0.31±0.11mm (n=70). Clinical patient data results
are visually validated by an experienced clinician and
he confirmed the segmentation and reconstruction of
each lesion. Objects of different sizes, textures and
shapes are detected. Both convex and non-convex ob-
jects are accurately reconstructed. The analysis of differ-
ent types of data proves the robustness of the algorithm.
The proposed GUI is a useful and valuable tool for clini-
cians to retrieve the 3D shape of a selected lesion. Le-
sion 3D shape and volume can be used in diagnosis.
Lesion volume is of great importance for the assessment
of the tumor evolution and consequent treatment adjust-
ment. The application is also of interest to reconstruct
insertion environments for needle steering. Conventional
lesion localization depends on the skill of the clinician
to estimate the lesion location in his mind using images,
and also estimate the relative lesion position with re-
spect to the needle. The proposed algorithm provides
autonomous lesion localization that can be used for ro-
botic needle insertion as the lesion location can be
quantitatively determined, and used for autonomous
needle steering.

Future work

Future work will include testing the algorithm in a
larger clinical patient database. Further, a quantitative
evaluation of the algorithm in commercial breast
phantom and clinical patient data will be performed.
This will be achieved by obtaining the ground truth
using other imaging techniques such as computerized
tomography (CT) or magnetic resonance imaging
(MRI). The proposed algorithm will be tested in applica-
tions other than breast lesion segmentation and re-
construction. The performance of the method will also
be assessed in images acquired using other techniques,
such as MRI. The algorithm will be integrated in other
studies. While the algorithm potential has not yet been
fully explored, the results obtained in this work are a
strong validation of the method.
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