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Abstract— Micro-sized agents can benefit robotic minimally
invasive surgery since they can be inserted into the human
body and use natural pathways such as arteries and veins or
the gastrointestinal tract, to reach their target for drug delivery
or diagnosis. Recently, miniaturized agents with shape-changing
and gripping capabilities have provided significant advantages
in performing grasping, transportation, and manipulation tasks.
In order to robustly perform such tasks, it is of utmost im-
portance to properly estimate their overall configuration. This
paper presents a novel solution to the problem of estimating
and tracking the 3D position, orientation and configuration
of the tips of miniaturized grippers from RGB marker-less
visual observations obtained by a microscope. We consider this
as an optimization problem, seeking for the gripper model
parameters that minimize the discrepancy between hypothe-
sized instances of the gripper model and actual observations
of the miniaturized gripper. This optimization problem is
solved using a variant of the Particle Swarm Optimization
algorithm. The proposed approach has been evaluated on
several image sequences showing the grippers moving, rotating,
opening/closing and grasping biological material.

I. INTRODUCTION

Untethered miniaturized agents could significantly aug-
ment capabilities of minimally invasive surgery (MIS) by
replacing tethered medical devices such as endoscopes and
probes with smaller, maneuverable, reconfigurable structures.
As the agent size goes down to the order of a single cell,
previously inaccessible body sites would become available
for high-resolution in-situ and in-vivo manipulations. Thanks
to their potential in advancing MIS and micro-assembly,
magnetically steered micro-agents have been gaining a grow-
ing interest in the research community.

Many traditional micro-agents however have no shape-
changing capabilities which results in a limited dexterity
that restricts the complexity of achievable tasks. In fact,
besides the reduced size, miniaturized agents should have
the capability to perform at least simple manipulation tasks
in cluttered environments. Miniaturized grippers satisfy the
aforementioned requirement which makes them suitable for
a wide set of applications, like precise micro-assembly
[1], minimally invasive surgery [2], genetics [3], and cell

S. Scheggi and S. Misra are affiliated with the Surgical Robotics
Laboratory, Department of Biomechanical Engineering, MIRA - Institute
for Biomedical Technology and Technical Medicine, University of Twente,
7522 NB, The Netherlands. S. Misra is also affiliated with the Department of
Biomedical Engineering, University of Groningen and University Medical
Center Groningen, 9713 GZ, The Netherlands.

C. Yoon and D.H. Gracias are with the Department of Materials Sci-
ence and Engineering, The Johns Hopkins University, MD 21218, USA.
D.H. Gracias is also affiliated with the Department of Chemical and
Biomolecular Engineering, The Johns Hopkins University, MD 21218, USA.

This project (ROBOTAR) has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 Research
and Innovation programme (Grant Agreement #638428).

manipulation [4]. They can be fabricated in sizes that are
compatible with the major vascular conduits [5], and can
be used to safely grasp, manipulate and transport biological
material [6]. Self-folding miniaturized grippers use stimuli
responsive mechanisms which provide an alternative to teth-
ered actuation and offer the ability for smart behaviours such
as autonomous responses in specific environments. Many
of these technologies employ materials (such as hydrogels)
which are able to swell and shrink significantly in response
to a variety of stimuli like temperature, light, or chemical
reactions [7]–[11]. Self-folding miniaturized agents can be
used to grasp, manipulate and transport biological materi-
als in MIS. In order to precisely move and control such
miniaturized grippers, it is of utmost importance to properly
detect and track them. For example, the knowledge of the
configuration of the tips of their fingers would allow a user
to determine if the object is firmly grasped. Moreover, the
knowledge of the overall configuration of the miniaturized
grippers would allow a user to utilize grasp planners in
order to better perform a grasping task [12]. To the best of
our knowledge there is no work which tries to estimate the
overall configuration of such agents, i.e., 3D pose, rotation,
and tips’ configuration. The majority of prior research has
estimated the 2D pixel position of the miniaturized agents
[13]–[17]. The main reason is related to significant technical
difficulties in tracking the agents in 3D. Prior research on
3D tracking used multi-cameras [18], [19] and depth-from-
focus techniques [20], [21] to estimate the 3D position of
the miniaturized agents.

In this paper, we propose a model-based approach to
address the problem of tracking the full pose and articulations
of miniaturized grippers. We formulated the tracking problem
as an optimization routine that minimizes the discrepancy
between the hypothesized 3D gripper model instances and
its actual visual observations. Observations come from RGB
images captured from a microscope. The optimization is
performed with a variant of the Particle Swarm Optimiza-
tion (PSO) algorithm, which exploits the stimuli responsive
mechanisms of the miniaturized grippers. PSO has been
successfully used to online track the human hands from
RGB-D images [22], [23]; however, no one has demonstrated
the possibility to use it in order to track miniaturized agents
from RGB images. Experimental tests on challenging real
data have been used to validate the efficacy of our method.
We evaluated the proposed tracker using soft miniaturized
grippers, and we believe that it can be successfully applied
to different stimuli responsive grippers.

The rest of the paper is organized as follows. Sect. II
describes the main steps used to detect the miniaturized
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Fig. 1. Graphical illustration of the proposed model-based tracker. From left to right, an input image is taken from a microscope in Red-Green-Blue
(RGB) colorspace. Color segmentation is performed in order to detect the miniaturized gripper. The employed gripper’s model and the segmented region
of the image are used to recover the gripper configuration using the Particle Swarm Optimization algorithm. The algorithm generates several hypothetical
configurations of the gripper. The hypothesis which best matches the observation is the solution to the tracking problem.

gripper and the model-based tracker used in this work. Sect.
III introduces the Particle Swarm Optimization algorithm
and shows how we used it in order to properly track
the miniaturized agents. In Sect. IV the proposed model-
base tracker is evaluated via comprehensive experiments on
challenging real data and results are given and discussed.
Finally, in Sect. V we summarize the main contributions
of the paper, and we discuss possible avenues for future
research.

II. MODEL-BASED TRACKING

A. Color segmentation
The input to the proposed method is a 1024⇥1024 RGB

color image acquired using a microscope (see Fig. 1). Color
segmentation is used to isolate the miniaturized agent. A
major decision is the selection of the color space to be
employed. Color spaces efficiently separating the chromi-
nance from the luminance components of color are typ-
ically considered preferable. This is due to the fact that
by employing chrominance-dependent components of color
only, some degree of robustness to illumination changes can
be achieved. In the proposed work, we selected the HSV
color space. Then, the simplest approach for defining what
constitutes miniaturized gripper color is to employ bounds
on the coordinates of the selected space. We chose these
bounds empirically, i.e. by examining the distribution of
colors in a preselected set of images. Morphological filtering
and opening have been used in order to properly segment the
image. Finally, small blobs are removed and the resulting
blobs which are close together are merged and kept for
further consideration. The resulting image represents the
observation O related to our problem. In order to speed up
the segmentation procedure, temporal continuity is exploited
to track the grippers in a sequence of frames. Given the
estimated position of the tracked gripper from the previous
frame, the segmented pixels that are within a preset range
from that estimation are kept, whereas the remaining color
map is set to zero. The observation model O that feeds the
rest of the process consists of the 2D pixels of the segmented
color image.

B. 3D Model and objective function
The adopted 3D model of the miniaturized gripper is made

by a set of 46 appropriately assembled triangles. We empir-

ically set the triangles starting from the real measurements
of the miniaturized gripper in order to better approximate its
shape. We represented the gripper’s pose using a vector of
12 parameters (3 parameters for its position, 3 parameters
for its orientation and 1 parameter for each finger). For the
orientation, we considered the Euler representation. In the
proposed work, we modeled each finger of the agent as a
planar robot made by 4 joints and 4 links. We assumed
that the joints which belong to the same finger bend in the
same way, i.e., they have the same joint’s value. This is a
reasonable assumption since its joints are usually made by
the same swelling material and subject to the same stimulus.

The tracking problem consists of estimating the 12 gripper
model parameters that minimize the discrepancy among
the hypotheses and the actual observations. An appropriate
objective function is thus formulated and a variant of PSO is
employed to search for the optimal configuration. The result
of this optimization process is the output of the method
for the given frame. The observation model O that feeds
the rest of the process consists of the 2D pixels of the
segmented color image obtained in Sect. II-A. Having a
parametric 3D model of a miniaturized gripper, the goal is
to estimate the model parameters that are most compatible
to the visual observation O. In particular, given a gripper
pose hypothesis H and the camera calibration matrix C, the
projection of the miniaturized gripper on the camera image
plane P = f(H, C) is generated by means of computer
graphic rendering.

A function E(H,O, C), adapted from [22], computes
the distance measure between the hypothesis H and the
observation O,

E(H,O, C) = �DD(O,H, C) + �KK(H) + �SS(H), (1)

where �D, �K , �S 2 R+ are gain factors and the function
D(·) is defined as,

D(O,H, C) =
⇣
1� 2
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being P the projection of the hypothetical miniaturized grip-
per on the camera image plane,

V
represents the logical AND

operator, while
W

is the logical OR operator. D(·) measures
the discrepancies between the pixels of the hypothetical
model and the observation. The function K(·) adds a penalty
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to possible collisions among the triangles of the model. In
order to improve the tracking performance in presence of
poor color segmentation and/or occlusions, in Eq. (1) we
added the term S(·) which exploits the stimuli responsive
mechanisms of the miniaturized grippers. In particular, since
the grippers used in this work respond to temperature vari-
ations, in S(·) we used the information of the temperature
of the environment to penalize unfeasible configurations of
the miniaturized gripper. A similar approach can be used for
grippers which respond to light, or chemical reactions.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a population-based,
stochastic algorithm that optimizes an objective function
through the evolution of the particles of a population [24].
The particles lie in the parameter space of the objective
function to be optimized and represent potential solutions
to the problem. Each particle searches for a better solution
through the interaction with other particles. PSO allows one
to effectively handle nonlinear optimization problems and it
can be implemented with ease and scalability in order to
achieve appropriate results in a faster and inexpensive way.

In PSO, the particles evolve in runs, which are called
generations, according to a policy which emulates social
interaction. Let N 2 N+ be the dimension of the population
and let G 2 N+ be the number of generations, every particle
i 2 {1, ..., N} at each generation k 2 {1, ..., G} stores its
current configuration in a vector xk

i and its current velocity in
a vector vk

i . Vector x̂i stores the configuration at which each
particle achieved, up to the current generation k, the best
value of the objective function. The swarm as a whole stores
in vector ĝ the best configuration encountered across all the
particles of the swarm. ĝ is broadcasted to the entire swarm
such that every particle is aware of the global optimum. The
basic velocity and configuration update rules are,

v

k+1
i = w v

k
i + c1 r1 (x̂i � x

k
i ) + c2 r2 (ĝ � x

k
i ), (2)

x

k+1
i = x

k
i + v

k+1
i , (3)

where w is the inertia weight, c1, c2 2 R+ are coefficients,
and r1, r2 are random samples in a uniform distribution in the
range [0, ..., 1]. The particles are usually initialized at random
configurations and zero velocities. Since the dimensions of
the multidimensional parameter space are bounded in some
range, if during the configuration update (Eqs. (2),(3)) a
velocity component forces the particle to move to a point
outside such range, we constrained that particle to move
to the point inside the bounds that minimizes the distance
with its updated pose. In this specific work, PSO was used
to optimize the objective function reported in Eq. (1). In
order to find the optimum, PSO operates in a 12-dimensional
space. For every single frame, we run the PSO algorithm in
order to find the configuration of the miniaturized gripper. We
exploited temporal continuity among frames, i.e., the solution
obtained at frame ft is used to initialize the population for
the optimization problem at frame ft+1.

Since PSO may suffer from premature convergence, we
used a modified version of this algorithm in order to over-
come this problem [25]. We applied a partial randomization

Algorithm 1 Particle Swarm Optimization: for each gener-
ation k 2 {1, ..., G}, the configuration x

k
i of each particle

i 2 {1, ..., N} is evaluated using the cost function reported
in Eq. (1). xk

i represents the gripper pose hypothesis H. If
x

k
i is better than the particle’s best configuration x̂i, then

x

k
i becomes the new particle’s best configuration. The same

evaluation is performed for the global best configuration ĝ.
Finally, the configuration x

k+1
i and velocity v

k+1
i of each

particle are updated accordingly. A partial randomization of
the population is performed every kr generations.

1: for k  1, G do
2: for i 1, N do
3: if mod(k, kr) == 0 then
4: partial randomization(xk

i )
5: end if
6: if E(xk

i ,O, C) < E(x̂i,O, C) then
7: x̂i  x

k
i

8: end if
9: if E(x̂i,O, C) < E(ĝ,O, C) then

10: ĝ  x̂i

11: end if
12: end for
13:
14: for i 1, N do
15: v

k+1
i  w v

k
i +c1,i r1 (x̂i�xk

i )+c2,i r2 (ĝ�xk
i )

16: x

k+1
i  x

k
i + v

k+1
i

17: end for
18: end for

of the population by randomly perturbing one parameter of
a subset of the population. This procedure is applied every
kr < G generations. Moreover, in order to avoid occasionally
inordinate divergence which may prevent the algorithm from
reaching the best solution, we used a coefficient adaptation
technique. The extension modifies the coefficients c1, c2

depending on how far is the current particle from the global
best solution ĝ,

c1,i =
C

(N � 1)2
(ranki �N)2, c2,i = C � c1,i,

being C 2 R+ a constant, while ranki is the rank of
the i-th particle’s configuration. The adaptation technique
allows particles in the lower rank to move toward the global
optimum, while particles in a higher rank are close to the
best solution and search around it. Algorithm 1 describes
the PSO algorithm.

IV. EXPERIMENTAL RESULTS

In this section, representative results of the proposed
tracker are provided. The method has been tested and evalu-
ated in a series of image sequences demonstrating challeng-
ing tracking scenarios. This is a common approach in the
relevant literature because ground truth data for real-world
image sequences is hard to obtain. Three video sequences
have been considered which report the common motion
of the hydrogel miniaturized grippers during manipulation
and transportation tasks. In particular, two sequences report
the motion of the miniaturized gripper in testbed scenarios,
while in the last sequence the agent has to pick biological
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plaque-like material on porcine tissue; please refer to the
accompanying video that shows the results of the tracking
experiments. The agents were magnetically controlled in a
setup composed of a fluid reservoir and six orthogonally
oriented electromagnets [15]. All of the videos were recorded
using a Blackfly 1.4 MP Color GigE PoE (Point Grey
Research Inc., Richmond, Canada) camera mounted on a
Mitutoyo FS70 microscope unit (Mitutoyo, Kawasaki, Japan)
using a Mitutoyo M Plan Apo 2 / 0.055 Objective and have
been processed offline on an Intel Xeon laptop computer
running MS Windows at 3.5 GHz. In the PSO algorithm
we used N = 40 particles, G = 30 generations, and
C = 2. We performed the partial randomization every
kr = 5 generations. Concerning the cost function, �D = 10,
�K = 5, and �S = 5.

The first video consists of 4148 frames. When the exper-
iment starts, the agent is stationary and open. The tracker
correctly finds its pose in the scene. Later, the miniaturized
gripper starts rotating and moving at various directions and
speeds. At some point in time, the miniaturized agent starts
folding while it moves in the scene. Then it continues to
move and rotate and the tracker can still track its pose.
Finally, the experiment concludes with the miniaturized agent
that unfolds while it continues to move (see Fig. 2).

The second video consists of 7960 frames. In order to
evaluate the tracker in a more challenging scenario, we
processed one frame out of every five frames and we ran-
domly corrupted the color segmentation in order to simulate
erroneous detection of the miniaturized agent. With respect
to the previous sequence, in this video the camera is placed
further away from the agent. Thus the dimension of the agent
in the image plane is smaller and the background is more
challenging. When the experiment starts the agent is open
and does not move. Then, it starts moving upward. Although
the color segmentation allows us only to partially detect the
gripper, the proposed tracker is still able to correctly track
the agent (see Fig. 3). Finally, the gripper starts moving and
rotating about the three axis (see Fig. 4). Also in this case,
the tracker is able to correctly estimates the configuration of
the agent.

The last video consists of 2558 frames. We processed one
frame out of every two frames. A miniaturized gripper is used
to grasp biological material namely yolk from an egg. Egg
yolk was chosen due to its high content of cholesterol and
fats (58% of its dry weight) in order to simulate plaque build
up on porcine muscular tissue. When the experiment starts,
the agent is stationary and open. Later, the miniaturized
gripper starts rotating and moving toward the egg yolk. Then,
the agent moves almost completely outside the image plane,
reaches the target and starts to fold (see Fig. 5). In this case
the proposed tracker is able to detect and track the correct
configuration of the gripper.

As can be verified from the snapshots, the tracking of
the gripper is consistent throughout the whole sequences,
which indicates that it is correctly tracked. Thus, the pro-
posed tracker performs well in all the above cases, some
of which are challenging. Also, as can be seen from the
videos, errors in the tracking phase may be generated by

the soft and deformable nature of the miniaturized grippers
which is not taken into account by the proposed tracker.
The proposed method mainly relies on the observation O
and on the term S(·) to properly estimate the configuration
of the agent. Thus, possible limitations might arise when
the gripper is erroneously detected in several frames. Also,
situations where the gripper is unfolded and rotated of 90
deg. about its x�, y�axis might lead to inaccurate results.
With respect to the computational performance, the proposed
prototypical version processes the video sequences presented
previously at an average time of 3 s per frame (1024
⇥ 1024 images). However, since GPU computations can
benefit PSO algorithms in order to perform online model-
based tracking [26], we believe that the computation time
of the proposed algorithm can be reduced by exploiting
parallel computations. Finally, although we evaluated the
tracker with microscopic images, we think that the proposed
approach may work also with clinical imaging modalities
like ultrasound, assuming that a proper observation O of the
agent is computed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel model-based method
for efficient tracking of hydrogel miniaturized grippers from
RGB images. The tracking problem consists in estimating
the gripper model parameters that minimize the discrepancy
between the gripper hypotheses and the actual observations.
To this purpose, we used an appropriate objective function
and we employed a variant of Particle Swarm Optimization
(PSO) to search for the optimal configuration. The proposed
method was tested on three different datasets of more than
14000 images. Our results show that the proposed method
allows to properly track and detect the configuration of the
miniaturized agent. With respect to existing methods, this
is the first one which tries to estimate the full pose of
miniaturized grippers from RGB images.

This work can be extended in many ways: first, we plan
to exploit the inherent parallelism of PSO by performing
most of the computation on a GPU. Second, we will conduct
similar experiments using different types of grippers in
order to further validate the proposed approach. Finally, we
will consider using the ultrasound imaging modality which
provides the position of the miniaturized gripper in situations
where visual feedback cannot be provided via a microscope
system.
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