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Abstract
Minimally invasive surgery (MIS) during cardiovascular interventions reduces trauma and enables the treatment of high-
risk patients who were initially denied surgery. However, restricted access, reduced visibility and control of the instrument
at the treatment locations limits the performance and capabilities of such interventions during MIS. Therefore, the demand
for technology such as steerable sheaths or catheters that assist the clinician during the procedure is increasing. In this
study, we present and evaluate a robotically actuated delivery sheath (RADS) capable of autonomously and accurately
compensating for beating heart motions by using a model-predictive control (MPC) strategy. We develop kinematic models
and present online ultrasound segmentation of the RADS that are integrated with the MPC strategy. As a case study, we
use pre-operative ultrasound images from a patient to extract motion profiles of the aortic heart valve (AHV). This allows
the MPC strategy to anticipate for AHV motions. Further, mechanical hysteresis in the steering mechanism is compensated
for in order to improve tip positioning accuracy. The novel integrated system is capable of controlling the articulating tip
of the RADS to assist the clinician during cardiovascular surgery. Experiments demonstrate that the RADS follows the
AHV motion with a mean positioning error of 1.68 mm. The presented modelling, imaging and control framework could
be adapted and applied to a range of continuum-style robots and catheters for various cardiovascular interventions.
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1. Introduction
According to the World Health Organization, cardiovascu-
lar diseases are among the leading causes of death globally
(Alwan et al., 2011). Technological developments have the
ability to improve and enable treatment of cardiovascular
diseases (Himbert et al., 2009; Walther et al., 2009; Wong
et al., 2010). Traditionally, open surgery via sternotomy
is performed to gain surgical access to the heart, while a
heart–lung machine provides life support. Accessibility to
the heart is considered to be a major advantage during open
surgery, which is at the expense of severe patient trauma.
As an alternative, minimally invasive surgery (MIS) could
reduce trauma and enable the treatment of high-risk patients
who were initially denied surgery (Alfieri et al., 2007; Cri-
bier et al., 2004; Himbert et al., 2009; Seeburger et al.,
2010; Ye et al., 2010). However, limited access, vision and
control of the instrument at the treatment locations impedes
the performance of MIS. During interventions performed
without a heart–lung machine, often beating heart motion
compensation is desired and could potentially enable future
cardiovascular interventions. Tracking of the beating heart
requires the attention of the surgeon, whose accuracy dete-
riorates for complex repetitive motions up to 60 beats per

minute (BPM) (Falk, 2002). Therefore, there is a demand
for technology that assists the clinician via shared control
during the procedure.

In this study, we focus on a model-predictive control
(MPC) strategy that anticipates and compensates for the
beating heart motion (Figure 1). The MPC strategy is used
to compensate the beating heart motion by using a robot-
ically actuated delivery sheath (RADS). Another advan-
tage of MPC is the ability to integrate motion constraints
on the instrument in order to prevent damage to sensi-
tive tissue during the procedure. As a case study, we use
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Fig. 1. Model predictive control (MPC) can be used to steer the
robotically actuated delivery sheath (RADS) in order to assist the
clinician during cardiovascular surgery. The potential of MPC in
cardiovascular surgery can be demonstrated by compensating for
the aortic heart valve (AHV) motion in a representative case of
transapical transcatheter aortic valve implantation. The RADS 1⃝
is inserted through the apex 2⃝ into the left ventricle 3⃝ and ori-
ented towards to the aortic annulus 4⃝. The articulating tip 5⃝
of the RADS can be steered inside the left ventricle under ultra-
sound 6⃝ image guidance in two degrees of freedom by two pairs
of antagonistically configured tension wires. Pre-operative ultra-
sound data 7⃝ can be used as an input to the MPC strategy to
anticipate and compensate the AHV motion during surgery.

transcatheter aortic valve implantation (TAVI) to demon-
strate the potential of our MPC strategy. Further, applica-
tions such as ablation, valve repair surgery and mitral valve
chordal replacement can potentially benefit from such an
MPC strategy. TAVI can be performed via the transfemoral
(TF) or transapical (TA) routes. In this case study, we focus
on the TAVI-TA approach, which provides direct surgical
access to the aortic and mitral heart valves (Johansson et al.,
2011; Ye et al., 2010).

1.1. Related work

Recent studies have demonstrated the capabilities of MIS in
cardiovascular applications such as angioplasty and patent
foramen ovale (Gosline et al., 2012; Jayender et al., 2008).
These studies describe the use of robotic instruments in
order to enable MIS. However, MIS in cardiovascular appli-
cations such as coronary artery bypass, ablation and valve
surgery could significantly benefit from beating heart com-
pensation. Active robotic stabilization at the treatment loca-
tion could provide a virtually still scenario that allows the
clinician to perform the primary task of the procedure as
if the heart was stopped. Compensation of beating heart
motions has been extensively covered in research. Stud-
ies that focused on the beating heart surface have been
described (Bebek and Cavusoglu, 2007; Gangloff et al.,

2006; Ginhoux et al., 2005; Nakamura et al., 2001; Ort-
maier et al., 2005; Richa et al., 2010; Tuna et al., 2013).
These studies cover various predictive strategies by filtering
and control to anticipate the beating heart motions. Ort-
maier et al. (2005) reported significant correlations between
beating heart motions and electrocardiogram (ECG) sig-
nals, which were utilized for synchronization by Bebek and
Cavusoglu (2007). The majority of these studies used pre-
dictive strategies to improve accuracy and to anticipate for
occlusions in endoscopic camera images, while this study
focuses on ultrasound-guided repair surgery in the beating
heart.

Cardiovascular procedures such as ablation and valve-
implantation or -repair surgery are often assisted by two-
dimensional (2D) or three-dimensional (3D) ultrasound,
which are used to evaluate cardiac functionalities (e.g.
valve closing) (Walther et al., 2009). The presence of ultra-
sound imaging during the procedure provides the potential
for online soft tissue and instrument tracking. Yuen et al.
(2008) evaluated predictive filtering to enable ultrasound-
guided robotic tracking of cardiac motions for potential use
in ablation. A study by Kesner and Howe (2014) demon-
strated capabilities of applying a constant force against
a moving target by using ultrasound image feedback and
force sensing. Whereas Bowthorpe et al. (2014) focused on
predictive control using an ultrasound-guided tele-operated
robot to anticipate for cardiac motions. All of these meth-
ods describe one dimensional motion compensation, which
is along the lateral axis of the instrument. However, existing
applications in valve implantation and repair surgery such
as mitraclip placement could benefit from motion compen-
sation in two or more degrees of freedom (DOFs) (Tam-
burino et al., 2010; Wong et al., 2010; Ye et al., 2010).
Further, beating heart motion compensation in two or more
DOFs could potentially enable future applications in min-
imally invasive cardiovascular surgery. In this study, we
cover an integrated system capable of autonomously and
accurately compensating for beating heart motions in two
dimensions by using an MPC strategy. Further, our MPC
strategy guided by ultrasound imaging considers active con-
straint handling in order to avoid damage to sensitive tissue.
Major aspects in MPC of the integrated system are kine-
matic modelling of continuum-style robots and feedback on
its pose.

Kinematic modelling is used to describe the RADS shape
and articulating tip motion. Modelling of continuum-style
robots have been investigated by several groups (Bardou
et al., 2010; Camarillo et al., 2008; Ding et al., 2010;
Dupont et al., 2010; Reiter et al., 2012; Rone and Ben-Tzvi,
2014; Webster and Jones, 2010). Various continuum-style
robotic instruments with potential in cardiovascular appli-
cations have been described in literature. These devices
can be mainly classified into tendon-driven robots and pre-
bent concentric tubes. We describe the kinematics of the
tendon-driven constant-curvature RADS using both robot-
specific and -independent submappings (Webster and Jones,
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Fig. 2. An overview of the robotically actuated delivery sheath (RADS). The articulating tip of the RADS is actuated in two degrees
of freedom by two pairs (red and green) of antagonistic-configured tension wires driven by a two pulleys with radii (rp) and angles (ψx
and ψy). Three coordinate systems are assigned to describe the tip pose of the RADS: "0 is the reference frame fixed to the shaft, "i
is the intermediate frame assigned to the arc section and frame ("t) is fixed to the articulating tip. Displacement of the tension wires
(t1, . . . , t4) by δx and δy (inset centre) results in instrument bending along the x- and y-axes (frame ("0)), respectively. The arc of the
RADS with parameters, bend angle (θ ), backbone length (ℓ), radius (r) and curvature (κ) lies in a plane described by the arc plane (inset
right). The orientation of the arc plane about the z-axis of the reference frame ("0) is denoted by angle (φ). Further, the tendon distance
to the backbone arc (ℓ) is denoted db. A rigid link (not completely shown) of length (lt) is attached to the arc (frame ("i)) of the RADS.

2010). The kinematics presented in this study considers a
rigid link which is attached to the flexible segment of the
RADS. However, modelling mismatches and disturbances
acting on the system affect the tip positioning performance
of continuum-style robots.

Tracking of continuum-style robots plays an important
role in order to reduce control tracking errors caused
by modelling mismatches and external disturbances. In
TAVI, the clinician is often assisted by 2D and 3D tran-
soesophageal or transthoracic echocardiography (Walther
et al., 2009). 2D ultrasound has been used for 2D and 3D
tracking of flexible instruments by several groups (Hong
et al., 2004; Neshat and Patel, 2008; Neubach and Shoham,
2010; Vrooijink et al., 2013, 2014). 3D ultrasound-based
tracking of cardiac catheters (some equipped with markers)
have also been described in the literature (Koolwal et al.,
2010; Nadeau et al., 2015; Novotny et al., 2007; Stoll et al.,
2012). In this study, we integrate an online and a robust
tracking algorithm that uses 2D ultrasound images of the
RADS.

1.2. Contributions

In this study, we demonstrate an integrated system that
assists the clinician by compensating for beating heart
motions, which could be used in existing and potential
future cardiovascular interventions. By active stabilization
of the instrument in the beating heart, a virtually still treat-
ment location could be provided. This allows the clinician
to perform the procedure as if the heart was stopped. Such a
system requires instrument modelling and tracking, which
is integrated in a control strategy capable of anticipating
for beating heart motions. In this study, we incorporate the
forward, inverse and differential kinematic models of the
RADS, which considers a rigid link or a tool attached to the

flexible tip segment. Subsequently, we integrate a robust 2D
ultrasound image segmentation algorithm capable of online
evaluation of the RADS tip position. Furthermore, we pro-
vide the control objective and corresponding MPC strat-
egy, which considers kinematic modelling and ultrasound
feedback. The MPC strategy anticipates for beating heart
motions by incorporating models based on pre-operative
patient data. In addition to the aforementioned contribu-
tions, the MPC strategy considers active constraint handling
in order to prevent damage to sensitive tissue. To the best
of the authors’ knowledge, we are the first to present an
ultrasound-guided MPC strategy capable of compensation
for beating heart motions in 2D using a RADS. As a case
study, we focus on TAVI-TA by integrating an aortic heart
valve (AHV) model in the MPC strategy, which is based on
pre-operative 2D ultrasound patient images that describes
the AHV motion during the cardiac cycle. The presented
strategy for beating heart compensation could be applica-
ble to a wide variety of existing and potential future car-
diovascular interventions. Further, we improved the RADS
tip positioning accuracy by compensating for instrument
hysteresis. Three experimental scenarios using a water con-
tainer setup demonstrate MPC of the novel integrated sys-
tem that autonomously and accurately compensates for
AHV motions.

2. Methods
This section presents techniques to enable tracking and
MPC-based steering of the RADS. Details on the design
of the RADS are provided by Vrooijink et al. (2014). We
summarize the forward, inverse and differential kinemat-
ics which are used in MPC. Furthermore, we describe the
2D ultrasound segmentation method of the RADS used as
feedback for MPC. The MPC strategy includes modelling
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of the heart valve motion based on pre-operative 2D ultra-
sound data. By combining the kinematic modelling and
segmentation of the RADS with MPC, the system is able to
anticipate the beating heart motion. Note, in the derivations
presented, for notational simplicity, we leave out the dis-
crete time variable denoted by k (except where needed for
clarity). Further, the nomenclature describing the variables
used in this study is provided in Appendix B.

2.1. Instrument modelling

2.1.1. Forward kinematics. The design and integration of
the tendon-driven RADS used in this study is shown in Fig-
ure 2. Two pairs of antagonistically configured tension wires
are used to actuate the articulating tip of the RADS in two
DOFs. Each pair of wires is actuated by a single pulley
and controls tip movement in a single DOF (Figure 2). The
four-wire design allows for tip movement in two DOFs by
using two actuators instead of the three that are required in
an instrument with three wires. A kinematic model of the
tendon-driven continuum-style robot can be described by a
robot-specific and a robot-independent submapping (Web-
ster and Jones, 2010). The robot-specific mapping relates
the actuator space to the configuration space. The actua-
tor space is given by the angles of the pulleys (ψx and ψy),
while the configuration space is described by arc parame-
ters such as arc curvature (κ), arc plane angle (φ) and arc
length (ℓ)). The robot-independent mapping transforms the
configuration space to the task space (intermediate frame
("i)).

In order to evaluate the arc parameters of the configu-
ration space, the relation between tendon manipulation at
the base and the resulting arc needs to be described. In the
derivation presented, we denote for notational simplicity:
c∗ = cos( ∗) and s∗ = sin( ∗). The RADS used in this study
is actuated using four tendons (ti), where ( i = 1, . . . , 4)
with corresponding tendon lengths (li) as shown in Figure
2 (inset centre). The relationship between the arc length of
the RADS (ℓ) and the arc length of a single tendon (li) is
given by

ℓ = li + θdbcφi (1)

where θ is the bend angle, db denotes the distance between
the backbone and tendon and φi describes the angle between
the bending direction of the RADS and the location of a sin-
gle tendon (ti). Note that the distance (db) in our instrument
is equal for all tendons (Figure 2). Further, the bend angle
(θ ) is related to the curvature by θ = κℓ.

Given the tendon configuration as illustrated in Figure 2,
we can formulate the individual tendon angles by cφ1 = cφ ,
cφ2 = sφ , cφ3 = −cφ and cφ4 = −sφ . By combining
the individual tendon angles with (1), we can obtain an
expression between the arc length (ℓ) of the RADS and the
individual tendon lengths (li), which yields

ℓ = l1 + l2 + l3 + l4
4

(2)

The antagonistic configuration allows for pairing of the ten-
dons described by t1 and t3, and t2 and t4. By using the
tendon pairs and (2), the arc plane angle (φ) is obtained
according to

φ = arctan
(

l4 − l2
l3 − l1

)
(3)

while the curvature is evaluated as

κ = ( l1 − 3l2 + l3 + l4)
√

( l4 − l2)2 +( l3 − l1)2)
db( l1 + l2 + l3 + l4) ( l4 − l2)

(4)

Note that the arc parameters (ℓ, φ and κ) described in (2)–
(4) are functions of the individual tendon lengths (li). These
individual tendon lengths (li) are manipulated by displace-
ments (δx) and (δy), which are introduced by two actuated
pulleys (Figure 2). The relation between tendon displace-
ments (δx and δy) and pulley angles (ψx and ψy) are given
by δx = rpψx and δy = rpψy, where rp describes the pulley
radius (equal radii for both pulleys). Hence, we can use (1)
to formulate an expression for all tendon lengths (li) as a
function of the pulley angles (ψx and ψy) by l1 = ℓ− rpψx,
l2 = ℓ− rpψy, l3 = ℓ+ rpψx and l4 = ℓ+ rpψy. Substitut-
ing the expressions for the tendon lengths (li) into (3) and
(4) yields

φ = arctan
(
ψy

ψx

)
(5)

and

κ =
rp

√
ψ2

x + ψ2
y

ℓdb
(6)

respectively. Hence, we obtain the arc parameters (κ , φ and
ℓ) of the configuration space as a function of the pulley
angles (ψx and ψy) of the actuator space.

The robot-independent mapping is given by the homoge-
neous transformation matrix (H0

i ∈ SE3), where

H0
i =

⎡

⎢⎢⎢⎢⎣

cφcκℓ −sφ cφsκℓ
cφ (1−cκℓ)

κ

sφcκℓ cφ sφsκℓ
sφ (1−cκℓ)

κ

−sκℓ 0 cκℓ
sκℓ
κ

0 0 0 1

⎤

⎥⎥⎥⎥⎦
, (7)

which describes the mapping between the intermediate
frame ("i) and the reference frame ("0).

Remark (Discontinuity for κ ̸= 0). Discontinuities in
kinematics can be addressed by substituting differentiable
cardinal sine and versine functions according to

sinc( κℓ) =
{

sin(κℓ)
κℓ

κℓ ̸= 0
1 κℓ = 0

(8)

and

verc( κℓ) =
{

1−cos(κℓ)
κℓ

κℓ ̸= 0
0 κℓ = 0

(9)

which are defined for κ = 0.
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Fig. 3. Overview of the geometric relations used to estimate an
initial value for the arc curvature (κ̂) of the robotically actuated
delivery sheath (RADS). The arc length (ℓ) and rigid link length
(lt) combined with the RADS tip position (| r0

t |) are used to esti-
mate the bend angle (θ̂). The estimated bend angle (θ̂ ) and the
approximated length ( 1

2 ( ℓ + lt)) are used to evaluate an initial
estimate of the arc curvature (κ̂) of the RADS.

In order to describe the articulating tip frame ("t) of
the RADS with respect to the intermediate frame ("i) as
demonstrated in Figure 2, we use a second transformation.
This transformation describes the rigid link attached to the
arc section (intermediate frame ("i)) of the RADS, which
is given by homogenous transformation matrix (Hi

t ∈ SE3),
where

Hi
t =

[
I3 Li

t

01×3 1

]

(10)

where I and 0 represents an identity and a matrix filled with
zeros, respectively. Further, Li

t ∈ R3, where Li
t = [0 0 lt]T

describes the rigid link section by a translation along the z-
axes of the intermediate frame ("i). We describe the RADS
articulating tip pose (H0

t ) in the reference frame ("0) by a
series of transformations according to H0

t = H0
i Hi

t, which
completes the forward kinematics.

2.1.2. Inverse kinematics. The inverse kinematics is used
to express the pulley angles (ψx and ψy) as a function of the
reference tip position (r0

t ∈ R3, where r0
t = [rx ry rz]T)).

In order to evaluate the arc parameters of the configuration-
space given a measured or reference tip position (r0

t ), we
first determine the arc plane angle (φ) by

φ = arctan
(

ry

rx

)
(11)

Subsequently, we use the forward kinematics presented in
(7) and (10) to derive an expression for the reference tip
position (r0

t ) according to

[
r0

t
1

]
= H0

t

[
ot

1

]
=

⎡

⎢⎢⎢⎢⎣

cφ
(

(1−cκℓ)
κ

+ ltsκℓ
)

sφ
(

(1−cκℓ)
κ

+ ltsκℓ
)

sκℓ
κ

+ ltcκℓ
1

⎤

⎥⎥⎥⎥⎦
(12)

Algorithm 1 Numerical estimation of the arc curvature (κ)
Inputs:
r0

t = [rx ry 0]T ◃ Robotically actuated
delivery sheath tip position

ϵth ◃ Specified tolerance
Parameters:
ℓ ◃ Arc length
lt ◃ Rigid link length
Outputs:
κ̂ ◃ Estimated arc curvature
Method:

1: φ = arctan
(

ry
rx

)
◃ Arc plane angle

2: tan( θ̂ ) = |r0
t |

ℓ+lt

3: κ̂ = 2
ℓ+lt

tan( θ̂ ) ◃ Initial estimate κ̂
4: while e > ϵth do

5:

[
r̂0

t
1

]
= H0

t ( κ̂)
[

ot

1

]
◃ Compute tip position with κ̂

6: e =| r̂0
t | − | r0

t | ◃ Compute error (x- and
y-axes)

7: κ̂ = κ̂ + G · e ◃ Re-estimate κ̂ , with
G = 4450 (empirically
determined)

8: end while

where ot = [0 0 0]T ∈ R3 represents the origin of the
articulating tip frame ("t). Note, that the arc length (ℓ) and
rigid link length (lt) are known. Thus, by substituting (11)
into (12), the arc curvature (κ) can be solved numerically as
described in Algorithm 1.

We first estimate an initial value for the arc curvature (κ̂)
using trigonometric relations as depicted in Figure 3. Sub-
sequently, we use the initial estimated arc curvature (κ̂) to
compute the forward kinematics described in (7) and (10).
The error (e) between the estimate (r̂0

t ) and reference (r0
t )

tip position is evaluated. The computed error (e) is used to
correct the estimated arc curvature (κ̂), where the feedback
gain (G) is included to obtain a desired rate of convergence.
The process is repeated until the error (e) is below a speci-
fied tolerance (ϵth). Hence, we obtain an accurate estimation
of the arc curvature (κ). Given the evaluated arc curvature
(κ) and arc plane angle (φ), we can solve (1) for all indi-
vidual tendon lengths (li) and determine the corresponding
pulley angles (ψx and ψy), which completes the inverse
kinematics.

2.1.3. Differential kinematics. Differential kinematics is
used to relate the change in instrument arc parameters
(u = [φ κ]T) to the change in tip position, which is inte-
grated in the MPC strategy. Similar to the reference tip
position in (12), we can describe the tip position accord-
ing to p = F( φ, κ , ℓ, lt), where p = [px py pz]T ∈ R3 is
the tip position in x-, y- and z-axes (frame ("0)), which is
described by a function (F( φ, κ , ℓ, lt)) of the arc parame-
ters (φ and κ). Given the instrument design, we consider
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the arc length (ℓ) and rigid link length (lt) to be constant
in (F( φ, κ , ℓ, lt)). Note, that the arc parameters (φ and κ)
are controlled by pulley angles (ψx and ψy). An expres-
sion that relates the change in instrument arc parameters
(u̇ = [φ̇ κ̇]T) to instrument tip velocity (ṗ = [ṗx ṗy ṗz]T) is
given by

ṗ = JR( u) u̇ (13)

where

JR( u) =

⎡

⎢⎣

∂F1
∂φ

∂F1
∂κ

∂F2
∂φ

∂F2
∂κ

∂F3
∂φ

∂F3
∂κ

⎤

⎥⎦ =

⎡

⎢⎢⎣

sφ
(

cκℓ−1
κ
− ltsκℓ

)
cφ

(
cκℓ−1
κ2 + ℓsκℓ

κ
+ ℓltcκℓ

)

−cφ
(

cκℓ−1
κ
− ltsκℓ

)
sφ

(
cκℓ−1
κ2 + ℓsκℓ

κ
+ ℓltcκℓ

)

0 ℓcκℓ
κ
− sκℓ

κ2 − ℓltsκℓ

⎤

⎥⎥⎦

(14)
uses the forward kinematics described in (12) to analytically
derive the differential kinematics. Note, that similar to (7),
discontinuities for κ = 0 can be addressed by using deriva-
tives of cardinal sine (sinc( κℓ)) and versine (verc( κℓ))
functions. Given the presented techniques that provide for-
ward, inverse and differential kinematics, often unknown
modelling mismatches and external disturbances degrade
the control performance. Hence, we include ultrasound
feedback in order to improve our control strategy.

2.2. Ultrasound image segmentation

This section elaborates on the segmentation techniques
applied to evaluate the RADS centroid location in 2D ultra-
sound images. In order to view the tip of the RADS in
ultrasound images, we insert the instrument in a container
and use water as an acoustic transport medium. A radial
cross-sectional view of the RADS is obtained by orientating
the 2D ultrasound image plane perpendicular to the shaft
of the instrument (Figure 4). The RADS tip is positioned
in the ultrasound image plane by axial positioning, which
is described in details in Section 2.3.4. Note, that by axial
positioning, the segmented RADS tip frame in ultrasound
images (frame ("u)) is expressed in the fixed reference
frame ("0) by position feedback.

A representative ultrasound image of the instrument tip
is shown in Figure 4(a). We observe a semi-circular shape
that describes the reflecting surface of the RADS. By eval-
uation of the pre-operative ultrasound data (Figure 6), we
did not observe identical semi-circular shapes that repre-
sented anatomical structures. Therefore, we use segmenta-
tion techniques based on the circular shape parameters to
localize the tip of the RADS in ultrasound images. Further,
the acoustic impedance difference between RADS materi-
als and cardiac tissue is considered to be significantly large,
which enhances the visibility of the instrument (Aldrich,
2007; Vrooijink et al., 2014). This would enable instrument
detection when interaction with cardiac tissue is considered.

Algorithm 2 Random sample consensus robotically actu-
ated delivery sheath localization
Inputs:
Ac ← {xc,v|v=1,...,w} ◃ Set of detected edge points (xc)
f : H3 → mc ◃ Computes the algebraic circle

model parameters (mc) from a set
(H3) of three randomly selected
edge points

C( mc, xc) ◃ Cost function for a single edge
point (1 if xc is an inlier to the
algebraic circle parameters (mc), 0
otherwise)

n ◃ Number of iterations
Outputs:
m∗c ◃ Best model parameters
S∗c ◃ Best consensus set (inliers)
J∗c ◃ Best cost
Method:

1: for i← 1, n do
2: H3,i ← random_3pnts( Ac) ◃ (I) Hypothesis
3: mc, i← f ( H3,i)
4: if suffice( mc,i) then ◃ (II) Preliminary test
5: Sc, i← {∀xc ∈ Ac|C( mc,i, xc) = 1}
6: Jc, i←

∑
xc∈Ac

C( mc,i, xc)
7: if J∗c < Jc, i then ◃ (III) Evaluation
8: J∗c ← Jc,i

9: m∗c ← mc,i

10: S∗c ← Sc,i

11: end if
12: end if
13: i← i + 1
14: end for

Preprocessing is performed to enhance the visibility of
the RADS in ultrasound images. In order to reduce speckle
and to smoothen edges in the ultrasound image, a 2D Gaus-
sian kernel is applied, as depicted in Figure 4(b). The
contrast between instrument and the environment in ultra-
sound images is sufficient for edge detection. Hence, we
use a Canny edge detector with hysteresis thresholding to
obtain an edge map of the ultrasound image as shown in
Figure 4(c) (Forsyth and Ponce, 2002). Hysteretic thresh-
olding reduces the detection of irrelevant edges, that do
not describe the semi-circular surface of the RADS. How-
ever, irrelevant edges, often introduced by surface deforma-
tions caused by artifacts and bending of the instrument may
still exist. Hence, the centroid location is evaluated using
a random sample consensus (RANSAC) strategy (Algo-
rithm 2). RANSAC is robust to irrelevant edges that do
not fit the parametric description of the semi-circular model
representing the RADS (Forsyth and Ponce, 2002).

The evaluated set (Ac) of edge points (xc ∈ R2) from the
Canny edge detector is used as an input to the RANSAC
algorithm. The RANSAC algorithm is an iterative process
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Fig. 4. Ultrasound image segmentation to evaluate the centroid location (px, py) of the robotically actuated delivery sheath (RADS).
The RADS tip (frame ("t)) is positioned in the ultrasound image plane denoted by frame ("u) using axial positioning along the x-axis
(frame ("0)). (a) Radial cross-sectional view of the RADS in 2D ultrasound images. (b) Gaussian filtering using a 2D kernel. (c) Canny
edge detection with hysteretic thresholding. (d) Random sample consensus (RANSAC) to localize the centroid (px,py) of the RADS
(centre of the blue circle). The green and red points are considered inliers and outliers, respectively.

that consists of three steps (i.e. (I) hypothesis, (II) prelimi-
nary test and (III) evaluation). In (I), a hypothetical solution
is found by fitting algebraic circle model parameters (m) for
f : H3 → mc to a set (H3) of candidate inliers. The set (H3)
consists of three arbitrary selected edge points from the
evaluated set (Ac). In (II), a preliminary test

(
suffice( mc,i)

)

is performed to evaluate the model parameters. The model
parameters such as radius and centroid location should be
consistent with those of the RADS in order to qualify as a
potential solution. Further, all edge points of the edge map
are evaluated using a cost function

(
C( mc, xc)

)
to deter-

mine whether they are sufficiently close to the periphery of
the circular shape. The fitted model is acceptable if a suf-
ficiently large part of the semi-circular surface has been
evaluated as the consensus set. In (III), an evaluation is
performed in order to improve the previous solution. The
model parameters and consensus set are both refined if the
computed cost (Jc,i) of the current iteration exceeds the
previous solution. After n iterations, the centroid location
(px, py) of RADS is evaluated from the model parameters
(mc) and displayed as the centre of the circle (Figure 4(d)).

The performance of the RANSAC algorithm is evaluated
and validated experimentally using a sequence of 600 ultra-
sound images. Experiments show that the localization error
of the RADS decreases if the number (n) of iterations of
the RANSAC algorithm are increased as depicted in Figure
5(b). In order to minimize computational costs and consid-
ering the ultrasound imaging resolution of approximately
0.12 mm per pixel, the number of RANSAC iterations
should be limited to approximately 800, which is depicted
green in Figure 5. Further, we compare the results of RADS
segmentation for varying RANSAC iterations using manual
segmentation as a ground truth (Figure 5(a)). The results
show, that by increasing the RANSAC iterations, the seg-
mentation error remains approximately constant (0.4 mm).
Since there is no reason to believe that an increase in
RANSAC iterations would deteriorate segmentation accu-
racy, we estimate that the insignificant increased error in
Figure 5(a), could be attributed to imperfections in manual
segmentations.

Fig. 5. Experimental evaluation and validation of image seg-
mentation using a sequence of 600 ultrasound images. (a) Com-
pares the performance between varying random sample consensus
(RANSAC) iterations using a ground truth obtained by manual
segmentation. (b) Describes the relation between the number of
iterations and the localization error using a ground truth obtained
after 106 RANSAC iterations.

The presented ultrasound segmentation method is used
in our closed-loop control strategy to improve the perfor-
mance. Note, that the presented 2D segmentation method
can be expanded to 3D ultrasound imaging by parallel
evaluation of slices along the instrument shaft.

2.3. Model predictive control

In this section we present the MPC architecture used to con-
trol the RADS in closed loop. The objective of the MPC
architecture is to anticipate the AHV motion based on a
model. This allows the clinician to focus on the primary task
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of the procedure, while compensation for AHV motions
is provided. In order to develop an AHV model, we use
the pre-operative 2D ultrasound images that describe the
AHV motion of a human during the cardiac cycle. Further,
we integrate forward, inverse and differential kinematics
described in Section 2.1 to determine instrument motion.
The 2D ultrasound segmentation presented in Section 2.2 is
used to provide instrument feedback for control.

2.3.1. Model description. The continuous time represen-
tation of the model used in the MPC strategy incorporates
the differential kinematics described in (13). A cascade
configuration is used according to

ṗ(t) = JR( u(t)) u̇(t) (15)

ü(t) = v(t) + e(t) (16)

y(t) = p(t) + e(t) (17)

where v(t) is considered to be the MPC control input signal.
However, the change in arc parameters (u̇(t)) is used to steer
the RADS according to the MPC strategy. The system is
subject to an inequality constraint according to

pmin ≤ p(t) ≤ pmax for all t (18)

where the instrument tip position is restricted. The instru-
ment tip position is limited in order to prevent damage
to the instrument arc section. Further, by adding restricted
regions for the instrument tip position, damage to sensitive
tissue can be avoided. In order to preserve dominant fea-
tures required for ultrasound image segmentation, we add
an additional inequality constraint. The constraint is used
to limit the instrument tip velocity in x- and y-directions of
frame ("0) by

ṗmin ≤ ṗ(t) ≤ ṗmax for all t (19)

The discrete time model integrated within the MPC strat-
egy can be obtained by using forward Euler discretization of
the continuous time model according to

p(k+1) = p(k) + JR( u(k)) a(k) (20)

a(k+1) = a(k) + T2
s v(k) + T2

s e(k) (21)

y(k) = p(k) + e(k) (22)

where we substitute a(k) = u(k+1) − u(k) and Ts denotes
the sampling time. Similarly, the equivalent discrete time
constraints are given by

pmin ≤ p(k) ≤ pmax for all k (23)

and

ṗmin ≤
p(k+1) − p(k)

Ts
≤ ṗmax for all k. (24)

Note, that the constraints stacked into a vector can be eval-
uated component-wise. The presented discrete time model
is integrated within MPC strategy to optimize the control
objective.

2.3.2. Control objective. The main MPC objective is to
anticipate the AHV motion, while considering a desired ref-
erence input. In order to capture these requirements, we can
formulate a reference tracking objective according to

r = rAHV + rd (25)

where rd describes the RADS desired tip position with-
out a priori knowledge, while rAHV represents the position
of the AHV with a priori knowledge obtained from pre-
operative modelling. In this study, we assume that a priori
knowledge on AHV position is sufficiently well-described
by modelling, which is presented in Section 2.3.3. In order
to achieve our control objective in MPC, we formulate a
generalized predictive control (GPC) cost function (J ) (van
den Boom and Stoorvogel, 2012). This cost function eval-
uates, over a horizon, the reference tracking error and the
control action by

J(v,k) =
N∑

j=Nm

( ŷ(k+j|k) − r(k+j))T ( ŷ(k+j|k) − r(k+j))

+
N∑

j=1

vT
(k+j−1|k)λ

Tλv(k+j−1|k)

(26)

where N = 15 describes the prediction horizon, Nm is the
minimum cost horizon and equals one, (ŷ(k+j|k)) is the pre-
dicted instrument tip position (y(k+j)) based on knowledge
up to time (k) and λ is the control input weighting matrix
given by

λ =
[

1× 10−2 0
0 1× 10−7

]
(27)

which evaluates the control action (v). The control input
weighting matrix (λ), the prediction horizon (N) and min-
imum cost-horizon (Nm) are empirically determined. By
rewriting the cost function (26) as

J(v,k) =
N−1∑

j=0

ẑT
(k+j|k)$(j)ẑ(k+j|k) (28)

we obtain the standard form used in MPC, where

z(k) =
[

ŷ(k+1|k) − r(k+1)

λv(k)

]
(29)

describes the reference tracking error and control action,
while

$(j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
03×3 03×2

02×3 I2

]
for 0 ≤ j < Nm − 1

[
I3 03×2

02×3 I2

]
for Nm − 1 ≤ j < N − 1

(30)
is a diagonal selection matrix ($(j) ∈ R5×5) used to describe
the horizon of the cost function. By minimizing the cost
function (J(v,k)), we optimize between RADS tracking accu-
racy and control effort, where the reference (rAHV ) is given
by AHV modelling.
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Fig. 6. A pre-operative two-dimensional transoesophageal echocardiogram (TEE) of the aortic heart valve (AHV) annular plane. The
centre location of the aortic heart valve annulus is manually segmented for multiple cardiac cycles. The human evaluated annulus centre
positions are used for fitting a motion model. The blue line demonstrates the manually segmented annulus position during the cardiac
cycle. The corresponding red line describes the position of the fitted model. Further, the velocities and accelerations of the AHV models
are provided.

2.3.3. AHV modelling. Modelling is used to anticipate the
AHV motion in MPC. As a case study, we observe the
motion of the AHV annulus during the human cardiac
cycle. We use pre-operative 2D transoesophageal echocar-
diogram (TEE) to obtain the motion profile of a human
AHV annulus (Figure 6). The motion profile obtained from
2D ultrasound images is used to demonstrate compensation
of the AHV motion. In this study, we assume a constant
shape of the aortic annulus. Hence, we obtain the cen-
tre position of the aortic annulus by manual segmentation
(Figure 6).

The manual segmented aortic annulus position during the
cardiac cycle is used to derive a model capable of describing
the periodic motion. A two-term Fourier series according to

fx = a0x + a1x c k
Sr
ω + b1x s k

Sr
ω + a2x c2 k

Sr
ω + b2x s2 k

Sr
ω (31)

and

fy = a0y + a1y c k
Sr
ω + b1y s k

Sr
ω + a2y c2 k

Sr
ω + b2y s2 k

Sr
ω (32)

is used to describe the periodic aortic annulus motion,
where k describes discrete time, Sr denotes the number
of samples per second and ω represents the frequency of
the periodic function in radians per second. The frequency
(ω) is given by ω = ωx+ωy

2 , and relates to the heart rate
(Hr) in beats per minute (BPM) according to Hr = 60ω

2π .
The corresponding coefficients and frequencies (a0∗ , a1∗ ,
b1∗ , a2∗ , b2∗ and ω∗) are provided in Table 1. By consid-
ering the frequencies provided in Table 1, the observed
heart rate (Hr) is 42 BPM. The goodness of data fitting
is given by the coefficients of determination R2 = 0.86
and R2 = 0.97 along the x- and y-axes, respectively. Note,
that an increase in the number of terms of the Fourier
series described in (31) and (32) does not result in a sig-
nificant improvement in the coefficients of determination.
From the manual segmentation we observe displacements

of 9.60 ± 3.23 mm in x-axis, while the y-axis shows dis-
placements of 12.25 ± 1.27 mm. Further, from the fitted
model we observe maximum velocities and accelerations of
approximately 40 mm/s and 250 mm/s2, respectively. The
periodic aortic annulus motions described by fx and fy pro-
vides the tracking reference (rAHV = [fx fy 0]T) for MPC. In
order to anticipate the motion of the aortic annulus, a priori
knowledge of the tracking reference (rAHV ) is considered
during experimental evaluation using MPC.

2.3.4. Controller design. The MPC strategy used to con-
trol the articulating tip of the RADS is presented in Figure
7. The control variable (v) is used to determine the change
in arc parameters (a), which are implemented in order to
position the tip of the RADS. Subsequently, the tip posi-
tion (y = [px py 0]T) of the RADS is measured using a 2D
ultrasound transducer as described in Section 2.2. However,
ultrasound images are often prone to noise and the tip of the
RADS may not always be detected during tracking. Hence,
we add an extended Kalman filter to provide state estima-
tion (ŷ = [p̂x p̂y p̂z]T) based on kinematics described in
Section 2.1 and 2D ultrasound measurements (Bar-Shalom
et al., 2001). The position error (err = y− ŷ) is evaluated in
order to adapt the Kalman filter. Note, that the articulating
tip of the RADS must intersect with the ultrasound image
plane in order to provide position feedback. Hence, we limit
the articulating tip motion to the ultrasound image plane by
autonomous axial positioning of the RADS along the z-axis
of frame ("0) using a linear stage. The state estimate (p̂z)
provided by the Kalman filter is used as an input to axial
positioning.

In order to describe the MPC strategy, we formulate a
constrained standard predictive control problem (CSPCP),
which uses a multiple-input and a multiple-output (MIMO)
state-space representation of the system (Kinnaert, 1989;
van den Boom and Stoorvogel, 2012). We can write the
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Table 1. Fourier coefficients used in (31) and (32) to describe the periodic aortic heart valve motion depicted in Figure 6. Subscript *
denotes the corresponding x- or y-axes.

a0∗ a1∗ b1∗ a2∗ b2∗ ω∗

x-axis 0.0547 −1.7850 −2.4530 −0.5737 −0.7064 4.4050
y-axis 0.3157 −3.7290 −2.7090 −2.4190 0.4965 4.4240

CSPCP using a MIMO model of the RADS in state-space
realization according to the following:

x(k+1) = Ax(k) + B1e(k) + B2w(k) + B3v(k) (33)

y(k) = C1x(k) + D11e(k) + D12w(k) + D13v(k) (34)

z(k) = C2x(k) + D21e(k) + D22w(k) + D23v(k) (35)

χ(k) = C4x(k) + D41e(k) + D42w(k) + D43v(k) ≤ X (k) (36)

where we use the model described in (20) to (22). The
state is given by x(k) =

[
p(k) a(k)

]T
, e(k) represents zero

mean white noise, while w(k) =
[
d(k) r(k+1)

]T
combines

all known external signals such as disturbance (d(k)) and ref-
erence (r(k+1)). Further, the generalized input is described
by v(k). The state-space matrices in (33) and (34) are given
by

A =
[

I3 JR( u)
02×3 I2

]
, B1 =

[
03×3 03×2

02×3 T2
s I2

]
,

B2 =
[

TsI3 03×3

02×3 02×3

]
, B3 =

[
03×2

T2
s I2

]
, C1 =

[
C003×2

]
,

D11 =
[
I203×2

]
, D12 = 03×6, D13 = 03×2

(37)

where we use the state (p) and the inverse kinematics
described in Section 2.1.2 to provide the arc parameters (u)
for the differential kinematics incorporated in matrix (A).
Further, the output of the system is limited to the 2D ultra-
sound image plane, which is given in x- and y directions of
frame ("0) by

C0 =

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ (38)

In this study, we do not model external disturbances, hence
we denote d(k) = [0 0 0]T, for all k. The matrices C2, D21,
D22 and D23 associated with the cost signal (z(k)) introduced
in (35) can be obtained by substituting ŷ(k+1|k) = C1x(k+1)+
D11ê(k+1|k) and v(k) into (29), which can be rewritten as

ẑ(k) =
[

C1A
02×6

]

︸ ︷︷ ︸
C2

x(k) +
[

C1B1

02×3

]

︸ ︷︷ ︸
D21

e(k)

+
([

C1B2

02×6

]
+

[
03×3 −I3×3

02×3 02×3

])

︸ ︷︷ ︸
D22

w(k) +
[

C1B3

λ

]

︸ ︷︷ ︸
D23

v(k)

(39)

where we use the zero mean white noise estimate
(ê(k+1|k) = 03×1).

Fig. 7. Model-predictive control (MPC) strategy is used to steer
the robotically actuated delivery sheath (RADS). The referenced
tip position by the clinician is denoted by rd , while rAHV describes
the position of the aortic heart valve with a priori knowledge
obtained from pre-operative ultrasound images. The tip position
obtained by ultrasound image segmentation is denoted by y, with
corresponding filtered position described by ŷ. The arc parameters
denoted by a is provided as an input to the RADS and the Kalman
filter. The resulting positioning error is given by err, which is used
to adapt the Kalman filter.

The constraints presented in (23) and (24) can be com-
bined and described by two one-sided constraint signals
(χ1,(k) and χ2,(k)) stacked together according to

[
χ1,(k)

χ2,(k)

]

︸ ︷︷ ︸
χ(k)

=
[

x(k+1)

−x(k+1)

]
=

[
A
−A

]

︸ ︷︷ ︸
C4

x(k) +
[

B1

−B1

]

︸ ︷︷ ︸
D41

e(k)+

[
B2

−B2

]

︸ ︷︷ ︸
D42

w(k) +
[

B3

−B3

]

︸ ︷︷ ︸
D43

v(k) ≤
[

X1,max

−X2,min

]

︸ ︷︷ ︸
X(k)

(40)

where X1,max =
[
pmax TsJ+

R ( u) ṗmax

]T
and X2,min =

[
pmin TsJ+

R ( u) ṗmin

]T
. Note, that by using the differential

kinematic relation in (13), the constraint on the instrument
tip velocity described in (24) can be rewritten as a constraint
on the change in arc parameters (a(k)) according to

TsJ+
R ( u) ṗmin ≤ a(k) ≤ TsJ+

R ( u) ṗmax for all k (41)

where J+
R ( u) is the Moore–Penrose pseudo-inverse of

JR( u). By adding the stacked inequality constraint, we
complete the CSPCP presented in (33) to (36).

The CSPCP is used to formulate a model based on the
concept of prediction, which is described in Appendix C.
The prediction model is used to solve for the optimal con-
trol vector (ṽ(k)). By using predictions of the cost signal
provided in (39) and the diagonal selection matrix described
in (30), given the prediction interval 0 ≤ j ≤ N − 1, we can
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formulate a signal vector (z̃k) similar to (52) and provide a
block diagonal selection matrix ($̄) by

z̃(k) =

⎡

⎢⎢⎢⎣

ẑ(k|k)

ẑ(k+1|k)
...

ẑ(k+N−1|k)

⎤

⎥⎥⎥⎦
and $̄ =

⎡

⎢⎢⎢⎢⎣

$(1) 05×5 . . . 05×5

05×5 $(2)
. . .

...
...

. . .
. . . 05×5

05×5 . . . 05×5 $(N−1)

⎤

⎥⎥⎥⎥⎦

(42)
respectively, which can be used to rewrite the cost-function
presented in (28) according to

J(v,k) = z̃T
(k)$̄z̃(k) (43)

The predicted cost signal (z̃k) in (42) can be formulated as

z̃(k) = C̃2x(k) + D̃21e(k) + D̃22w̃(k) + D̃23ṽ(k) (44)

where matrices C̃2, D̃21, D̃22 and D̃23 can be obtained
according (54) and (55). In addition to the constraint
described in CSPCP according to (40), we add additional
constraints to the prediction model to shape the control sig-
nal. In order to obtain a smooth and robust control action,
we add a control horizon constraint to the prediction model.
The equality constraint (ϒ(k) = 02×1) on the control horizon
can be described by

v(k+j|k) = ϒ(k), for Nc ≤ j < N (45)

where the control action is assumed to be zero after control
horizon (Nc = 10), which is empirically determined. The
corresponding prediction signal (υ̃(k)) according to (51) and
(52) is given by

υ̃(k) = C̃3x(k) + D̃31e(k) + D̃32w̃(k) + D̃33ṽ(k) = ϒ̃(k) (46)

where the equality constraint prediction vector is given by
ϒ̃(k) = 010×1 and the corresponding matrices are described
by C̃3 = 010×6, D̃31 = 010×3, D̃32 = 010×90 and

D̃33 =

⎡

⎢⎢⎢⎢⎣

02×2 · · · 02×2 I2 02×2 · · · 02×2

02×2 · · · 02×2 02×2 I2
. . .

...
...

...
...

. . .
. . . 02×2

02×2 · · · 02×2 02×2 · · · 02×2 I2

⎤

⎥⎥⎥⎥⎦

(47)
Further, a prediction vector (χ̃(k)) of the constraint signal
(χ(k)) described in (40) can be constructed similar to (52),
with corresponding prediction matrices computed accord-
ing to (54) and (55). The prediction of the inequality
constraint is given by

χ̃(k) = C̃4x(k) + D̃41e(k) + D̃42w̃(k) + D̃43ṽ(k) ≤ X̃(k) (48)

which also completes the prediction model.
By minimizing the following cost function

min
ṽ

z̃T
(k)$̄z̃(k) (49)

subject to constraints described in (46) and (48), we can
solve for the optimal control vector (ṽ(k)) that optimizes the
CSPCP. The optimization described in (49) can be evaluated
as a quadratic programming problem subject to constraints.
For details on the derivations, we refer the reader to work of
van den Boom and Stoorvogel (2012). We use qpOases soft-
ware in C++ to solve the quadratic programming problem
online (Ferreau et al., 2014). The solution is used to obtain
the optimal control vector (ṽ(k)). We implement according
to the receding horizon principle, where we apply (a(k)) to
steer the RADS according to the optimization.

2.3.5. Hysteresis compensation. Before the optimal solu-
tion is implemented, we compensate for hysteresis in the
system. Hysteresis caused by backlash often occurs in
cable-driven instruments such as endoscopes and catheters
(Reilink et al., 2013). Hysteresis can be described by a
positive or negative contact mode and a free mode. In con-
tact mode, kinematics describes the relation between pulley
angles (ψx and ψy) and RADS tip position (p), which is not
known in free mode. Further, the positive and negative con-
tact modes corresponds to the direction in which the pulleys
are engaged. Hysteresis often introduces inaccuracies in
the response of the instrument. Hence, we use a classical
approach to reduce hysteresis in the system according to

(c =
[
,ψx ,ψy

]T +
[
f(,ψx) f(,ψy)

]T
(50)

where (c is the compensated angular velocity of the pulleys
(,ψx and ,ψy) and

f(,ψ∗(k)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sign(,ψ∗(k)) (α+
∗ − α−∗ )

If sign(,ψ∗(k))
̸=
sign(,ψ∗(k−1))

0 Otherwise

is the function that represents the compensation term. In
order to limit chatter, we only apply the compensation term
if the velocity changes direction and exceeds a threshold.
Compensation is provided by hysteretic parameters (α+

∗ and
α−∗ ), which are the positive and negative contact positions,
respectively. The positive and negative contact positions
are experimentally evaluated by measuring the hysteresis
between pulley angles and corresponding tip locations.

3. Experiments
In this section, we present experiments performed to eval-
uate the MPC strategy. First, we describe the components
and layout of the experimental setup used to steer the
RADS. Subsequently, a pre-operative AHV model is pre-
sented and integrated with the MPC strategy. This is fol-
lowed by the experimental plan and results that demonstrate
the capabilities of the MPC strategy.
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Fig. 8. The experimental setup used to control the robotically
actuated delivery sheath (RADS) using a model-predictive control
strategy. 1⃝ RADS. 2⃝ Container filled with water in which the
RADS is inserted. 3⃝ Ultrasound transducer. 4⃝ Ultrasound image
with a radial cross-sectional view of the RADS. 5⃝ Motors and
corresponding electronics used to control the articulating tip of the
RADS. 6⃝ Translation along the longitudinal axis of the RADS in
order to position the tip in the two-dimensional ultrasound image
plane. The top inset shows the flexible segment (articulating tip)
of the RADS, which uses a hinged tube construction. The bottom
inset depicts a longitudinal cross-section with dimensions of the
RADS. An antagonistic configuration of a pair of tension wires
(red) is actuated by a pulley-driven system. Each pair of tension
wires (total of two pairs) is guided through the flexible shaft and
through two incompressible brass tubes (yellow) to actuate a single
degree of freedom of the articulating tip.

3.1. Experimental setup and materials

The experimental setup used to evaluate the performance
of the MPC is shown in Figure 8. The RADS used in
our experiments is based on a cable-ring structure sur-
rounded by a hinged tube (DEAM Corporation, Amster-
dam, The Netherlands) (Breedveld, 2010). Two pairs of
antagonistically configured tension wires facilitate articu-
lating tip movement of the RADS in two DOFs (Vrooijink
et al., 2014). The tension wires of the RADS are driven
by an ECMax22 motor with a GP32/22 gearhead (Maxon
Motor, Sachseln, Switzerland). Further, an LX30 transla-
tional stage (Misumi Group Inc., Tokyo, Japan) is used to
translate the RADS along the longitudinal axis in order to
compensate for the tip motion in the out-of-image-plane
direction. The maximum velocity and acceleration along
the longitudinal axis are 230 mm/s and 2800 mm/s2, respec-
tively. All motors are actuated by an Elmo Whistle 2.5/60
motor controller (Elmo Motion Control Ltd, Petach-Tikva,
Israel). The RADS is inserted in a container filled with
water in order to enable ultrasound-based tip tracking. A

Siemens 18L6 transducer operating with a frequency of
16 MHz, a power level of −4 dB and a scanning depth
of 4 cm on a Siemens Acuson S2000™ultrasound system
(Siemens AG, Erlangen, Germany) is positioned at the tip
of the RADS (in the container) to obtain ultrasound images
as feedback. Note, that without any modifications to ultra-
sound image segmentation, the transthoracic echocardiog-
raphy approach used in this study could be replaced by TEE.
The ultrasound images are transferred via S-video output
(in-plane resolution of approximately 0.12 mm per pixel)
to a computer (2.80 GHz Intel® i7, 8 GB internal mem-
ory and 64-bit Windows 7) with a frame rate of 25 frames
per second. Further, this computer is used to implement and
execute in C++ the MPC strategy which provides control
signals to the motors and electronics. The MPC strategy
uses a sampling time (Ts) of 0.04 s. In order to anticipate the
beating heart motion, we integrate an AHV model within
the MPC strategy.

3.2. Experimental scenarios

A series of experiments have been conducted in order to
evaluate the tracking accuracy of the MPC strategy in an
integrated system using a reference signal described in (25).
In previous research, a model-based approach was used to
steer the RADS along a circular path using 2D ultrasound
images as feedback (Vrooijink et al., 2014). The results
of these experiments showed, while moving at 2 mm/s,
mean positioning errors of approximately 2 mm along the
x- and y-axes. In this study, we aim to improve these results
and provide novel functionalities such as compensation for
beating heart motions. Hence, we evaluate the performance
using multiple scenarios such as tracking circular paths and
AHV motions.

3.2.1. Circular path. The first set of experiments is per-
formed in order to evaluate steering of the RADS along
circular paths using the MPC strategy. Note, that no heart
valve motion modelling is considered (rAHV = 0) while the
RADS moves along the circular paths described by the ref-
erence signal (rd). The circle has a radius of 6 mm, while we
use an articulating tip velocity of 2 mm/s. First, we evaluate
a circular path without limitations on the RADS tip posi-
tion. Subsequently, we limit the tip position to a maximum
of 4 mm along the x-axis by integrating a state constraint
to the MPC strategy (similar to (40)). By restricting the
instrument motion to an allowable region, we demonstrate
the ability of the MPC strategy to avoid sensitive tissue
that could be present in surgery. These limitations can be
integrated in the MPC strategy, allowing the controller to
anticipate for the forbidden regions in order to avoid dam-
age to sensitive tissue. In Figure 9(b), the allowed area of
the RADS tip is depicted green, while the forbidden region
is red.
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Table 2. Experimental results of the robotically actuated delivery
sheath tip tracking for circular paths and aortic heart valve motions
using the model-predictive control. The mean absolute distance
error (ϵ) and position errors (ϵx and ϵy) along the x- and y-axes
are provided. Further, the standard deviation for Nr repetitions is
reported.

Case Nr ϵx ϵy ϵ

[mm] [mm] [mm]

Circle 12 0.73±0.03 0.50±0.10 0.89±0.08
Constrained circle 12 0.74±0.11 0.61±0.17 0.97±0.17
Aortic heart valve 30 1.06±0.43 1.29±0.38 1.68±0.53

3.2.2. Aortic heart valve motion tracking. The second set
of experiments is used to evaluate the novel designed MPC
strategy to steer the RADS with a priori knowledge on the
AHV motion. Although, other medical applications such as
mitral valve surgery could potentially benefit from the inte-
grated system, we demonstrate the capabilities of the MPC
strategy by tracking AHV motions in the annular plane. The
beating heart motions have been obtained by analyzing the
pre-operative 2D ultrasound images as depicted in Figure
6. We evaluate the performance of the MPC with a pri-
ori knowledge of the AHV motion described by tracking
reference (rAHV = [fx fy 0]T) obtained by (31) and (32)
and rd = 0. In order to preserve the dominant features
required for ultrasound image segmentation, we limit the
tip velocity to 20 mm/s in x- and y-axes of frame ("0) by
integrating state constraints according to (24). A RADS tip
velocity that exceeds 20 mm/s, will cause dominant features
to disappear in ultrasound images. This results in unreliable
segmentation of the RADS tip position. Further, we limit
the maximum tip deflection to 10 mm in x- and y-directions
(frame ("0)) by (23).

3.3. Experimental results

The results of the experimental scenarios are reported in
Table 2, while a single representative of each experiment
can be found in Figure 9. In order to evaluate the tip track-
ing accuracy of the RADS, the experiments were repeated
12 times for circular trajectories and 30 times for AHV
motions. The mean absolute errors (MAE) in the tracked tip
position (ϵx and ϵy) during trajectory tracking are reported.
On average, the RANSAC algorithm of the segmentation
strategy completes 819 ± 101 iterations (single CPU core
implementation). In experiments, we observe a constant
delay of approximately 200 ms in obtaining the 2D ultra-
sound images used for feedback. Further, a compensation
algorithm is used to reduce the mechanical hysteresis in the
system in order to improve tip positioning accuracy.

Experiments showed tracking of a circular trajectory with
MAE of 0.73 and 0.50 mm in the x- and y-axes, respectively.
The observed mean absolute distance error is 0.89 mm. A
slightly higher error is observed in the x-axis compared

to the y-axis. This could be attributed to the difference in
mechanical properties such as friction and backlash of the
two uncoupled pulley systems (each control a single DOF).
Nonetheless, the results show a significant improvement
in tracking performance compared to the mean position-
ing errors of approximately 2 mm along the x- and y-axes
demonstrated in previous work (Vrooijink et al., 2014). Fur-
ther, in the experiments that demonstrate the circular trajec-
tory in which the instrument motion is limited, we observe
a MAE of 0.74 and 0.61 mm in the x- and y-axes, respec-
tively. The corresponding mean absolute distance error is
0.97 mm. The observed error correspond to the results of
a circular trajectory without instrument limitations. Hence,
we demonstrate that the MPC strategy is capable of avoid-
ing areas that could potentially be sensitive tissue with-
out degrading performance. By tracking AHV motions, we
observe a MAE of 1.06 and 1.29 mm in the x- and y-axes,
respectively. The observed mean absolute distance error
is 1.68 mm. A higher error is observed in tracking AHV
motions compared with circular trajectories. This could be
explained by the fast moving AHV motions that impedes
the accuracy of tracking. Further, we observe a decrease in
tracking accuracy along the y-axis for AHV motions. The
decrease in tracking accuracy could be explained by the
instrument velocity which is limited to 20 mm/s in MPC
in order to enable RADS detection in ultrasound images.
The MPC strategy considers both the tip velocity limitation
and AHV motion in order to optimize tracking accuracy.

Further, the ultrasound measurement delay introduced in
the feedback signal of the MPC strategy is among the main
contributor to the tracking error. This measurement delay
is considered to be the combined result of pre-processing
within the ultrasound system, transferring images to the
computer using a capturing device and instrument segmen-
tation. However, it cannot be ruled out that tracking accu-
racy is affected by (non-)linear friction, tendon elongation
or crosstalk between the two tendon pairs (i.e. controlling
one tendon pair influences the other tendon pair). Note,
that we evaluate our system using pre-operative patient data
which leads to simplifications with respect to heart-rate
variability. However, these simplifications could potentially
be eliminated by administering medicine that reduce the
heart rate and apply over-pacing to effectively control the
patient’s heart rate in a predictable manner. This improves
the ability to anticipate the AHV motion. Nonetheless, our
method demonstrates tracking of AHV motions based on
pre-operative ultrasound patient data. This indicates that
our system, with further development, could provide car-
diac motion compensation to a wide class of cardiovascular
applications performed without a heart–lung machine.

4. Conclusions and future work
In this study, we present and evaluate a novel RADS capa-
ble of autonomously and accurately compensating for AHV
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Fig. 9. Representative experimental model-predictive control results of the articulating tip of the robotically actuated delivery sheath
during tracking of (a) circular reference path (rd) and (rAHV = 0), (b) constrained circular reference path (rd) and (rAHV = 0) and
(c) and (d) aortic heart valve (AHV) motion trajectories according to rAHV = [fx fy 0]T and rd = 0. The red line trajectory represents
the reference path (r) described in (25), while the blue line represents the actual path (y= [px py 0]T) followed by the articulating tip.

motions by using an MPC strategy. We develop and incor-
porate kinematic models of the RADS within the MPC
strategy. In order to accurately evaluate the RADS tip posi-
tion, we use a clinically available 2D ultrasound transducer
which is orientated perpendicular to the tip of the RADS.
An online segmentation algorithm is developed in order to
provide feedback of the RADS tip position for the MPC
strategy. Pre-operative ultrasound images of a patient are
used to evaluate the AHV motion. Further, mechanical hys-
teresis is addressed by a compensation algorithm in order
to improve the tip positioning accuracy. The novel inte-
grated system is capable of controlling the articulating tip
of the RADS in order to compensate for AHV motions.
In experiments, we demonstrate evidence that the RADS
tracks the AHV motions with a mean absolute distance
error for AHV motions of 1.68 mm. Hence, we potentially
improve and enable new applications in cardiovascular
surgery performed without a heart–lung machine.

In future work, we intend to address accuracy problems
introduced by measurement delay and instrument friction.
Electro-magnetic instrument tip tracking will be integrated
in order to reduce feedback delay and to improve robust-
ness in control. The prototype device used in this study
will be replaced by a flexible steerable catheter in order
to enable applications in ablation, aortic and mitral valve
surgery. Further, we plan to combine instrument and intra-
operative AHV motion segmentation of 2D and 3D ultra-
sound images in order to improve the tracking performance
in a clinically relevant scenario. We continuously aim to
improve the robustness and accuracy of the integrated sys-
tem. Nonetheless, the presented framework for modelling,
imaging and control is applicable to a range of continuum-
style robots and catheters. Our current study evaluates com-
pensation of AHV motions using an MPC strategy. Hence,
we have demonstrated the feasibility and potential for steer-
able catheters to compensate for cardiac motions in car-
diovascular interventions such as aortic and mitral valve
surgery.
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Appendix A: Index to Multimedia Extension
Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Type Description

1 Video This video demonstrates some
representative results of track-
ing circular paths and aortic
heart valve motions using model-
predictive control.

Appendix B: Nomenclature

k Discrete time variable [-]
ψ∗ Pulley angle, where ∗ ∈ {x, y} [rad]
δ∗ Tendon displacement, where ∗ ∈ {x, y} [m]
κ Arc curvature [ 1

m ]
r Arc radius [m]
φ Arc plane angle [rad]

ℓ Arc length [m]
θ Arc bend angle [rad]
lt Rigid link length [m]
rp Pulley radius [m]
ti Tension wires, where i = 1, . . . , 4 [–]
li Tendon lengths, where i = 1, . . . , 4 [m]
φi Individual tendon angle, where i =

1, . . . , 4
[m]

db Distance between backbone and ten-
dons

[m]

'∗ Coordinate system, where ∗ ∈
{0, i, t, u}

[–]

H0
i Homogeneous transformation

matrix expressing the intermedi-
ate frame in the reference frame
(H0

i ∈ SE3)

[–]

Hi
t Homogeneous transformation

matrix expressing the tip frame in
the intermediate frame (Hi

t ∈ SE3)

[–]

H0
t Homogeneous transformation

matrix expressing the tip frame in
the reference frame (H0

t ∈ SE3)

[–]

Li
t Rigid link section by a translation

along the z-axis of the intermediate
frame (Li

t ∈ R3)

[–]

r, r0
t Referenced tip position expressed in

the reference frame (r, r0
t ∈ R3)

[–]

r∗ Referenced tip position, where ∗ ∈
{x, y, z}

[m]

ot Origin of the articulating tip frame
(ot ∈ R3)

[–]

p, p0
t Tip position expressed in the refer-

ence frame (p, p0
t ∈ R3)

[–]

p∗ Tip position, where ∗ ∈ {x, y, z} [m]
u Arc parameters, u ∈ R2 [–]
G Rate of convergence feedback gain [–]
e Estimation error [m]
ϵth Error tolerance [m]
Ac Set of detected edge points [–]
xc Edge point obtained from Canny

edge detector (xc ∈ R2)
[–]

H3 Set of three randomly selected edge
points

[–]

mc Algebraic circle model parameters [–]
n Number of random sampling con-

sensus iterations
[–]

Jc Random sampling consensus cost [–]
Sc Random sampling consensus set

(inliers)
[–]

R2 Data fitting discrepancy [–]
e Zero mean white noise (e, ê ∈ R2) [–]
v Control input signal (v ∈ R2) [–]
y MPC tip position (y ∈ R3) [–]
pmin, pmax Inequality constraint lower

and upper position bound
(pmin, pmax ∈ R3)

[m]
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ṗmin, ṗmax Inequality constraint lower
and upper velocity bound
(ṗmin, ṗmax ∈ R3)

[m/s ]

Ts Sampling time [s]
a Variations in arc parameters (a ∈

R2)
[–]

rAHV Aortic heart valve annulus motion
reference (rAHV ∈ R3)

[–]

rd Desired tip position (rd ∈ R3) [–]
J Generalized predictive control

cost
[–]

N Prediction horizon [–]
Nm Minimum cost horizon [–]
Nc Control horizon [–]
λ Control input weighting matrix

(λ ∈ R2×2)
[–]

z Cost signal (z ∈ R3) [–]
" Diagonal selection matrix (" ∈

R5×5)
[–]

f∗ AHV reference position, where
∗ ∈ {x, y}

[m]

a∗, b∗ The Fourier series coefficients [–]
ω, ω∗ The Fourier series frequencies,

where ∗ ∈ {x, y}
[m]

Sr Sample rate Fourier series [ 1
s ]

Hr Heart rate [bpm]
err The tip position error (err ∈ R3) [–]
x The MPC state variable (x ∈ R5) [–]
w The MPC external signal (w ∈

R6)
[–]

d The MPC disturbance (w ∈ R3) [–]
A, B, C, D Multiple-input and multiple-

output state space realization of
the CSPCP

[–]

υ Equality constraint signal (υ ∈
R2)

[–]

ϒ Equality constraint (ϒ ∈ R2) [–]
χ , χ1, χ2 Inequality constraint signals

(χ1, χ2 ∈ R5, χ ∈ R10)
[–]

X, X1, X2 Inequality constraints (X1, X2 ∈
R5, X ∈ R10)

[–]

&ccc Compensated angular pulley
velocity (&ccc ∈ R2)

[–]

*ψ∗ Angular pulley velocity, where
∗ ∈ {x, y}

[rad/s]

α+
∗ Positive contact positions, where

∗ ∈ {x, y}
[m]

α−∗ Negative contact positions, where
∗ ∈ {x, y}

[m]

ϵ∗ Mean absolute error in the tracked
tip position, where ∗ ∈ {x, y}

[m]

ϵ Mean absolute tip distance error [m]
Nr Number of experimental repeti-

tions
[–]

Appendix C: Concept of prediction
Based on the model description (34), the concept of predic-
tion can be introduced according to

s̃p,(k) = C̃px(k) + D̃p1e(k) + D̃p2w̃(k) + D̃p3ṽ(k) (51)

where any signal sp,(k) as presented in (34) can be used to
formulate predictions at each time instant (k), that considers
all signals over horizon N . The prediction of signal sp,(k) is
given by signal vector s̃p,(k) according to

s̃p,(k) =

⎡

⎢⎢⎢⎣

ŝp,(k|k)

ŝp,(k+1|k)
...

ŝp,(k+N−1|k)

⎤

⎥⎥⎥⎦
(52)

The prediction presented in (51) is based on future control
and reference signals described by signal vectors

ṽ(k) =

⎡

⎢⎢⎢⎣

v̂(k|k)

v̂(k+1|k)
...

v̂(k+N−1|k)

⎤

⎥⎥⎥⎦
and w̃(k) =

⎡

⎢⎢⎢⎣

ŵ(k|k)

ŵ(k+1|k)
...

ŵ(k+N−1|k)

⎤

⎥⎥⎥⎦
(53)

respectively. Note that w̃(k) contains a priori knowledge of
the AHV position. We can obtain matrices C̃p, D̃p1, D̃p2 and
D̃p3 by using successive substitution of the state equation
(33) into (34) which yields

C̃p =

⎡

⎢⎢⎢⎢⎢⎣

Cp

CpA
CpA2

...
CpAN−1

⎤

⎥⎥⎥⎥⎥⎦
, D̃p1 =

⎡

⎢⎢⎢⎢⎢⎣

Dp1

CpB1

CpAB1
...

CpAN−2B1

⎤

⎥⎥⎥⎥⎥⎦
(54)

and

D̃pq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Dpq 0 · · · 0 0

CpBq Dpq
. . .

...
...

CpABq CpBq
. . . 0 0

...
. . . Dpq 0

CpAN−2Bq · · · CpBq Dpq

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(55)

where subscript q = 2, 3 is used to indicate the corre-
sponding matrix to complete the prediction. The concept
of prediction is used to provide a prediction model of the
CSPCP signals described in (34), (35) and (36).


