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Abstract— The presence of force feedback in medical instru-

ments has been proven to reduce tissue damage. In order to

provide force feedback, information about the interaction forces

between the instrument and the environment must be known.

Direct measurement of these forces by commercial sensors is not

feasible due to space limitations. Thus, in this study we propose

to estimate the interaction forces using strain measurements

from Fiber Bragg Grating (FBG) sensors. These measurements

can also be used for shape sensing and as a result both force

and shape can be sensed simultaneously. For force sensing

two models are proposed and compared. The first is based

on a Rigid Link approximation, while the second uses the

Cosserat rod theory. The models are validated experimentally

using a tendon-driven continuum manipulator that is subjected

to forces at the tip. The force estimates from the models are

compared to the measurements from a commercial force sensor.

Mean absolute errors of 11.2 mN (6.9%) and 15.9 mN (8.3%)

are observed for the Rigid Link model and Cosserat model,

respectively.

I. INTRODUCTION

Many of the instruments currently used in medical pro-
cedures have a mechanical design similar to continuum
manipulators [1]. Examples of such instruments are colono-
scopes, endoscopes and other flexible catheters for pro-
cedures such as cardiac surgery and bronchoscopy. Some
continuum manipulators have been developed specifically for
medical applications. These include multi-backbone system
for throat surgery, concentric tube active cannula for cardiac
surgery and steerable probe for neurosurgery [2]–[4]. These
manipulators can be easily miniaturized and they provide
a larger workspace compared to rigid tools, thus they are
ideal for minimally invasive procedures [1]. However, the
disadvantage of using such manipulators is the loss of force
information at the tip. Having accurate knowledge about
the interaction forces between the manipulator and tissue is
important for the outcome of the procedure [5]. It can be used
to provide surgeons with force feedback, thereby enabling
more precise manipulation of the tissue. Sensing forces
accurately at the manipulator tip is challenging because the
available space does not allow integration of commercially-
available force sensors. Considering further miniaturization
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Fig. 1. Minimally invasive neurosurgery is an example of a procedure
that can benefit from instruments like continuum manipulators that provide
a larger workspace compared to rigid manipulators. Fiber Bragg Grating
(FBG) sensors can be used to acquire information about the interaction
forces and the shape of the instrument.

of manipulator size in the future, there is a need for alterna-
tive methods for sensing interaction forces on manipulators
for medical applications.

A number of studies have proposed methods to identify the
interaction forces on manipulators without measuring them
directly. For example, Xu and Simaan presented a method
that used the deflected shape of the manipulator shaft to
estimate the force at the tip [6], [7]. Rucker and Webster
estimated the tip force by using pose measurements and a
kinematic static model of the continuum manipulator with
measurement uncertainty [8]. They described the tip force
as a state of the system, and an extended Kalman filter was
used to estimate the system states from the noisy end-effector
pose measurements. Back et al. estimated the tip force using
shape of the catheter and the Cosserat rod model [9]. Lastly,
Khosnam et al. used the curvature of a catheter, determined
from camera images, in combination with a kinematic model
to estimate the tip contact force [10].

Another approach to force estimation is to sense the strains
on the manipulator directly using sensors. The benefit of
using an independent sensor for force is that the robustness of
the system to sensor failure will improve due to redundancy
and in theory direct measurement of strain will lead to
more accurate force estimation. A suitable sensor for medical
applications is the Fiber Bragg Grating sensor because it
is small in size, sterilizable, biocompatible, highly sensitive
to strain, and compatible with medical imaging modali-
ties [11]. The FBG sensors can be embedded in instruments
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Fig. 2. Shape reconstruction using Fiber Bragg Grating (FBG). (a) The
manipulator curvature () and bending direction (') are calculated using
strain measurements from a set of three co-located FBG sensors on fibers
a, b, and c. Distance from the center of the manipulator to the center of
fibers b and c is r

b

and r

c

, respectively. Angle from x-axis to r

b

is ↵

b

and
the perpendicular distance between the neutral bending axis and center of
fiber c is �

c

. (b) The curvature is calculated from the strain measured at
discrete locations (s

k

) that have co-located FBG sensors.
for angioplasty, gastric endoluminal surgery or minimally
invasive neurosurgery in order to measure interaction forces
(Figure 1). These sensors have been used near the tip of
medical instruments to measure only axial forces [12]–[14].
They have also been helically wrapped around the shaft
of a manipulator in order to determine the wrench at the
tip [15]. However, this approach can not be applied to all
manipulators because of mechanical constraints, an example
is the manipulator in Burrows et al., thus another sensor
placement configuration is required [16].

In this paper, the contact forces at the tip of a continuum
manipulator are estimated using strain measurements from
FBG sensors placed along the arc length. This placement
configuration can also be used for shape sensing, thus en-
abling simultaneous acquisition of force and shape informa-
tion. Previously, Roesthuis et al. demonstrated the feasibility
of sensing forces from FBG sensors by presenting the
correlation between measurements from FBG sensor and a
commercial force sensor [17]. This paper extends that work -
force at the tip of a continuum manipulator is estimated
using the FBG sensor measurements in conjunction with a
model of the manipulator. In this study, two different models,
Rigid Link and Cosserat, are applied and forces estimated
from each of these models are compared to the ground truth
measurement from a force sensor. Both of the models give
force estimates based on the shape information that can be
derived from the FBG sensor measurements as described
in Section II. The Rigid Link model and the Cosserat
model are presented in Sections III and IV, respectively. The
experimental results and comparison between the two models
are presented in Section V. Lastly Section VI concludes the
paper and provides directions for future work. Thus, this
paper validates force sensing using FBG sensors and presents
a comparison of the two models. This combination of work
has not been presented in the literature to the best knowledge
of the authors.

II. SHAPE RECONSTRUCTION

The FBG sensors have been used for reconstruction of
needle shape during insertion into soft-tissue phantoms,

and for shape reconstruction of a tendon-driven continuum
manipulator in free-space [18], [19]. Strain measurements
from at least 3 co-located FBG sensors are required in order
to calculate the magnitude (k  k) and direction (') of the
curvature vector at a specific location (s

k

, k 2 Z+) along
the manipulator shaft (Figure 2). Each FBG sensor measures
a strain (✏⇤), where ⇤ 2 (a, b, c), that is given by

✏⇤(sk) =k (s
k

) k �⇤(sk) + ✏0,

=k (s
k

) k r⇤cos('(sk)� ↵⇤) + ✏0, (1)

where �⇤ is the distance from the fiber center to the neutral
bending axis, r⇤ is the distance of the fiber center to the
center of the manipulator, ↵⇤ is the angle of the fiber with
respect to x-axis at the manipulator cross-section, (s

k

) 2
R2 is the curvature vector and '(s

k

) 2 R is the direction
of bending (Figure 2). Each sensor is assumed to have a
common offset (✏0) in the measured strain, that can be caused
by a change in the environmental temperature or an axial
force along the manipulator shaft. The three unknowns (i.e.,
k  k, ' and ✏0) are solved from the strains measured by
the three co-located FBG sensors. The curvature magnitude
(k (s

k

) k) and the bending direction ('(s
k

)) can be used to
define the curvature vector ((s

k

)) at each sensor location:

(s
k
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�
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Interpolation of the curvature components (
x

(s
k

) , 
y

(s
k

))
between each of the FBG sensor locations is performed in
order to obtain the curvature vector ((s)) at every location
along the manipulator shaft (Figure 2). The bending direction
('(s)) along the shaft, is equal to the direction of the curva-
ture vector. The curvature and the bending direction defines
the orientation, which can be used to evaluate the tangent
vector (t(s)) of the curve and t(s) = dr

ds

, where r(s) 2 R3

is the position vector of the curve. Hence, manipulator shape
can be reconstructed by numerical integration of the tangent
vector. The curvature and direction of bending information
will be required by both the Rigid Link and Cosserat model.

III. RIGID LINK MODEL
In rigid link robots contact forces/torques at the end-

effector are estimated using joint forces/torques [20] [21].
The continuum manipulator is modeled as a rigid link robot
with revolute joints [22]. The interaction forces at the tip are
determined based on the joint torques in the model.
A. Kinematics

The continuous shape of a manipulator is approximated
by a serial chain of n rigid links, connected by n revolute
joints (Figure 3). This method can be used to describe non-
constant curvature bending, that occur in flexible instruments
subjected to external loading. Link orientation is described
by three consecutive rotations, thus results in the following
rotation matrix of the i-th link with respect to the i� 1 link:

Ri�1
i

= R
z

(q
',i

)R
y

(q
✓,i

)R
z

(�q
',i

), (3)

where R
z

2 SO(3) and R
y

2 SO(3) are rotation ma-
trices about the z-axis and y-axis of the rotated frame,
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respectively (Figure 3). The two joint angles that determine
the rotations in (3) are related to the direction of bending
(q

',i

2 R) and the amount of bending (q
✓,i

2 R). In order
to describe the manipulator elasticity using the Rigid Link
model, each joint is assigned a flexural stiffness that is related
to the bending stiffness. In the next sub-section, manipulator
statics is used to relate manipulator shape to the manipulator
tip wrenches which is the result from actuation and from
external loading.

B. Statics

In order to calculate manipulator configuration, the joint
angles of the Rigid Link model need to be related to the
loads that act on the manipulator. In static equilibrium, the
loads that act on the manipulator are balanced by the torques
generated in the joints. The joint torques are not generated
by motors, but are the result of manipulator bending. The
joints are elastic, such that a joint torque (⌧

i

) at the i-th joint
is given by the following relation:

⌧
i

= K
✓,i

q
✓,i

, (4)

where, K
✓,i

is the flexural stiffness, q
✓,i

is the amount of
bending (Section II), and ⌧

i

2 R is the magnitude of the
bending moment at the location of the joint. The bending
moment

�
m(s

i

) 2 R3
�

at the i-th joint is the sum of the
contribution of an actuation moment and an external force
(Figure 3):

m(s
i

) = m
ac

+ r
F

(s
i

)⇥ F
ext

. (5)

where, m
ac

2 R3 is the actuation moment, F
ext

2 R3

is the external force and r
F

(s
i

) 2 R3 is the vector from
the external force contact point to joint i. For a continuum
manipulator with n rigid links connected by n joints, the
joint torque vector (⌧ 2 Rn) can be written as

⌧ = ⌧
ac

+ ⌧
ext

, (6)

where ⌧
ac

2 Rn and ⌧
ext

2 Rn are the joint torques
due to (internal) actuation and (unknown) external forces,
respectively. We assume that actuation generates a pure
moment at the end of the manipulator (Figure 3). The joint
torques due to the actuation moment ( m

ac

2 R3 ) can be
calculated using

⌧
ac

= JT

m


03

m
ac

�
= JT

m

w
ac

, (7)

where J
m

2 R6⇥n is the manipulator Jacobian, 03 =
[0 0 0]T , and w

ac

2 R6 denotes the actuation wrench. The
contribution to the joint torque vector in (6) is given by

⌧
ext

= JT

cp


F

ext

03

�
= JT

cp

w
ext

, (8)

where J
cp

2 R6⇥n is the contact point Jacobian. The above
formulation will be used in combination with shape informa-
tion (q

',i

and q
✓,i

) derived from FBG sensor measurements.
The next section presents the rigid link model fitting based
on the shape information.

z y
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Fig. 3. Rigid Link Model: The continuum manipulator is illustrated as
bold gray curve and its shape is approximated by a serial chain of seven
rigid links that are connected by revolute joints. This description enables
calculation of manipulator shape under a combination of internal actuation
moments (m

ac

) and external force (F
ext

). J
m

and J
cp

are the manipulator
and contact point Jacobians, respectively. The amount of bending at joint i
is given by q✓,i and the direction of bending is given by q',i. The vector
from the contact point to joint i is rF (s

i

).

C. Rigid Link Model Fitting

The model consists of n joints and n rigid links, each joint
has two degrees of freedom, one related to the bending and
the other related to the direction of bending. The joint angles
can be determined from the curvature vector

�
(s) 2 R2

�

and bending direction ('(s) 2 R), which are calculated from
FBG sensors (Section II). The joint angles that define the
configuration of the Rigid Link model can be related to the
curvature vector. Integrating the curvature magnitude gives
the slope (✓(s) 2 R) along the shaft:

✓(s) =

Z
s

0
k(s)kds. (9)

The joint angle related to manipulator bending can be
calculated from manipulator slope as

q
✓,i

=
1

2
�✓

i�1 +
1

2
�✓

i

, (10)

where �✓
i

is the change in manipulator slope between two
consecutive joints:

�✓
i

= ✓(s
i+1)� ✓(s

i

). (11)
The joint angle related to the bending direction equals
the curvature direction at the location of the ith joint
(q

',i

= '(s
i

)). Manipulator configuration is now fully de-
fined given the curvature vector from the FBG sensor mea-
surements. This allows the derivation of the manipulator
Jacobian, which is used in the next section to estimate the
unknown external forces.

D. Contact Force Estimation

The joint torque due to the unknown external load is given
by ⌧

ext

= ⌧ � ⌧
ac

, where ⌧ is determined using (4) and
⌧
ac

is from (7). Thus, combining (4) and (7)

⌧
ext

=

2

64
⌧1
...
⌧
n

3

75 =

2

64
K

✓,1q✓,1 � ⌧
ac,1

...
K

✓,n

q
✓,n

� ⌧
ac,n

3

75 . (12)

The contact points are assumed to be known for all (un-
known) external loads, such that the Jacobian (J

cp

) for the
contact point can be determined using the forward kinematics
of the Rigid Link model. In the case of a single external
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load (F
ext

) at the manipulator tip, the contribution to a joint
torque vector from the load is given by

⌧
ext

= JT

cp


F

ext

03

�
, (13)

where, J
cp

2 R6⇥n and F
ext

2 R3. For multiple external
loads J

cp

2 R6m⇥n, where m is the number of external
loads. Since the manipulator Jacobian is often non-square,
the external force is estimated using the pseudoinverse of
the Jacobian 

F
ext

03

�
= (JT

cp

)†⌧
ext

, (14)

where (.)† denotes the Moore-Penrose pseudoinverse, and
⌧
ext

is calculated from (12). Thus, the external force (F
ext

)
is estimated using the Rigid Link model. The next section
presents the Cosserat model that can also be utilized to
estimate the external force.

IV. COSSERAT MODEL

The Cosserat rod theory presents an geometrically exact
model for a flexible rod, this is the motivation for the
Cosserat model. The model presented in the paper is ap-
plicable to manipulators that have small cross section area
compared to their length and are not subjected to torsion
or axial forces. The force at the tip of the continuum
manipulator can be estimated based on the shape information
calculated from the strain measurements of the FBG sensors.
A. Kinematics

The manipulator kinematics is based on a continuous
transformation that is a function of the arc length [23]. In
general, the transformation is dependent on the strains and
shear stress acting on the manipulator, however given the
assumption that the manipulator is not subjected to torsion
and axial forces, the kinematics can be simplified such that
the position

�
r(s) 2 R3

�
as a function of the arc length

(s 2 R) can be determined by solving the following:
r0(s) = R(s)e3, (15)
R0(s) = R(s)bu(s), (16)

where (0) is the derivative with respect to s, R(s) 2 SO(3) is
the rotation matrix and it represents the change in curvature
with respect to the arc length, e3 = [0 0 1]T and bu(s) 2
so(3) represents a skew symmetric matrix based on the
components of the curvature vector

�
u(s) 2 R3

�
that is

in local coordinates. u(s) = [
x

(s) 
y

(s) 0]T , the last
component is zero due to the assumption of no torsion.
Frenet-Serret frames are used for the local coordinates; the
z
l

-axis is tangent to the center curve of the manipulator, the
x
l

-axis is aligned with the inner normal and the y
l

-axis is
aligned with the binormal vector (Figure 4).

B. Contact force estimation

The applied force at the tip of the manipulator is calculated
using the constitutive relation and equations for equilibrium.
The linear constitutive relation is as follows:

m(s) = R(s)K(s)�u(s), (17)

y
x

z
s

x
l

z
ly

l

F
ext

manipulator without
external force

x
l

z
ly

l

Fig. 4. Cosserat Model: Continuous Frenet-Serret frames are assigned
along the centerline curve of the manipulator. The global axis is at the base
and the local axis is along the arc length of the manipulator.

where �u(s) = u⇤(s)�u(s) , u⇤(s) 2 R3 is the curvature
vector when no external force is applied and and u(s) 2 R3

is the curvature vector after the external force is applied on
the manipulator, both are in local coordinates. K(s) 2 R3⇥3

is the stiffness matrix. The equations for equilibrium are:

n(s) =

Z
L

s

f(�)d�, (18)

m(s) =

Z
L

s

[r(�))⇥ f(�)]d� � r(s)⇥ n(s), (19)

where f(�) 2 R3 is the external force at the tip of the
manipulator and � 2 R is a dummy integral variable. The
force is modeled as a product of the unknown force F

ext

2
R3 and a shifted Dirac delta function, f(�) = F

ext

�(��L),
where L is the arc length at which the force is applied.
Substituting (17) and (18) into (19) leads to the estimate
of the external force F

ext

that is given below:

F
ext

= (c�r(s))†R(s)K(s)�u(s), (20)

where (.)† is the Moore-Penrose pseudoinverse and

�r(s) = r(L)� r(s), (21)

c�r(s) 2 so(3) is a skew symmetric matrix based on the
vector �r(s) 2 R3 from (21). The rotation matrix R(s) in
(20) is calculated from (16). Thus, (20) gives the external
force based on any point on the arc length and the evaluated
parameters on the right hand side of the equation.

V. EXPERIMENTS AND RESULTS

This section presents the experiments used to validate the
Rigid Link and Cosserat model, the experimental setup, the
calibration procedures and results.

A. Experimental Setup

The experimental setup consists of a continuum manipu-
lator that is actuated by four tendons (DSM Dyneema B.V.,
Geleen, The Netherlands), shown in Figure 5(a). The back-
bone (Figure 5(b)) of the manipulator is made from a flexible
Polyether ether ketone (PEEK) and it has grooves in which
three optical fibers of diameter 250 µm are glued. Each fiber
has 8 FBG sensors and the fibers are positioned such that
corresponding FBG sensors are co-located (Figure 2). Thus,
the backbone has 8 sets of co-located FBG sensors as shown
in Figure 5(b). The setup has a linear stage to move the
continuum manipulator along the global z-axis, a Deminsys
Python FBG interrogator (Technobis group, Alkmaar, The
Netherlands) and a Nano-43 6-DOF force/torque sensor (ATI
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Fig. 5. The tendon-driven manipulator in the experiment setup is 210 mm long and is embedded with Fiber Bragg Grating (FBG) sensors. External tip
force (F

ext

) is applied using a tether that is connected to an ATI Nano-43 force-torque (FT) sensor, which measures the external tip force. (a) Tendon
guides (diameter 10 mm) are glued at a spacing of 10 mm along the backbone made from silicon tubing. Four tendons are routed through 20 tendon
guides, and are attached to the manipulator tip. (b) The tendon-driven manipulator has a Polyether ether ketone (PEEK) rod embedded in it. Three fibers
are glued into grooves along the length of the rod. Each fiber has eight FBG sensors, labeled 1�- 8�. (c) Calibration of the FBG sensors is performed by
placing the PEEK rod in different circular slots of known curvatures.

Industrial Automation, Apex, USA). The actuation motors
for the manipulator are Maxon EC-max 283840 (Maxon
motor AG, Sachseln, Switzerland) and they are driven by
Elmo controllers (Elmo Motion Control Ltd., Petach-Tikva,
Israel). Controller Area Network (CAN) is used to provide
communication with the motor drivers and Ethernet is used
for communication with the interrogator and the force sensor.

B. Calibration

In order to accurately calculate curvature from the mea-
sured strains, the exact distance of the fiber from the center
of the manipulator at the location of the sensor needs to be
known. The shape sensing rod is placed in several constant
curvature slots, which are laser cut in an acrylic plate (Figure
5(c)). Each fiber is separately calibrated by aligning the fiber
with the bending direction of the rod. Using the curvature of
the slot and the measured strain, the distance (r

a

, r
b

and r
c

,
(Figure 2)) between the fiber and the center of the rod at each
sensor location is calculated. The average value for all slots
is calculated, and is used as the calibrated distance (Table
I). These values are used to calculate the curvature vectors
from the strain measurements, as described in Section II.

The flexural stiffness (K
✓,i

in (4)) required by the Rigid
Link model and the stiffness matrix (K(s) in (17)), required
by the Cosserat rod model are determined experimentally
due to unavailability of accurate material properties. Data
from 14 experiments in conjunction with lsqlin (MATLAB

TABLE I
MEAN (STANDARD DEVIATION IN BRACKETS) DISTANCES (IN µM) OF

FBG SENSORS (r
a

, r
b

AND r

c

) AFTER CALIBRATION

sensor # 1 2 3 4 5 6 7 8

r

a

672 743 767 802 774 748 696 412
(20) (9) (13) (19) (11) (9) (14) (62)

r

b

611 695 697 704 701 681 603 289
(14) (8) (10) (14) (17) (4) (13) (16)

r

c

611 672 695 722 729 683 663 413
(31) (21) (29) (18) (35) (13) (23) (53)

R2015b, The MathWorks Inc., Natick, MA) is utilized to
solve for the stiffness parameters. The remaining experiments
were used to validate the models.
C. Experiments

The Rigid Link and the Cosserat models are validated us-
ing a tendon-driven continuum manipulator (Figure 5(a)). An
external force (F

ext

) is applied to the tip of the manipulator
from three directions (↵

ft

) which are 0�, 90� and 180� with
respect to the global x-axis (Figure 5). The manipulator tip
is tethered to the force sensor and the sensor is manually
placed such that the tether is in-line with one of the three
directions. Once the sensor is placed, the tension in the
tether is increased, which results in an external force at
the manipulator tip in the ↵

ft

direction. The experiment is
repeated 10 times for each direction and the measurements
from the FBG sensors and the force sensor are collected.
Inputs to the two models are the measurements from the
FBG sensors and the output is the tip force estimate. In the
next sub-section, the force sensor measurement is compared
to the force estimate from both models.

D. Results

The magnitude of the force from the sensor and the
models are compared for all experiments. The plot of the
force measured and the force estimated from a representative
experiment is presented in Figure 6. It shows that both
models can track the change in applied force. The mean
error (e) and the mean relative error (re) as defined in (22)
and (23) are reported in Table II.

e(t) =| (k F
sen

(t) k � k F
mdl

(t) k) |, (22)

re(t) =
e(t)

k F
sen

(t) k s.t k F
sen

(t) k> 0, (23)

where t 2 R represents time, F
sen

(t) 2 R3 is the force
measurement from the sensor and F

mdl

(t) 2 R3 is the force
estimate from the models.
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Fig. 6. Representative plot from an experiment where the tip force (F
ext

)
is applied in the ↵

ft

= 180� direction. The output from the models is
compared to the force sensor measurement (ground truth).

The errors are reported for all the experiments and for
experiments with the same direction of applied force (↵

ft

).
This approach aids in observing the behavior of the models in
relation to the direction of the applied force. The results show
that both models have similar performances and that force
in the x-z plane are better estimated. On average, the Rigid
Link model has a smaller error compared to the Cosserat
model and it is computationally less complex.

TABLE II
MODEL COMPARISON: MEAN ERROR (e) WITH STANDARD DEVIATION

IN BRACKETS AND MEAN RELATIVE ERROR (re) FOR EXPERIMENTS

WITH APPLIED FORCE IN ↵

ft

DIRECTION AND FOR ALL EXPERIMENTS

↵ft 0� 90� 180� All

Rigid
Link

e (mN) 5.6 (6.0) 19.7 (20.8) 6.5 (7.1) 11.2 (15.3)
re (%) 6.9 6.1 6.9 6.9

Cosserat e (mN) 8.2 (9.6) 29.4 (31.9) 7.6 (7.1) 15.9 (23.1)
re (%) 6.2 11 7.5 8.3

VI. CONCLUSIONS
This paper provides a framework for the FBG sensors that

can be utilized for simultaneous shape and force sensing
in continuum manipulators. In addition, two models for
force sensing are presented and validated on a tendon driven
continuum manipulator. The results show that the Rigid Link
and Cosserat models can estimate the applied tip forces
with an error of 11.2 mN (6.9%) and 15.9 mN (8.3%),
respectively. For future work, the wrenches along the shaft
of the manipulator and the axial force will be included in the
models. The estimated forces could be used for closed loop
force control coupled with other clinical imaging modalities
for accurate manipulation.
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