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Abstract— Minimally invasive surgery involves using flexi-
ble medical instruments such as endoscopes and catheters.
Magnetically actuated catheters can provide improved steering
precision over conventional catheters. However, besides the ac-
tuation method, an accurate tip position is required for precise
control of the medical instruments. In this study, the tip position
obtained from transverse 2D ultrasound images and multicore
optical shape sensors are combined using a robust sensor fusion
algorithm. The tip position is tracked in the ultrasound images
using a template-based tracker and a convolutional neural
network based tracker, respectively. Experimental results for
a rhombus path are presented, where data obtained from both
tracking sources are fused using Luenberger and Kalman state
estimators. The mean and standard deviation of the Euclidean
error for the Luenberger observer is 0.2± 0.11 [mm] whereas
for the Kalman filter it is 0.18± 0.13 [mm], respectively.

I. INTRODUCTION

Flexible medical instruments such as endoscopes, catheters
and needles constitute an important set of tools used in
minimally invasive surgery (MIS). The integration of robotic
navigation with MIS is becoming increasingly popular due
to the advances in sensing and actuation technologies [1].
Remote actuation of flexible catheters has been investigated
using the conventional displacement tendons [2] and recently
using external magnetic fields [3], [4]. Magnetic actuation is
more favorable compared to tendons since it does not suffer
from friction and hysteresis (Fig. 1).

Besides the actuation method, acquiring an accurate in-
strument tip pose is crucial for the success of robotically-
guided MIS procedures, since the catheter tip is the end-
effector. The tip pose is often acquired using medical imaging
modalities such as ultrasound (US), fluoroscopy, computed
tomography (CT) and magnetic resonance imaging (MRI).
Among these modalities, US has the advantage of being
easily accessible, safe to operate and the possibility to image
using a hand-held probe. Further, ultrasound provides high
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Fig. 1: The magnetically-actuated flexible catheter setup: The
magnetic field is generated by two pairs of Helmholtz coils.
The flexible catheter has a stack of permanent magnets at
its tip which are steered by the coils. The catheter tip is
detected using 2D ultrasound images. The shape and tip pose
of the catheter are also obtained using multi-core Fiber Bragg
Grating sensors.

acquisition rates, allowing sufficient feedback to allow for
closed-loop control. Therefore, a two-dimensional (2D) US
probe is used in this work to acquire transverse images of the
catheter tip. Nonetheless, acquiring the tip pose using solely
the US images is not sufficient. This is due to the fact the
visual tracking methods used to estimate the tip pose from
the acquired US images are prone to failure. The common
reasons for this failure are the low signal-to-noise ratio and
an excessive number of image artifacts in practice.

Besides image-based tracking, catheter poses can also be
retrieved by shape sensing techniques to measure the tip pose
[5], with common approaches such as fiber-optic-sensor-
based and electromagnetic-tracking-based (EM) methods.
Among the two methods, EM tracking is very challenging to
be used in conjunction with magnetically-actuated catheters.
Hence, Fiber Bragg Grating (FBG) sensors, a fiber-optic type
of sensor, are used in this work. FBG sensors have been
used for various purposes for catheters in medical robotics
research [6]. Arkwright et al. investigated the measurement
of the muscular activity in the gastrointestinal tract using
diagnostic catheters with FBG’s [7]. Xu et al. designed a
temperature-insensitive contact force sensor for bi-directional
catheters using an FBG pair [8]. Shi et al. presented a
survey on the state-of-the art of shape sensing techniques for
continuum robots used in minimally invasive surgery [5].

In the aforementioned studies, single core optical fibers
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are used to reconstruct the 3D shape of the catheters.
Recently, Moore et al. have proposed using multi-core optical
fibers [9]. They investigated reconstructing the shape of a
multi-core optical fiber with Fiber Bragg Grating sensors
by numerically solving the Frenet-Serret equations. Multi-
core optical fibers have advantages over single-core optical
fibers. For instance, the multi-core optical fibers occupy
less space compared to a combination of multiple single
core fibers. Further, the FBG sensors are easier to align
on multi-core optical fibers. To the best of the authors’
knowledge, multi-core optical fibers have not been used for
shape reconstruction of flexible medical instruments. This
study investigates the shape reconstruction of magnetically-
actuated flexible catheters using multi-core FBGs.

The measurements obtained from multi-core FBGs can be
a remedy to the aforementioned possible failure of visual
tracking using US images. This is achieved by fusing the data
from multi-core FBGs and US images, thereby increasing
the success rate of visual tracking. In this study, sensor
fusion using state estimators is investigated. The estimation
performance of two different methods, namely a high gain
Luenberger observer and Kalman filter are compared. A
simple model with a suitable disturbance term is used in
the design of the state estimators. To the best of the authors’
knowledge, such an observer-based fusion algorithm has not
been used in medical robotics applications.

The presented tracking and sensor fusion algorithm could
potentially be used in clinical minimally invasive procedures
such as transfemoral aortic valve implantation, atrial fibril-
lation, and angioplasty. The tip pose estimation accuracy
achieved with this method can reduce the duration of the
aforementioned surgical procedures and increase their safety.

The rest of the work is organized as follows: Section II
describes the shape sensing using multi-core FBGs. This is
followed by the tracking algorithms for US images in Section
III. The sensor fusion algorithm is introduced in Section
IV. Section V reports the results of the experiments. The
conclusions are drawn in Section VI and directions for future
work are given.

II. SHAPE SENSING USING MULTICORE FIBER
BRAGG GRATING SENSORS

This section describes the procedure to reconstruct the 3D
shape of the magnetic catheter using sets of four FBG sensors
placed along the length of the catheter [10]. The optical
fiber used in this study contains four cores, where one of
the cores is placed in the center axis of the fiber. The FBG
sensors etched on the three cores placed around the center are
used to measure the strains whereas the center core can be
used for the purpose of temperature compensation. An FBG
periodically modulates the refractive index in each core of
the fiber. It reflects the light at a specific wavelength, called
the Bragg wavelength λB. Variations in mechanical strain
and temperature result in a change in the Bragg wavelength.
The shift in the Bragg wavelength due to applied strain
and temperature change is given by the following exact
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Fig. 2: Section of a multicore fiber with Fiber Bragg Grating
(FBG) sensors is shown. The fiber has 4 cores and each core
has 32 FBG sensors.

differential form [11]:

dλB
λB

= (1− pe) dε+ (αλ + αn) dT , (1)

where pe, αλ and αn are the photoelastic, thermal expansion
and thermo-optic coefficients, respectively. Further, ε and
T are the axial strain and temperature, respectively. After
integrating both sides of (1) we obtain

ln
λB
λB,0

= (1− pe) (ε− ε0) + (αλ + αn) (T − T0) , (2)

where λB,0, ε0 and T0 indicate the reference Bragg wave-
length, reference strain and reference temperature, respec-
tively. It should be noted that equation (1) is often approx-
imated without performing the above integration procedure
(d is replaced by ∆ and λB by λB,0) [10]. However, this
introduces errors which increase for increasing strain. If
the temperature change is assumed to be negligible (i.e.
T − T0 ≈ 0), then the shift in the Bragg wavelength is due
to the applied strain which simplifies (2) as follows:

ln
λB
λB,0

= (1− pe) (ε− ε0) . (3)

The axial strain ε measured by the FBG sensors placed on
each core can be related to the distance of the fiber to the
neutral axis (see Fig. 2) as follows:

ε =
ds− dl

dl
=

(ρ− δ) dθ − ρdθ
ρdθ

= − δ
ρ

= −κδ, (4)

where κ is the curvature of the flexible catheter. Here, it is
assumed that the catheter can be modeled as a beam in pure
bending. The curvature and its direction are determined at a
particular cross section using the three FBG sensors placed
around the center (see Fig. 2) as follows:

εa − ε0 = −κδa = −κra sin (ϕ) ,

εb − ε0 = −κδb = −κrb sin (ϕ+ γa) ,

εc − ε0 = −κδc = −κrc sin (ϕ+ γa + γb) , (5)
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where ϕ is the angle between ra and the neutral axis. Further,
ra, rb and rc are the distance of the cores a, b and c from
the center, respectively. It is assumed that the position and
orientation of the FBG sensors are known and constant. The
unknown parameters κ, ϕ and ε0 can be determined by
solving the set of equations (5). The curvature κ (si) and
its direction ϕ (si) can be obtained at every location si by
interpolating the measurements from FBG sensors placed on
the catheter. These can then be used to compute the tangent
vector of the curve of the catheter [12]. Consequently, the
shape and respectively the tip pose of the flexible catheter is
determined by numerical integration of the tangent vector.

III. ULTRASOUND TRACKING ALGORITHM

In this section, two algorithms to obtain catheter pose
information for given ultrasound images are introduced:
i) a template based tracking algorithm, and ii) a tracking
algorithm utilizing convolutional neural networks.

A. Template Based Tracking Algorithm

The ultimate goal of the template based tracking method
is registering the template image of the catheter, T (x) and
current image of the catheter, I(w(x,p)). Here, x ∈ R2 con-
tains the pixel coordinates x = [x, y]T , and is transformed
by a motion model, which is also known as the warping
function, w(x,p). The aim of registration is to calculate the
optimal value of the motion parameters, p. The template
based tracking algorithm described in this study is adapted
from [13] and detailed in the following.

1) Motion Model: One of the most significant layers
of visual tracking is determining the motion of a flexible
catheter in the image plane. The motion model describes
the transformation between the template and current images.
The motion of a flexible catheter in the US image plane can
be decomposed into translation and scaling transformations.
These transformations can be described by an affine motion
model, w(x,p), given as follows:

w(x,p) =

[
1 + p1 p3
p2 1 + p4

] [
x
y

]
+

[
p5
p6

]
, (6)

where p ∈ R6 is the 6-DOF motion parameter vector.
Further, the motion model (6) can be used to track the tip
position of the flexible catheter.

While tracking the tip of the catheter, transient variations
of its pixel values may occur. In order to estimate the
catheter tip position with a high accuracy, the tracker must
compensate for these intensity fluctuations. A scale-offset
model (α, β) can compensate these variations [14]. Then,
the compensated current image I∗(w(x,q)), is written as:

I∗(w(x,q)) = (α+ 1)I(w(x,p)) + β. (7)

Using the affine motion and scale-offset models, eight pa-
rameters q ∈ R8 are calculated for the transformation
from the template to the current image during the visual
tracking, where q = [pT , α, β]T . In the rest of this section,
the calculation of q vector using the SSD cost function is
explained.

2) SSD-based Visual Tracking: The sum of squared dif-
ferences (SSD) between I∗(w(x,p)) and T (x) : R2 → R
can be computed as follows:

SSD(q) =
∑
x

[I∗(w(x,q))− T (x)]2. (8)

The main goal of SSD based visual tracking is to find the
vector q that minimizes the SSD value between T (x) and
I∗(w(x,q)). For this purpose, forward or inverse compo-
sitional methods [15], first order optimization, or efficient
second order minimization (ESM) methods [16] can be used.
In this study, an ESM method is used since it is more robust
to noise and its convergence rate is higher as compared to
other optimization methods. Using ESM, the vector q is
iteratively computed by accumulating ∆q in each iteration
(q← q + ∆q). ∆q is computed using ESM as follows:

∆q = −2(J(q0) + J(qc))
†(I∗(w(x,q))− T (x)), (9)

where † is the Moore-Penrose pseudoinverse of a matrix.
Further, J(q0) and J(qc) are the Jacobian of I∗(w(x,q))
[14], [16]. Before the iteration loop starts, J(q0) is pre-
computed. During the iterations, first J(qc) is computed
and then ∆q is calculated using (9). Iterations last until the
number of iterations reach a predefined maximum iteration
number or sum of ∆q vector elements are smaller than the
predefined threshold.

3) Pyramidal Implementation: In our experiments, it was
observed that the motion of the flexible catheter can be
very large in the US image plane. In this situation, the
displacement of the catheter between the previous and the
current US frames can be large. Hence, the number of
iterations to calculate the motion parameters between the
template and current images increases dramatically. Further,
the catheter can be so far away from the search region in
the image plane that tracking might fail. In order to increase
the convergence rate and robustness of the tracking, pyrami-
dal implementation of the proposed template-based tracking
method is applied [17]. During the tracking, optimization
methods are first applied to the coarsest level of pyramid
and then, results are transferred to the next finer level of
the pyramid. The number of pyramid layer for the frames
in our data set and imaging system was selected as two. If
the number of pyramid layers in the experiments was more
than two, significant texture loss was observed because our
maximum template size is 40× 40 pixels.

4) Template Update Strategy: During the tracking, the
template images are updated with a drift correction strategy
to minimize the registration error and prevent template drifts
[18]. This strategy consists of two registration steps. In the
first step, the template and current images are registered. In
the second step, the output image obtained in the first step is
registered with the master template. The master template is
the first appearance of the flexible catheter in the US image.
After the second step, the template image is updated with
registration output obtained in the second step.
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B. Convolutional Neural Network Based Tracking
In this section, a tracking approach utilizing a Convolu-

tional Neural Network (CNN) is presented. Fully convolu-
tional neural networks have been shown to be well suited
for the imaged-based estimation of object positions. When
applied to the task of human pose estimation, the works of
Newell et al. [19] and Wei et al. [20] demonstrated improved
tracking performance compared to naive joint coordinate re-
gression. In these works, fully convolutional neural networks
are trained to predict a dense probability map, providing the
probability for each pixel to contain the object of interest.

Following this approach, we propose a CNN architecture
based on the work of Milletari et al. [21], originally described
for segmentation of magnetic resonance images. As shown in
Fig. 3, the network architecture consists of an encoding and a
decoding branch, both organized in different levels. At each
level of the encoding part, the input data are processed with
a set of convolutional layers, the residuals are computed and
downsampled by means of an additional convolutional layer,
which stride size is set to two in both x and y direction. When
moving toward deepest levels in the encoding branch, the
resolution of the features maps decreases, while the number
of filters in each convolutional layer increases. At the last
level of the encoding branch, the resolution is lowered to
23× 24, while the number of channels is 256.

The decoding branch of the structure is employed to
retrieve the original resolution. As the encoding branch, it is
organized in different levels. At each level of the decoding
branch, the input data is concatenated with the output of
the correspondent level in the encoding branch forming a so
called skip-connection, and subsequently processed with a
set of convolutional layers. Residuals are then computed and
upsampled by means of a deconvolution layer. When moving
from lower to higher levels in the right branch, the resolution
of the features maps increases again, while the number of
channels decreases. The output of the last deconvolution
is processed with two convolutional layers, which reduces
the number of channels of the output features map to one.
Though the whole network tanh(·) activation is applied after
the convolutional layers, as it sped up training compared to
the original ReLU.
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Fig. 3: Architecture of the convolutional neural network, with
the encoding branch left and the decoding branch of inverse
structure right.

During network training, the network output is compared

to the ground truth images to compute the loss. Ground truth
images consist in heatmaps, where decreasing intensities
are associated to pixels with increasing distance from the
catheter tip. The heatmap intensity at pixel (x, y) provides
the probability that the catheter’s tip is located at (x, y), given
the Ground Truth tip location (xt, yt),

HM(x, y) = P((x, y)|(xt, yt)), (10)

where HM(x, y) is the heatmap intensity value at pixel
(x, y).

Under the assumption that P((x, y)|(xt, yt)) follows a
Gaussian distribution, ground truth heatmaps can be com-
puted as the 2D Gaussian centered in (xt, yt).

(a) Input (b) Overlay (c) Heatmap

Fig. 4: Convolutional neural network based tracking results
of a flexible catheter in a 2D transverse ultrasound image.

An exemplary output of the network can be seen in Fig. 4.
The Loss function used for training is defined as

Loss =
∑
k∈B

[
1

2

∑
i

(HMk
i − P k

i )2 + ωRk

]
, (11)

where B is the minibatchsize, HMi is the ith pixel of the
ground truth heatmap, Pi is the ith pixel of the predicted
map, Rk is a regularization term and ω is the weight
associated to the regularization term. In particular, R is
defined as:

R =
∑
i

[(
∂Pi

∂x

)2

+

(
∂Pi

∂y

)2
]

(12)

During network validation, the catheter tip position is
given by the position of the peak in the output map:

(xpt , y
p
t ) = arg max

i,j
Pi,j (13)

IV. SENSOR FUSION ALGORITHM
In this section, a simplified kinematics based model is

used to estimate the tip position of the magnetic catheter
in 2D by fusing ultrasound and FBG measurements. This is
followed by the application of a Luenberger state observer
and a Kalman filter. In the following, it is assumed that the
dynamics of the catheter can be approximated by a linear
time-invariant model. Further, the influence of deviations of
the actual system from the linear system are modeled with
a disturbance term. The dynamics of a continuous-time LTI
(linear time-invariant) system is expressed as follows:

ẋp = Apcxp + Bpcu + Bpcd (14)
y = Cpcxp + Dpcu + v (15)
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where xp ∈ Rnp and u ∈ Rm are the state of the plant and
the control input, respectively. Further, d ∈ Rnd , v ∈ Rl

and y ∈ Rl are the disturbance, the measurement noise
and the measured output, respectively. The measurement
noise is assumed to be zero-mean, Gaussian and white. The
measurement data from different sensors can be fused by
collecting them together as follows:

y =
[
yT
sensor,1 . . . yT

sensor,l

]T
(16)

where each ysensor,i for i ∈ {1, . . . , l} represents a mea-
surement from a particular sensor. The dynamics of the
disturbance term given in (14) is expressed as follows:

η̇ηηd = Adcηηηd + Bdcw (17)
d = Cdcηηηd, (18)

where ηηηd ∈ Rnη and w ∈ Rnw are the state of the distur-
bance dynamics and an external driving signal, respectively.
The signal w can either be deterministic but unknown or
stochastic with the assumption of being zero-mean, Gaussian
and white. If the signal w is deterministic but unknown and
bounded, then a Luenberger state observer can be designed.
But, if the signal w is stochastic with the assumption of being
zero-mean, Gaussian and white, then a Kalman filter can be
designed. The plant dynamics given by (14)-(15) and the
disturbance dynamics given by (17)-(18) can be combined
into the following augmented system

ẋ = Acx + Bcu + Bwcw (19)
y = Ccx + Dcu + v, (20)

with

Ac =

[
Apc BpcCdc

0nd×np Adc

]
,Bc =

[
Bpc

0nd×m

]
,Bwc =

[
0np×nw
Bdc

]
,

Cc =
[
Cpc 0l×nη

]
, Dc = Dpc, x =

[
xTp ηηηTd

]T
(21)

and 0 a zero matrix of appropriate size. For systems with a
low sampling rate, the LTI system given by (19)-(20) can
be discretized exactly at the sampling instants using the
exact discretization method. The system is discretized with a
sampling time, Ts ∈ R>0 which corresponds to reciprocal of
the frames per second (1/fps) of the imaging system. After
discretizing (19) and (20), the resulting system of difference
equations are given as follows:

x [(k + 1)Ts] = Adx [kTs]+Bdu [kTs]+Bwdw [kTs] (22)

y [kTs] = Cdx [kTs] + Ddu [kTs] + v [kTs] . (23)

The matrices in (22)-(23) are given by

Ad = exp (AcTs) , Bd =

∫ Ts

0

exp (Acτ)Bcdτ, (24)

Bwd =

∫ Ts

0

exp (Acτ)Bwcdτ, Cd = Cc, Dd = Dc (25)

where exp (·) is the matrix exponential. If Ac is nonsingular,
the integral terms in (24) and (25) are computed as follows:

Bd = A−1c (Ad − I)Bc. (26)

However, if Ac is singular, Bd can be computed as fol-
lows [22]: [

Ad Bd

0 I

]
= exp

([
Ac Bc

0 0

]
Ts

)
. (27)

For clarity of notation, the sampling time variables in (22)-
(23) can be dropped to obtain

x(k + 1) =Adx(k) + Bdu(k) + Bwdw(k), (28)
y(k) =Cdx(k) + Ddu(k) + v(k) (29)

for k = 1, 2, 3, . . .. In the following, the specific model for
(19)-(20) used to estimate the tip positions of the flexible
catheter in 2D is explained. Consider the x- and y- tip
position coordinates of the catheter denoted by px, py ∈ R
and the corresponding velocities denoted by vx, vy ∈ R.
We consider the case when there are no control inputs, thus
u = 0 holds. Consequently, the system dynamics is given as
follows:

ṗx
ṗy
v̇x
v̇y


︸ ︷︷ ︸

ẋp

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Apc


px
py
vx
vy


︸ ︷︷ ︸

xp

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

Bpc

[
dx
dy

]
︸︷︷ ︸

d

(30)

y =

[
yUS
yFBG

]
=


1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0


︸ ︷︷ ︸

Cpc


px
py
vx
vy


︸ ︷︷ ︸

xp

+


vUS,x
vUS,y

vFBG,x
vFBG,y


︸ ︷︷ ︸

v

(31)

where the matrices given by (14)-(15) are used. Further, yUS
and yFBG denote the position measurements obtained from
the ultrasound images and FBG sensors, respectively. If the
tracking of the catheter in 3D coordinates is required, then
the system dynamics can be extended by including the states
pz and vz to the state vector and dz to the disturbance vector.
The system dynamics described by Apc in (30) with d = 0 is
commonly used in vision applications in the literature [23].
However, in order to have a more general yet simple model,
a disturbance term should be included. There are different
ways to model the disturbance term depending on the appli-
cation. In order to keep the formulation sufficiently general
a polynomial function is selected [24]. The disturbance term
can be locally represented by an (n− 1)th degree family of
Taylor polynomial function of time as follows:

dj(t) =
n−1∑
i=0

dj,it
i + dj,r(t) (32)

where j ∈ {x, y}, dj,i ∈ R and dj,r(t) ∈ R are the coeffi-
cients of the polynomial and a residual term, respectively. It
is assumed that the residual term, dj,r(t), is such that its time
derivatives for i ≥ n satisfy |d(i)j,r(t)| ≤ γi−r ≈ 0, thus they
are all uniformly absolutely bounded and small enough to be
negligible [24]. This implies that the residual term is slowly
varying with respect to time. The disturbance dynamics for
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a polynomial of degree n is given by
η̇ηηd,1
η̇ηηd,2

...
η̇ηηd,n−1

η̇ηηd,n


︸ ︷︷ ︸

η̇ηηd

=


02 I2 . . . 02 02

02 02 . . . 02 02

...
...

. . .
...

...
02 02 . . . 02 I2
02 02 . . . 02 02


︸ ︷︷ ︸

Adc


ηηηd,1
ηηηd,2

...
ηηηd,n−1

ηηηd,n


︸ ︷︷ ︸

ηηηd

+


02

02

...
02

I2


︸ ︷︷ ︸
Bdc

[
d
(n)
x,r

d
(n)
y,r

]
︸ ︷︷ ︸

w

,

[
dx
dy

]
︸ ︷︷ ︸

d

=
[
I2 02 . . . 02 02

]
︸ ︷︷ ︸

Cdc

ηηηd (33)

where 02 and I2 are zero and identity matrices, respectively.
Further, in (33) each element of the state vector ηηηd satisfies
ηηηd,i ∈ R2.

Both the Luenberger observer and Kalman filter uses
the model of a given system together with a suitable
update term to estimate state variables that cannot be
measured. In order to apply them to the augmented sys-
tem dynamics (22)-(23), the system should be observ-
able. This is satisfied if the observability matrix OT =[
CT

d AT
d C

T
d . . . (A

np+nd−1
d )TCT

d

]
has full rank, i.e.

rank (O) = np + nd. The Luenberger observer is typically
a copy of the augmented system dynamics (22)-(23) with a
correction term

x̂ (k + 1) = Adx̂ (k) + Bdu (k)−L (ŷ (k)− y (k)) , (34)

with the observer state x̂ (k) and feedback gain matrix L.
Using (28), (29) and (34) and defining the observation error
as e(k) = x̂(k)− x(k), the error dynamics is given as:

e(k + 1) = (Ad − LCd) e(k) + Lv(k)−Bwdw(k). (35)

Here, the feedback gain matrix is designed such that if the
system is observable, the eigenvalues of the nominal system
(i.e. for v = 0 and w = 0) can be placed at arbitrary
locations, for instance using Ackermann’s formula. The
nominal system (i.e. for v = 0 and w = 0) is asymptotically
stable if all of the eigenvalues are inside the unit disk. The
stability of the error dynamics (35) can be shown using a
variation of the input-to-state stability theorem.

The Kalman filter consists of two phases at each sampling
loop: prediction and update. In both phases next to the state
estimate, the covariance of the observation error is estimated.
In the prediction phase the estimate of the state is obtained
using the discretized system dynamics (28)-(29) as follows:

x̂ (k + 1 | k) = Adx̂ (k | k) + Bdu (k) (36)

where x̂ (k | k) is the estimate of x̂ at time instant k given
observations up to and including at time k. The predicted
estimate of the error covariance matrix P (k + 1 | k) =
cov (x (k + 1)− x̂ (k + 1 | k)) is computed as follows:

P (k + 1 | k) = AdP (k | k)AT
d + Q (37)

where Q ∈ R(nd+nη)×(nd+nη) represents the covariance
matrix of the process noise. In the update phase the state

estimate can be corrected with an innovation term using the
measurements

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) + K (k + 1) [y (k)−Cdx̂ (k + 1 | k)] ,

(38)

where K (k + 1) is the optimal Kalman gain. The gain is
given by

K (k + 1) = P (k + 1 | k)CT
d

[
CdP (k + 1 | k)CT

d + R
]−1

,
(39)

and R ∈ Rl×l is the covariance matrix of the measurement
noise. On this foundation, the estimate of the error covariance
matrix can be finally updated

P (k + 1 | k + 1) =
[
I(nd+nη) −K (k + 1)Cd

]
P (k + 1 | k)

(40)

where I(nd+nη) is the identity matrix. The Luenberger and
the Kalman state estimators are used to fuse US and FBG
measurements in the next section.

V. EXPERIMENTS

In this section, the experimental setup is briefly presented.
This is followed by the experimental results comparing the
tracking and fusion algorithms introduced in Sections III
and IV.

A. Experimental Setup

The setup consists of two pairs of Helmholtz coils (Teltron
Helmholtz Coils S, 3B scientific, Hamburg, Germany) that
can generate a homogeneous magnetic field along the x-
and y-axis of the system (see Fig. 1). The details of the
physical properties of the coils can be found in [4]. The
catheter is 55 mm long and is made of a flexible hollow
PVC tube with an outer diameter of 2 mm and an inner
diameter of 1.2 mm. It is steered by the Helmholtz coils using
a stack of 4 cylindrical Neodymium N48 (Supermagnete,
Gottmadingen, Germany) magnets (2 mm diameter, 1 mm
height) attached to the distal end of its shaft. The tip position
of the catheter in 2D is obtained using transverse US images
and FBG strain measurements. The transverse B-mode US
images are acquired using a 14 MHz US transducer (L14-
5/38, Ultrasonix, Richmond, Canada) in which the radial
cross-section of the distal end of the shaft is visualized
as a circular or oval shape. The strain measurements are
obtained using a multicore FBG fiber (FBGS International
NV) which has 4 cores where each core has 32 FBG sensors.
The FBG sensor data is acquired using an FBG-Scan 804D
interrogator. The accuracy of the visual tracking for the US
tracker is measured using stereo cameras (Sony XCD-SX90,
lenses Pentax 8.5mm, focus 0.2 - infinity, Cosmicar/Pentax
12 mm, focus 0.2 - infinity). The software to acquire the
FBG data, US and stereo camera images is written in C++ on
Linux Ubuntu. The sampling frequency of the measurements
is set to 14 Hz.
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B. Experimental Results

In this section, the results related to the template based
tracking algorithm described in Section III-A are given. This
is followed by the results for the fusion of US and FBG data.

1) Visual Tracking Results: The magnetic catheter is
steered in a water tank using a pair of Helmholtz coils and
its tip is imaged using a 2D ultrasound probe transversely.
The US images are acquired with a rate of 14 fps.

The results of template tracking are shown in Fig. 5. It
can be observed from Fig. 5 that the catheter pixel intensity
changes over time. Also, a small number of pixels are
available in the US image plane. Under these circumstances,
the catheter tip is successfully tracked in long term using the
scale-offset and affine motion models.

(a) Frame #1 (b) Frame #2000 (c) Frame #4000

(d) Frame #6000 (e) Frame #8000 (f) Frame #10240

Fig. 5: Template based tracking results of a flexible catheter
in 2D transverse ultrasound images. Please refer to the
accompanying video.

For the training of the proposed CNN tracking approach,
two additional US sequences with different catheter motions
were used and the network was trained to reproduce the
results of the template tracker. The sequences were randomly
separated into training, test, and validation sets. Training
was performed with stochastic gradient descent with iterative
learning rate reduction once there was no improvement in
testing accuracy. On the validation set we observed an av-
erage error of 0.085mm. This error represents the difference
between the network output and the ground truth. It is
independent of the resolution of the US probe and it can
even be lower. Although, practically such an error level
would not be meaningful. When applying this network to
the previously unseen sequence shown in Fig. 7, however,
we observed an average error of 1.411mm. This implies,
that for a more robust network more data would have to
be collected, covering different motion patterns and visual
appearances of the catheter.

2) Sensor Fusion Results: The accuracy of the sensor
fusion method is evaluated using the ground truth data
obtained from the stereo camera setup. The template based

TABLE I: Performance criteria for the fusion algorithms

SSD mean std min max NCC SNR
Template-based

Luenberger 1565.9 0.20 0.11 0.0013 0.88 0.9955 48.8
Kalman 1450.6 0.18 0.13 0.0027 0.95 0.9959 49.3

CNN-based
Luenberger 3569.5 0.45 0.41 0.0005 2.24 0.9803 42.5

Kalman 3004.2 0.38 0.37 0.0043 2.44 0.9864 44.1

tracker described in Section III-A is used to obtain the ground
truth data with respect to the world coordinate system.

First of all, the stereo cameras (see Fig. 1) are calibrated
using the method described in [25]. Then, the tip coordinates
of the catheter obtained using visual tracking and FBGs are
expressed with respect to the an inertial coordinate frame
attached to the US. In order to obtain the ground truth
position of the catheter, its tip is tracked in stereo camera
images using the SSD based tracking method. Thus, the
complexity of the algorithm is reduced.

The magnetic catheter is commanded to follow different
geometric paths such as circle, rhombus and figure eight
paths using the controller described in [4]. The Luenberger
state observer and Kalman filter described in Section IV
is used to fuse the data from US and FBG. The closed-
loop observer poles for the Luenberger state observer are se-
lected as [0.9, 0.9, 0.9, 0.81, 0.81, 0.81, 0.729, 0.729, 0.729].
Further, the process noise covariance is obtained empirically
as Q = 5 × I9. The measurement noise covariance is R =
diag[0.0099, 0.0059, 0.0370]. The order of the disturbance
model for both estimators is selected as nd = 1.

The results for the rhombus path are shown as an example
in Fig. 6 for the template based tracker and in Fig. 7 for the
CNN tracker, respectively. Further, quantitative performance
criteria including the sum of squared differences (SSD),
normalized cross correlation (NCC), the maximum and min-
imum errors, the mean and the standard deviation of the
Euclidean distance of each sample and signal-to-noise ratio
(SNR) are given in Table I. The error is computed between
the ground truth and the fused positions. It can be observed
from these results that the Kalman filter slightly performs
better as compared to the Luenberger observer. This is more
pronounced in the presence of larger US tracking errors, as
is the case with the employed CNN tracker.

VI. CONCLUSIONS

This study presents a sensor fusion method for
magnetically-actuated flexible catheters. The algorithm
makes use of two different source of measurements, images
acquired from US and strains obtained from multicore FBGs.
The tip positions for the tip of the catheter are obtained using
two different visual tracking algorithms, the template-based
and convolutional neural network based methods. The data
obtained from both sources are fused using Luenberger and
Kalman state estimators. The mean and standard deviation of
the Euclidean error for the Luenberger observer is 0.2±0.11
[mm] whereas for the Kalman filter it is 0.18± 0.13 [mm],
respectively. In the future work, the accuracy of the tracking
and sensor fusion will be improved.
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Fig. 6: The data fusion results for the catheter tip using
Luenberger and Kalman state estimators are shown. Further,
the ultrasound position obtained from the template based
tracker and Fiber Bragg Grating sensor are also plotted. The
ground truth obtained from the stereo cameras are also given.
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Fig. 7: The data fusion results for the catheter tip using Luen-
berger and Kalman state estimators are shown. Further, the
ultrasound position obtained from the convolutional neural
network based tracker and Fiber Bragg Grating sensor data
are also plotted. The ground truth obtained from the stereo
cameras are also given.
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