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Prostate cancer is one of the leading causes of death in men. Prostate interventions using magnetic resonance imaging (MRI)
benefits from high tissue contrast if compared to other imaging modalities. The Minimally Invasive Robotics In An MRI
environment (MIRIAM) robot is an MRI-compatible system able to steer different types of needles towards a point of interest
using MRI guidance. However, clinicians can be reluctant to give the robot total control of the intervention. This work integrates
a haptic device in the MIRIAM system to allow input from the clinician during the insertion. A shared control architecture is
achieved by letting the clinician control the insertion depth via the haptic device, while the robotic system controls the needle
orientation. The clinician receives haptic feedback based on the insertion depth and tissue characteristics. Four control laws
relating the motion of the master robot (haptic device) to the motion of the slave robot (MIRIAM robot) are presented and
evaluated. Quantitative and qualitative results from 20 human subjects demonstrate that the squared-velocity control law is the
most suitable option for our application. Additionally, a pre-operative target localization algorithm is presented in order to
provide the robot with the target location. The target localization and reconstruction algorithm are validated in phantom and
patient images with an average dice similarity coefficient (DSC) of 0.78. The complete system is validated through experiments
by inserting a needle towards a target within the MRI scanner. Four human subjects perform the experiment achieving an
average targeting error of 3.4mm.
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1. Introduction

Prostate cancer is the second most common cancer in
men worldwide. It is the fifth cause of cancer death in
men [1]. Improvements in the diagnostic and treatment
methods can reduce mortality rate of prostate cancer.
The most common methods for diagnosis are the pros-
tate-specific antigen (PSA) test and the digital rectal
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examination (DRE). If there is an indication of cancer, a
prostate biopsy is done to confirm the diagnostic. Pros-
tate biopsies are usually guided by transrectal ultra-
sound (TRUS) images. However, early stage lesions might
not be visible in the conventional ultrasound (US) ima-
ges [2]. If the suspected lesion is not correctly targeted,
the procedure may result in a false diagnosis.

A solution for accurate prostate biopsies is the use of
magnetic resonance (MR) imaging. MR images have
higher tissue contrast and larger spatial resolution than
US images. Abnormalities in the prostate tissue can be
detected in MR images, indicating the location of the
suspected tumor. However, MR-guided prostate biopsy is
a time-consuming procedure and its costs are relatively
high if compared to TRUS-guided biopsy. In the guideline
proposed by Barentsz et al., patients are only subjected
to an MR-guided biopsy after incongruent results of PSA
test and TRUS-guided biopsy [2]. Besides the improve-
ments to the clinical outcomes, the use of robotic systems
can facilitate MR-guided prostate interventions and in-
crease its clinical indication. The Minimally Invasive
Robotics In An MRI environment (MIRIAM) robot aims to
facilitate MR-guided prostate interventions [3].

The MIRIAM robot is an MR-compatible robot that
combines piezoelectric and pneumatic actuation meth-
ods to achieve a precise prostate biopsy (Fig. 1). The
system integrates pre-operative path planning and nee-
dle steering algorithm. The robot is able to perform a
fully autonomous biopsy. However, autonomous systems
are still not widely accepted by the clinical communi-
ty [4]. Several robotics developers consider important to

provide the clinician with control of the procedure. Even
in commercially-available robotic systems which can
operate autonomously (i.e. the ROBODOC), there are
concerns over accepting autonomous modes [5]. There-
fore, it is essential to provide the clinician control of the
most critical actions of the robot during the procedure.
This work aims to allow the clinician to control the
procedure by implementing an user interface for tele-
operating the MIRIAM robot during needle insertion.

1.1. Previous work

Several surgical robotic systems which includes the cli-
nician in the control loop have been presented. Hungr
et al. proposed an autonomous system for needle-based
interventions that can switch to a manual operation
mode in case of emergency conditions [6]. Piccin et al.
presented a CT-compatible needle driver that grasps and
inserts the needle, mimicking the surgeon gesture [7].
The driving mechanism includes a force sensor to mea-
sure the insertion force and provide feedback to the
clinician. Majewicz et al. proposed a system where the
user tele-operates the movement of a flexible needle
using a haptic device [8]. The force feedback is used to
provide the kinematic constraints of the flexible needle.
Romano et al. presented a comparison between open-
loop and tele-operated flexible needle steering using
three different control laws [9]. The comparison showed
that a hybrid control law resulted in best targeting ac-
curacy. Later, Abolhassani et al. presented a tele-operated
system for needle insertion using force feedback and US
images to monitor the insertion [10]. A comparison be-
tween autonomous, teleoperated and semi-autonomous
needle insertion was also presented. Zarrad et al. also
proposed a tele-operated needle insertion using force
feedback [11]. The system had a conventional force
sensor and was controlled using state feedback esti-
mated by an Active Observer.

Abayazid et al. presented a tele-operated needle
steering system that provides visual feedback as well as
vibratory feedback [4]. The user controlled the needle
rotation, but the insertion velocity was kept constant for
the entire experiment. Although the system was able to
achieve a high accuracy, the user was controlling the
needle rotation and not the insertion depth, which
reduces the controllability of the system.

The combination of robotic actuation and manual
needle insertion has been widely implemented in robots
for prostate interventions. Wei et al. presented a co-
manipulated system where the user controlled the nee-
dle insertion into the prostate [12]. The system is com-
posed of a robotic arm able to position the needle guide
for prostate brachytherapy allowing the user to insert
the needle manually. Similar approaches have been
used for MR-guided prostate biopsies. Schouten et al.

MIRIAM robot

 Soft tissue phantom

Haptic interface

Control room

Fig. 1. The MIRIAM robot is Magnetic Resonance (MR)-com-
patible system designed for needle-based interventions in the
prostate. The system is capable of inserting, rotating and firing
a biopsy needle to collect tissue samples. In the current im-
plementation, the user controls the insertion using a haptic
device placed at the control room.
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developed a pneumatic positioning device for MR-guided
transrectal prostate biopsy [2]. Stoianovici et al. pre-
sented an MR-compatible system for endorectal prostate
biopsy composed of a passive arm and an actuated 3
degrees-of-freedom (DoF) end-effector [13]. However,
these robotic systems presented errors associated with
the manual needle manipulation. Moreover, manual in-
sertion requires the clinician to cope with the space
constraints of the MR bore or the removal of patient
from the bore.

Although studies with tele-operated needle insertion
have already been published, just a few tele-operated
systems for MR-guided needle-based procedures have
been introduced. Goldenberg et al. presented a tele-
operated robot for MR-guided interventions in the
prostate [14]. The robot is controlled through a joystick
without force feedback located in the control room.
Seifabadi et al. demonstrated the feasibility of using fiber
Bragg grating (FBG) sensors to measure the force
and provide force feedback to the user operating an MR
compatible robot [15]. The most important challenge
towards force feedback in MR-guided tele-operated
interventions is the lack of a reliable MR-compatible
force sensor. Analytical needle–tissue interaction models
can be used to estimate the exerted force and provide
the user with haptic feedback. The accuracy of the force
estimation is not critical if the force information provides
haptic perception for the user and does not directly
control the robot. Several force models for needle in-
sertion have already been proposed. Okamura et al.
proposed a needle insertion modeled by adding stiffness,
friction and cutting forces [16]. Barb�e et al. presented
a needle–tissue interaction force model based on the
Kelvin–Voigt model [17]. In their work, the parameters of
the model are estimated using a force sensor attached to
the needle base. Kobayashi et al. proposed a model for
insertion forces in an in-vitro liver based on fractional
derivatives [18]. A complete review of haptic feedback in
needle insertions was presented by Ravali and Mani-
vannan [19]. This work aims to develop a tele-operated
system with force feedback using an interaction needle–
tissue model defined by the stiffness of the soft-tissue
(Young's modulus). The user controls the insertion depth
of a biopsy needle, while the MIRIAM robot controls
the orientation to insert the needle towards a suspected
lesion. The suspected lesion is considered the target,
and therefore defining its exact location is crucial for an
accurate procedure.

Target localization in prostate interventions is a
challenging task. Although there has been extensive re-
search in segmenting particular structures of the human
body [20–23], a prevalent effort in analyzing and seg-
menting a small region of interest suspected to contain
cancerous cells is fairly in more recent [24] research
ethics committee prior to being conducted. A state-of-art
review was presented by Wang et al. [25]. Most of the

methods for automatic prostate cancer segmentation
resort to Machine Learning algorithms, such as the use of
a pixel-wise Bayesian classifier in a multi-resolution
scheme [24]. Ozer et al. presented a method for seg-
menting the suspected region with multispectral MRI
using both a supervised and an unsupervised learning
method [26]. Guo et al. presented a deformable MR
prostate segmentation method by unifying deep feature
learning with the sparse patch matching [27]. Moreover,
the use of Support Vector Machines (SVM) with
Conditional Random Fields has been reported to have an
increased accuracy in delineating the region of inter-
est [28]. The use of Markov Random Fields, coupled with
multispectral MRI, has also been proposed for prostate
cancer segmentation [29]. Gabor filtering-based analysis
[30] and the wavelet-based SVM have also been used on
prostate research to segment the gland or produce a
diagnosis [31]. Most of these studies depend on a specific
MRI protocol and require intensive computational
resources. Signal intensity is not standardized and ac-
quisition protocol, field strength, coil profile and scanner
type greatly affect the image appearance and the per-
formance of the segmentation [32]. In this work, we
propose an algorithm to localize and reconstruct the
suspected lesion using a sequence of MRI slices and basic
image processing techniques. The algorithm is used in
the pre-operative planning to define the target location
for the tele-operated needle insertion.

1.2. Contributions

This paper presents a tele-operated robotic system using
a 9 DoF robot system for MR-guided transperineal
prostate biopsy. The user tele-operates the MIRIAM robot
using a haptic device. To overcome the challenges of
placing a force sensor within the MR bore, a needle–
tissue interaction force model is developed and used to
provide haptic feedback to the user during the insertion.
The model uses biomechanical information (stiffness)
of the soft tissue estimated non-invasively by Acoustic
Radiation Force Impulse (ARFI) technique. Four
well-known control laws to relate user input into robot
commands are quantitatively and qualitatively evaluated
in human subject studies. Different from previous stud-
ies, our comparison also includes a qualitative assess-
ment using the user's opinion to define the best control
law for the MIRIAM robot. In addition, we also present an
algorithm to localize the suspected lesion in MR images.
The algorithm is based on two different techniques and it
is validated in phantom and patient images. The algo-
rithm provides the target position for the robot-assisted
procedure. Moreover, the algorithm is able to define the
shape of the target. This information is important during
the pre-operative planning to maximize the amount of
tissue sample collected by the needle. The proposed
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overall system is evaluated through experiments into soft
tissue phantoms inside a 3T MRI scanner.

2. Material and Methods

This section describes the robotic system, the force
interaction model, the tele-operated architecture. The
target localization algorithm used in the pre-operative
planner is also presented.

2.1. MIRIAM robotic system

The MIRIAM robot is an MR-compatible system that uses
piezoelectric and pneumatic actuation to insert and fire a
biopsy needle. The robot has five rods with adjustable
length to provide translational and rotational motion for
the needle driver. The needle driver rotates and inserts
the needle into the prostate. Moreira et al. previously
described the design and autonomous operation of the
robot [3]. The needle steering capability and the MR-
compatibility of the robotwere evaluated in aMAGNETOM
Aera scanner. In our previous work, a biopsy needle was
steered towards a target location defined by the user. In
this work, we included the robot in a tele-operated system.
The MIRIAM robot is the slave robot, while the Geomagic
Touch X (3DSystems, USA) is themaster robot. Themaster
robot is used to control the insertion depth and it is able to
provide force feedback to the user.

2.2. Force feedback modeling

Forces exerted on the needle during insertion (fn) are
due to puncture (fp), friction (ff ) and cutting forces
(fc) [16]:

fn ¼ fp þ ff þ fc: ð1Þ
In transperineal prostate biopsies, the puncture forces
can be neglected, since the perineum is preloaded and
the puncture occurs just after the insertion starts. In
several friction models, such as the Coulomb-viscous
model, the friction forces depend on the velocity [33].
However, during the needle insertion, contact surface
varies as the needle is inserted. Therefore, we propose
a model where the friction depends on not only the ve-
locity but also on the insertion depth, such as

ff ðx:; xÞ ¼
k1 þ k2x

:
x; x

:
> 0

0; x
: ¼ 0

k3 þ k4x
:
x; x

:
< 0;

8><
>:

ð2Þ

where, x and x
:
are the insertion depth and velocity,

respectively. The constants k1, k2, k3 and k4 are estimated
in Sec. 3.1.

Besides the friction, the cutting force is an important
component of the total exerted force, as described in
Eq. (1). Ideally, the cutting force should be constant
and dependent on the tissue characteristics. However,
the cutting force increases with the insertion depth (x)
due to the compression of the tissue and needle
curvature. Therefore, the cutting force is modeled con-
sidering the insertion depth (x) as well as Young's
modulus (E) of the tissue and needle curvature (�):

fcðx; �;EÞ ¼ k5xE þ k6�: ð3Þ

Combining (2) and (3), the needle–tissue interaction
force model is given as

fnðx:; x; E; �Þ ¼
k1 þ k2x

:
x þ k5xE þ k6�; x

:
> 0

0; x
: ¼ 0

k3 þ k4x
:
x: x

:
< 0:

8><
>:

ð4Þ

The needle curvature is directly related to the tissue
stiffness, therefore the online estimation of the needle
curvature can also capture changes in the tissue stiffness
during the insertion. The presence of the Young's mod-
ulus in our model together with the online curvature
estimation allow us to correct possible modeling errors.
Additionally, the model can be combined with different
force sensing techniques to provide haptic feedback
during insertions into unknown or inhomogeneous
tissues. The proposed model can also be adapted to
represent nonlinear tissue properties. The model para-
meters are estimated based on the force information
acquired in a series of insertions into different phantoms
and presented in Sec. 3.1. The identified model is
implemented in the tele-operated system.

2.3. Tele-operation architecture

The overall control architecture of the proposed tele-
operated system is presented in Fig. 2. The user controls
the needle insertion using the haptic device (master
robot). The master controller is based on the standard
force control library provided by the haptic device
manufacturer with a refresh rate of 750Hz. Motion in x-
and y-axes are counteracted by virtual fixtures to keep
the user within the insertion axis [34]. Different control
laws can be used to transform the output of the haptic
device into insertion commands for the robot. Four
possible control laws are selected to be tested in the
MIRIAM robot:

(1) Position control law: xs ¼ kpxm.
(2) Velocity control law: x

:
s ¼ kvx

:
m.

(3) Squared velocity control law: x
:
s ¼ ksx

: 2
m.

(4) Damper control law: x
:
s ¼ ð1=kdÞfm.

The position control law relates the position of the haptic
device, which is the master robot (xm), to the position of
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the MIRIAM robot, which is the slave robot (xs), using a
scaling term (kp). The value of kp is a tradeoff between
the range of motion and accuracy, the value is defined
as kp ¼ xs;max

xm;max
, which gives a kp of 0.95. In the velocity

control law, the master velocity (x
:
m) is translated to the

slave velocity (x
:
s) using scaling term kv . The gain kv was

experimentally tuned to 0.5. The squared velocity control
law is similar to the velocity law, but using the master
velocity squared and the scaling term (ks). The value of ks
is set such that the maximum slave velocity is reached
when the master velocity is twice the maximum slave
velocity, giving a value of 25. In the damper control law,
the force exerted on the master robot by the user (fm) is
transformed into slave velocity (x

:
s) using a virtual

damper coefficient (kd). The damper coefficient is tuned
such that the maximum velocity of the slave robot
(0.01m/s) is set at two-thirds of the master range of
motion, resulting in a value of kd of 269. The most suit-
able control law for the MIRIAM robot is selected based
on human subject experiments presented in Sec. 3.2. The
best control law is used in the experiments inserting a
needle towards a target within the MRI scanner.

2.4. Pre-operative target localization

This section presents the image processing algorithm
used to segment the suspected lesion and define the
target location. The algorithm segments a suspected le-
sion and reconstructs the 3D shape of the target. Before

the segmentation starts, the user (clinician) defines in
which region of the prostate suspected lesion is located.
The algorithm provides the center and the shape of the
lesion, which are important to maximize the amount of
collected tissue sample.

The segmentation is comprised of two fundamental
sub-algorithms. The first sub-algorithm uses the pixel
intensity at the center of region of interest (ROI) and
separates the remaining pixels into two distinct groups:
(i) a group containing the pixels whose intensity is closer
to the aforementioned central value; (ii) a group con-
taining pixels whose intensity values are further than the
central value. Thus, the sub-algorithm defines in which
group the pixels have to be classified. The classification is
such that it maximizes the inter-class variance of both
groups, which is a procedure similar to Otsu's standard
method for automatic thresholding [35]:

� 2
T ¼ !1ðtÞ!2ðtÞ½� 2

1 � � 2
2�; ð5Þ

where � 2
T is the inter-class variance, !1 and !2 are the

probabilities of a randomly chosen pixel to belong to one
class or the other, while �1 and �2 are the pixel intensity
averages for each class. The threshold which maximizes
the intra-class variance is chosen and the pixels which
are marked as closer to the center value are considered
as part of the target (Fig. 3).

The second sub-algorithm focuses on the edge
detection rather than the region detection. It considers
the same region defined by the user and its purpose is
the detection of pixels where the change in contrast is the
greatest.

The sub-algorithm draws a set of lines passing
through the center of the ROI with an equal angular
distance between them. The lines are divided into two
segments and the highest derivative of each segment is
defined as the sharpest edge (Fig. 3). The pixels repre-
senting the edges of the target are connected using the
Bresenham's method and the inner portion of the poly-
gon is filled. The result is considered the suspected lesion
by the edge-based algorithm. A pixel is considered part of
the suspected lesion (target) if detected by both algo-
rithms (Fig. 3). The process is repeated for each image
slice and the 3D shape of the suspected lesion is recon-
structed using the contour points of the segmented
images. The algorithm is validated using a set of MR
images of gelatin phantoms, biological tissue and patient
data.

2.5. MRI experiments

The feasibility of using the tele-operated robot within an
MRI scanner is demonstrated by experiments conducted
in the Siemens Magnetom Skyra MR-scanner (Siemens
AG, Germany).

The subject controls the robot using the haptic device
placed inside the control room. Real-time MR images are

Fig. 2. Overall tele-operation architecture of the MIRIAM
robot. The user controls the needle insertion through a haptic
device, which provides the master position (xm) or master ve-
locity (vm). The slave velocity (vs) and position (xs) are calcu-
lated based on the control law. A needle tip tracking using fiber
Bragg grating sensors estimates the needle tip position and
calculates the needle curvature (�). The needle curvature and
the Young's modulus of the tissue (E) and the needle deflection
provides the force feedback (Fh) to the user.
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presented to the subject in order to supervise the
insertion. The robot inserts a clinically approved biopsy
needle (MR-Clear Bio-Cut, Sterylab, Italy) using the
squared velocity control law. The soft tissue phantom is
made of gelatin with a Young's modulus of 45 kPa and
has two embedded targets. The targets are spheres with
1.5mm radius made of PVC. The target locations are
defined using the algorithm presented in Sec. 2.

A path planner uses the target locations to determine
the best needle entry point and insertion angle. The
planner determines the shortest path direction connect-
ing the insertion region and the target. The needle path is
then traced along the path direction using a needle de-
flection model. If the insertion environment contains
obstacles or no-go zones, the algorithm rotates the
original path about the vertical axis. The planner defines
the insertion location and angle for each target location.
For more details on the path planner, we refer the reader
to our previous study [3].

3. Results

This section first presents the experimental results of the
model identification and the evaluation of the best con-
trol law for the MIRIAM robot. The evaluation of the
target detection and experiments inside the MRI scanner
are also presented.

3.1. Force model identification

A force sensor (ATI Nano-17, Industrial Automation,
USA) is attached to a needle in order to collect force
measurements during the insertion (Fig. 4). The
experiments are performed with a needle integrated

with an array of 12 FBG sensors, divided along three
optical fibers. The needle has a diameter of 1.2mm and
a bevel tip angle of 60�. The FBG sensors are used to
estimate the needle curvature (�) [36]. The needle is
inserted into soft tissue phantoms using the MIRIAM
robot. The phantoms are prepared with a mixture of
water, gelatin and silica to mimic the stiffness of
prostate tissue.

3.1.1. Friction force

The experiments to identify the friction parameters of
(2) are performed in three different gelatin phantoms
with a mass ratio of 5%, 7.5% and 10% gelatin and 1%
silica. Although artificial phantoms are intrinsically dif-
ferent from real tissues, gelatin phantoms have been
widely used in needle insertion experiments to mimic
real tissues and demonstrate feasibility. These gelatin
concentrations resulted in Young's moduli (E) of 11, 34
and 69 kPa, respectively. These values are within the
range of the Young's moduli found in the literature for
prostate and surrounding tissues [37]. The phantom's
mass, dimensions and shear wave velocity are used
to define the Young's modulus [38]. The shear wave
velocity is acquired non-invasively with ARFI available
on the Siemens AcusonS2000 US machine (Siemens
AG, Germany).

The phantoms are cut into different pieces with
thicknesses of 20, 30 and 40mm. Before each experi-
ment, the needle is inserted through the entire phantom
to avoid cutting forces (Fig. 4(a)). Maximum velocity is
varied between 1mm/s to 15mm/s and a total of 63
experiments are performed. The force measurements are
fitted with least-squares linear regression to the friction
force model. The least square problem is modeled as:
f forces ¼ Ap, where f forces is a vector composed by all N

Fig. 3. A diagram representing the algorithm for segmenting the suspected lesion. The slices are subjected to a pre-processing
phase, where the image is filtered and equalized. Two methods of segmentation are applied: one region-dependent and the other
edge-dependent. The region-dependent algorithm is based on Otsu's method, while the edge-dependent uses the highest derivatives
of multiple segments to trace the suspected lesion contour. The segmented regions are subjected to an AND logical operation (

T
).

Pixels approved by both algorithms are included in the final segmented lesion and considered as the detected target.
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force measurements, A is the N by n measurement ma-
trix (n is the number of parameters to be estimated), and
p is the vector with n parameters. The fitted model is
then defined as follows:

ff ðx:; xÞ ¼
0:70þ 0:00057x

:
x; x

:
> 0

0; x
: ¼ 0

�0:54þ 0:0012x
:
x: x

:
< 0:

8><
>:

ð6Þ

3.1.2. Cutting force

Three gelatin phantoms are used with Young's moduli
(E) of 13, 34 and 58 kPa. The insertion velocity is varied
between 1mm/s to 15mm/s, and insertions are done
from 0 to 90mm (Fig. 4(b)). A total of 21 cutting force
measurements are performed. The force measurements
are fitted to the cutting force model (3) using least-
squares linear regression. The fitted model is then de-
fined as follows:

fcðx; �; EÞ ¼ 0:00043xE � 106�: ð7Þ

Combining (6) and (7), the complete needle–tissue
interaction force model is then given by

fnðx:; x; E; �Þ ¼ 0:70þ 0:00057x
:
x

þ 0:00043xE � 106�; x
:
> 0

0; x
: ¼ 0

�0:54þ 0:0012x
:
x: x

:
< 0:

8>>>><
>>>>:

ð8Þ

3.1.3. Cross validation of the force estimation

The fitted model is validated using a new set of force
measurements during needle insertion. The proposed
model is also compared with well-known interaction
force models, such as the Kelvin–Voigt and the elastic
model [39]. The parameters for each model are esti-
mated using one dataset, and the force estimation is
compared to a new dataset of measurements. The new
dataset is composed of five insertions performed in dif-
ferent phantoms. The root mean square error of all
measurement points is used to evaluate each model,
such as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðfeðiÞ � fmðiÞÞ2
vuut ;

where fe is the estimated force, fm is the measured force
and N is the total number of measurements. The RMSE
for each model is presented in Table 1. The proposed
model presents the lowest force error among the ana-
lyzed models. The measured force and the force esti-
mated by the fitted model of one representative
experiment are presented in Fig. 4(c). The proposed
force model is then used to provide force feedback dur-
ing the tele-operation of the MIRIAM robot.

3.2. Tele-operated evaluation

Human subject experiments are performed to determine
the most suitable control law for the MIRIAM robot. A
total of 20 human subjects (22–36 years old) performed
the experiments, of which 13 males and 7 females. The

Table 1. The root mean square error between
measured and estimated forces of the proposed
model and well-known models.

Model Root mean square error

Spring 0.66N
Spring-damper 0.57N
Kelvin–Voigt 0.60N
Proposed model 0.41N

(a) (b)

(c)

Fig. 4. (a) Friction force modeling experiments: Phantoms
with different thickness (x) are used to identify the friction
force depending on the insertion depth. (b) Cutting force
modeling experiments: The needle is inserted into a phantom.
The friction force, based on insertion depth x, is subtracted to
determine the cutting force. (c) Cross-validation: Measured
force and the force estimated by the fitted model (friction and
cutting force) of one insertion experiment.
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subjects were mainly senior biomedical engineering
students. The subjects participated on a voluntary basis
and were informed about the procedure before the be-
ginning of the experiment. A familiarization period
was also provided to make them acquainted with
the experimental setup. A biopsy needle (MR-Clear Bio-
Cut, Sterylab, Milan, Italy) is used in the experiments
for clinical relevance. It has the same geometrical prop-
erties as the FBG-needle, but is less flexible and there-
fore the curvature (�) is considered zero in the
current experiments.

Each subject performs eight needle insertions into a
gelatin phantom, reaching an insertion depth of 70mm.
The order of control laws is randomized per subject.
Four quantitative measures are used to compare the
control laws: targeting error, settling time, overshoot and
rise time. The targeting error is defined as the distance
between the target location and the needle tip at the end
of the insertion. Rise time is the time it takes to reach
95% of the target distance. The settling time is the time
needed to reach and stay within an error band of 10%
around the target.

Mauchly's sphericity test indicated that all quantita-
tive measures violated the sphericity assumption (tar-
geting error: �2ð5Þ ¼ 36:774, P < 0:001; overshoot:
�2ð5Þ ¼ 45:572, P < 0:001; rise time: �2ð5Þ ¼ 17:877,
P ¼ 0:003; settling time: �2ð5Þ ¼ 15:967, P ¼ 0:007). The
repeated-measures ANOVA with a Greenhouse–Geisser
correction shows that only the overshoot presents sig-
nificant differences (Fð1:513;28:743Þ ¼ 5:742, P ¼ 0:013), in-
dicating that the damper control law scores significantly
worse than the other three control laws. A representative
result of one subject is presented in Fig. 6.

In addition to the quantitative evaluation, we also
evaluate subjects' opinion. After the experiment,

participants are asked to fill in a questionnaire to indi-
cate how easy, intuitive, quick and accurate each control
law is. The questionnaire contains a set of statements,
where a score of 5 is described as \completely agree"
and 1 as \completely disagree". The qualitative data does
not violate the sphericity assumption based on Mauchly's
sphericity test. Perceived easiness, intuitiveness and ac-
curacy showed significant differences in repeated-mea-
sures ANOVA (Fð3;57Þ ¼ 10:008, P < 0:001; Fð3;57Þ ¼ 3:597,
P ¼ 0:019; Fð3;57Þ ¼ 9:814, P < 0:001, respectively). These
results indicate that the damper control law is evaluated
worse than the other three control laws. The answers
regarding the control law of preference violates the
sphericity assumption (Mauchly's sphericity test:
�2ð5Þ ¼ 11:889, P ¼ 0:037). The repeated-measures
ANOVA shows that the squared velocity control law is
significantly more preferred by the subjects than the
other control laws (Fð2:195;41:705Þ ¼ 5:783, P ¼ 0:002).

The results of the quantitative and qualitative mea-
sures are plotted in Fig. 5. Although the quantitative
analysis does not indicate significant differences between
the squared velocity, position and velocity control laws,
the qualitative analysis shows that the squared velocity
control law is preferred by users. The squared velocity
control law is then selected to be used in the tele-oper-
ation scheme of the MIRIAM robot. This control law
is used in the final experiments inserting the needle
towards a physical target, which is detected by the
pre-operative target detection.

3.3. Target segmentation evaluation

The proposed method is evaluated using the Dice simi-
larity coefficient (DSC) [40]. The DSC measures the

Fig. 5. Overall results of the statistic analysis of different insertion control laws. In the qualitative analysis, the damper control
presents the highest overshoot, while the squared velocity presents the lowest targeting error. The qualitative analysis shows that
the squared velocity control law is considered intuitive and the control law of preference. Based on the analysis, the squared velocity
control law is chosen to be implemented in the MIRIAM robot.
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similarity between two images, which ranges from 0 for
no correspondence between the images to 1 for complete
correspondence. The DSC is defined as

DSC ¼ 2jAa

T
Amj

jAaj þ jAmj
; ð9Þ

where Aa is the target segmented by the algorithm
and Am is the target manually segmented. According to
the literature, an acceptable similarity occurs when
DSC > 0:70 [41]. The algorithm is evaluate using three
different groups of MR images: (1) soft tissue phantoms,
(2) biological phantom and (3) patient data.

3.3.1. Soft tissue phantom

A gelatin-based phantom is prepared with a mass ratio
of 15% gelatin and 85% water. Spherical and cubical
targets made of polyvinyl chloride (PVC) with dimen-
sions ranging between 4 and 6 mm are embedded in the
phantom. An MR scan of axial slices is performed using a
T2 Turbo Spin Echo (TSE) imaging protocol. The slice
thickness is set to 1.0mm and field of view (FoV) of
200mm � 200mm. The average DSC from 15 different
images is 0.79 with a standard deviation of 0.04.

3.3.2. Biological phantom

Spherical and cubical targets with dimensions ranging
between 4mm and 6mm are embedded in an ex-vivo
prostate of a bull. The same imaging protocol from the
previous group is used. The average DSC from 15 dif-
ferent images is 0.80 with a standard deviation of 0.05.

3.3.3. Patient data

The proposed method is also evaluated in patient images.
The MR images of 15 prostates available at the Cancer

Imaging Archive are used to evaluate the accuracy of
the method in patient images [42]. A representative
result in one patient image is presented in Fig. 7. The
two-algorithm solution is important to avoid segmenta-
tion drifting, as can be seen in Fig. 7. The average DSC
from the 15 different patient images is 0.77 with a
standard deviation of 0.08.

3.3.4. Target location

The center of the segmented target is computed for the
slices where the suspected lesion is visible. The average
of all centers is defined as the target location. In order to
compute the target position with respect to the robot, the
fiducial located at the robot needle guide is also detected
by the algorithm. The fiducial is used to localize the robot
with respect to the fixed frame of the MR scanner.
Standard homogeneous transformations are used to
calculate the target location with respect to the robot,
which is used as an input to insert the needle towards
the target.

3.4. MRI experiments

Tele-operated insertions are performed by four different
subjects (Fig. 8). A pre-operative MR scan is performed
before the experiments using a T2 Turbo Spin Echo
(TSE) imaging protocol. The slice thickness is set to
3.0mm, field of view (FoV) of 200mm � 200mm,
echo time of 1.01 s, repetition time of 7.50 s and acqui-
sition time of 4.5min. The two targets embedded
in the soft tissue phantom are localized with respect
to the robot reference frame. The targets are located
at (x ¼ �13mm, y ¼ �6mm, z ¼ 89mm) and (x ¼
�18mm, y ¼ 7mm, z ¼ 89mm), respectively (Fig. 9).
Each subject performs one insertion. No practice
trials are allowed to also assess the difference in the level
of user experience. The subjects are divided into

Fig. 7. One representative results of segmenting a suspected
lesion in a patient image. Algorithm 1 is the region-dependent
process, while Algorithm 2 is the edge-dependent.

Fig. 6. A representative results of one subject performing
insertions using the four control laws. The damper control law
presents a significant overshoot, while the position control
presents the best rise time.
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three groups:

. Experienced users: Subjects who also participated in
the experimental evaluation previously performed in
Sec. 3.2.

. Intermediate users: Subjects who had performed up to
five insertions using the system.

. Beginner users: Subjects who had never used a haptic
device before.

After each insertion, two MR scans (axial and coronal
using TSE imaging protocol, slice thickness is set to
1.0mm and field of view (FoV) of 200mm � 200mm)
are performed in order to calculate the targeting error.
The targeting error is defined as the Euclidian distance
between the needle tip and the center of the target. The
errors along the x- and y-axis are calculated using the
axial slices, while the error along z is calculated using
the coronal slices. Please refer to the accompanying video
that demonstrates the experimental results. The results of
two representative experiments are shown in Fig. 9. The
experienced users achieve an average targeting error of
1.9mm in less than 22 s. The intermediate user achieved
a targeting error of 4.6mm, while the targeting error for
the beginner user is 5.4mm. The beginner and interme-
diate users finished the insertion before the target was
actually reached. The results suggest that the level of
experience plays an important role in the targeting ac-
curacy. However, it is important to mention that the
number of subjects in the final experimental study limits
our observations regarding the influence of user experi-
ence in targeting accuracy. Therefore, the learning curve
of users and how user experience impacts the accuracy
will be addressed in a future study with a larger number
of subjects.

The targeting errors achieved in the insertions are
within an acceptable range, i.e. in the range of clinically
significant tumor size in pathology [43]. The targeting
errors can be reduced using a closed-loop controller to
perform axial needle rotations during the insertion. A
closed-loop steering algorithm requires a needle tip
tracker using real-time MR images. MR-based needle tip
tracking is a challenging task and is considered beyond
the scope of this work. However, it is important to
highlight that insertion depth and needle rotations can
be decoupled and implementing a closed-loop steering
algorithm to control axial needle rotations is straight-
forward.

4. Conclusions

In this study, we present an MR-compatible robotic sys-
tem for tele-operated needle-based interventions in the
prostate. The user tele-operates a 9 DoF robot using a
haptic device. Force feedback is provided to the user by a
needle–tissue interaction force model. The parameters of
the model are estimated using the data collected during
84 insertions. Human subject studies are presented to
evaluate four different laws that relate user input into
robot commands. The squared velocity law is shown to
be the best control law for the MIRIAM tele-operated
robot. Moreover, a targeting detection algorithm is pro-
posed and evaluated using phantom and patient images.
The suspected lesion (target) is detected in 45 images
with DSC higher than 0.70. The complete system is
evaluated in four tele-operated insertions towards a
target with an average targeting error of 3.4mm. Al-
though users consider the system intuitive, the results
indicate that previous practice with the system is im-
portant to reduce the targeting error. Therefore, the
learning curve of users has to be investigated in future
studies. Another ongoing work is the development of a

Fig. 9. Two representative insertions of the biopsy needle
towards a target. The needle tip reaches the target with a tar-
geting error between 1.7mm (experienced user) and 5.4mm
(beginner user).

Clinician/user

Haptic interface

Robot

Real-time 

images

Fig. 8. The clinician controls the insertion via a haptic device
located in the control room, while the robot is inside the
Magnetic Resonance (MR) scanner. Real-time MR images are
provided to the clinician, allowing the supervision of the pro-
cedure. Please refer to the accompanying video that demon-
strates the experimental results.
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path planner that takes into account the shape of
the lesion to define the insertion direction that will
maximize the amount of tissue collected from the sus-
pected lesion.

Future work will focus on implementing a steering
algorithm to control needle rotations during the inser-
tion. Needle tip tracking using either Fiber Bragg Grating
(FBG) sensors or real-time MR images will be integrated
into the system. The steering algorithm will compensate
deviations from the intended path, thus reducing the
targeting error. In order to improve the needle–
tissue force model, we will combine the model with
FBG-based force sensing technique [44] to provide
force feedback. This integration will allow us to study
the user feedback perception as the needle crosses
different tissue layers. Moreover, experiments in human
cadavers and an extensive evaluation with clinicians are
planned.
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