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Abstract— Minimally invasive surgery can benefit greatly
from utilizing micro-agents. These miniaturized agents need
to be clearly visualized and precisely controlled to ensure the
success of the surgery. Since medical imaging modalities suffer
from low acquisition rate, multi-rate sampling methods can be
used to estimate the intersample states of micro-agents. Hence,
the sampling rate of the controller can be virtually increased
even if the position data is acquired using a slow medical
imaging modality. This study presents multi-rate Luenberger
and Kalman state estimators for visual tracking of micro-
agents. The micro-agents are tracked using sum of squared dif-
ferences and normalized cross correlation based visual tracking.
Further, the outputs of the two methods are merged to minimize
the tracking error and prevent tracking failures. During the
experiments, the micro-agents with different geometrical shapes
and sizes are imaged using a 2D ultrasound machine and a
microscope, and manipulated using electromagnetic coils. The
multi-rate state estimation accuracy is measured using a high
speed camera. The precision of the tracking and multi-rate
state estimation are verified experimentally under challenging
conditions. For this purpose, an elliptical shaped magnetic
micro-agent with a length of 48 pixels is used. Maximum
absolute error in x and y axes are 2.273 and 2.432 pixels for
an 8-fold increase of the sample rate (25 frames per second),
respectively. During the experiments, it was observed that the
micro-agents could be tracked more reliably using normalized
cross correlation based visual tracking and intersample states
could be estimated more accurately using Kalman state estima-
tor. Experimental results show that the proposed method could
be used to track micro-agents in medical imaging modalities and
estimate system states at intermediate time instants in real-time.

I. INTRODUCTION

The field of micro-robotics has been witnessing a sig-
nificant progress thanks to the developments in micro-
fabrication, sensing and actuation technologies. Minimally
invasive surgery (MIS) is among one of its most prominent
and promising application domains. Utilizing micro-agents
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Fig. 1: Optical flow analysis of the current frame while
a hydrogel gripper is magnetically steered. The image on
the left shows the current 2D ultrasound (US) frame that
contains the hydrogel gripper. The image on the right shows
the optical flow field vectors overlaid on the current frame.

in MIS can reduce patient treatment and recovery time
greatly compared to conventional surgery [1]. A successful
medical intervention by an operator using micro-robotic
agents requires clear visualization, accurate sensing and
precise feedback control. Numerous studies can be found
in the literature about micro-agents controlled using visual
feedback. In the following, examples of some of the studies
are outlined.

Scheggi et al. [2] investigated the closed-loop control of
hydrogel grippers using electromagnetic actuation and 2D
US images for feedback. Further, collision-free paths were
planned using a combination of linear quadratic regulator
and rapidly-exploring random tree algorithms. Keuning et
al. [3] controlled paramagnetic micro-particles using 2D mi-
croscope images. Hong et al. [4] extracted the 3D position of
microrobots from 2D microscope images based on digital in-
line holography. Further, a cylindrical permanent magnet was
tracked and controlled in 3D. Martel et al. [5] developed a
platform for steering of magnetic nanorobots using magnetic
resonance imaging. In order to provide feedback to the con-
troller, nanorobots were tracked in 3D using their magnetic
signatures. Diller et al. [6] controlled multiple magnetic
microrobots in 3D using magnetic gradient. Microrobots
were tracked using two CCD cameras.

The aforementioned studies utilize medical imaging
modalities as a feedback source for the controllers since
traditional sensors like encoders cannot be embedded on
the micro-agents due to their small size. But, these imaging
modalities suffer from low acquisition rate. Image acqui-
sition rates of magnetic resonance imaging and computed
tomography are in the range of 10 to 20 frames per seconds
(fps) and 6 to 15 fps, respectively. Maximum image rates
of fluoroscopy and ultrasound imaging can reach up to 30
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fps and 100 fps, respectively [1], [7]. An appealing remedy
for this drawback is multi-rate state estimation. This method
provides estimates of the system states for intermediate time
instants where measurements are not available. Multi-rate
state estimation has been applied to various fields such as
vehicle motion control systems [8], hard disk drive servo
control systems [9], and visual servoing of manipulators [10].
In this study, we propose to apply multi-rate Luenberger
and Kalman state estimators for the visual tracking outputs
of micro-agents in order to have intermediate position data
between two consecutive frames. The contribution of this
study is that the multi-rate state estimation is applied to the
field of micro-robotics to virtually increase the sampling rate
of position data for control using low-rate visual feedback.

In the literature, detection-based tracking methods are
commonly used to find the micro-agents location in the
image plane [2], [3]. In these methods, micro-agents are first
detected in each frame and then Kalman filter is applied
for tracking. Detection of the micro-agents in each frame
requires thresholding procedure and values for thresholding
change by image. Thus, tracking is prone to failure unless
the thresholding values are tuned properly. Besides, this
approach ignores the motion information of the micro-agents
in the image plane. But, motion information is an important
cue and can be used to track the micro-agents. Due to
the shortcomings of this approach, micro-agents are tracked
in the image plane using similarity functions also known
as template-based tracking. In this method, an object is
detected once and then tracked by calculating its motion
parameters between two close frames without applying any
specific detection method. The pixels of micro-agents have
considerable motion information when they are steered. The
motion analysis of an electromagnetically actuated hydrogel
gripper with images acquired from 2D US is shown in Fig. 1.
The motion in this image is analyzed using the Lukas-Kanade
optical flow method [11]. The analyzed motion is represented
as a vector field and overlaid onto the current image that is
shown in Fig. 1. This example shows that micro-agents with
different shapes can often be visually tracked using similarity
functions with images acquired from any medical imaging
modality. In this study, the sum of squared differences (SSD)
and the normalized cross correlation (NCC) cost functions
are used as similarity functions. During the tracking, the out-
puts of SSD and NCC methods are merged using Luenberger
and Kalman state observers to minimize the tracking error.

In the following section, visual tracking of the micro-
agents is explained in detail. Section III states the multi-rate
state estimation problem. This is followed by observer based
fusion of SSD and NCC visual tracking methods in Section
IV. In Section V, experimental setup is introduced and results
are given. Finally, conclusions are drawn in Section VI.

II. VISUAL TRACKING OF MAGNETIC MICRO-AGENTS

Visual tracking provides an estimate of the position of
an object in the image plane over time by registering the
previous appearance of the object with the current one. The
previous image is called the template T (x), and the recent

Fig. 2: 3D similarity plots of sum of squared differences and
normalized cross correlation cost functions. Left columns
contains similarity plots between I(w(x,p)) and T1(x);
right column contains similarity plots between I(w(x,p))
and T2(x). Further, tx and ty are the pixel increments of
T1(x) and T2(x) with respect to the center of I(w(x,p)).

one is called the current image I(w(x,p)), where w(x,p)
denotes the motion model (also known as warping function).
This model maps the vector x = [x, y] with the x− and
y− coordinates of T (x) onto I(w(x,p)) using the motion
parameter vector, p. The main goal of registration is to find
the vector p that minimizes the difference between T (x) and
I(w(x,p)) using an optimization algorithm. Briefly, regis-
tration process consists of two consecutive stages performed
iteratively. In the first stage, the similarity between T (x) and
I(w(x,p)) is measured using a similarity function. In the
second stage, the vector p is calculated.

SSD and NCC cost functions are used to measure the
similarity during the registration process. In order to evaluate
the performance of these functions, a template image T1(x)
is cropped from I(w(x,p)) that contains the micro-agent.
The similarity between this image pair is measured by trans-
lating T1(x) from -20 to 20 pixels with 1 pixel increment in
x− and y− axes from the center of I(w(x,p)). A second
template T2(x) is also created by changing the contrast of
T1(x) to evaluate the performance of the cost functions under
intensity changes. Similarity values are plotted in Fig. 2. As
seen from Fig. 2, SSD values reach local minimum and NCC
values reach local maximum for two cases in the center of
the plots, which confirms that SSD and NCC cost functions
can be used for visual tracking of micro-agents. In the rest
of this section, motion model selection and visual tracking
using SSD and NCC similarity functions are explained.

A. Motion Model
One of the most significant layers of visual tracking is

determining the motion of a micro-agent in the image plane.
The motion model describes the transformation between the
template and current images. The motion of a micro-agent in
the image plane can be decomposed into translation, rotation,
and scaling transformations. These transformations can be
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described by an affine motion model, w(x,p) : R2 ×R6 →
R2, given as follows:

w(x,p) =

[
(1 + p1) p3
p2 (1 + p4)

] [
x
y

]
+

[
p5
p6

]
, (1)

where p ∈ R6 is the 6-DOF motion parameter vector.
Further, the motion model (1) can be used to track micro-
agents with different geometric shapes.

During the visual tracking of micro-agents, illumination
variations occur in microscope images and intensity varia-
tions occur in other medical imaging modalities (e.g. ultra-
sound). For successful tracking, illumination and intensity
variations must be compensated. A scale-offset model can
compensate these variations and consequently the compen-
sated current image I∗(w(x,q)), is written as follows:

I∗(w(x,q)) = (α+ 1)I(w(x,p)) + β, (2)
where (α, β) are the model parameters. Using the affine
motion and scale-offset models, a new parameter vector
q ∈ R8 where q = [pT , α, β]T are calculated for the
transformation from the template to the current image during
the visual tracking. The calculation of q vector using SSD
and NCC cost functions is explained next.

B. SSD-based Visual Tracking

SSD between I∗(w(x,q)) and T (x) can be computed as:

SSD(q) =
∑
x

[I∗(w(x,q))− T (x)]2. (3)

The main goal of SSD-based visual tracking is to find
the vector q that minimizes the SSD between T (x) and
I∗(w(x,q)). For this purpose, forward or inverse compo-
sitional methods [12], first order optimization, or efficient
second order minimization (ESM) methods [13] can be used.
Forward and inverse compositional methods include calcu-
lation of Hessian matrix. However, calculation of Hessian
matrix is computationally expensive. First order optimiza-
tion method directly ignores calculation of Hessian matrix.
But, Hessian matrix should be included in the optimization
method to increase the precision of the tracking. In the ESM
method, Hessian matrix is estimated using Jacobian of the
current and template images, which makes this method more
favorable within the four optimization methods. Using this
estimation approach, tracking becomes more robust to noise.
Besides, its convergence rate is higher as compared to the
other optimization methods since the computation time of
the q vector decreases. Therefore, ESM method is used to
find the vector q in this study. Using ESM method, p is
iteratively computed by accumulating ∆q in each iteration
(q← q + ∆q). ∆q is computed as follows:

∆q = −2(J(q0) + J(qc))
†(I∗(w(x,q))− T (x)), (4)

where † is the operator for the Moore-Penrose pseudoinverse
of a matrix. Further, J(q0) and J(qc) are the Jacobian
of I∗(w(x,q)) [14], [15]. Before the iteration loop starts,
J(q0) is pre-computed. During the iterations, first J(qc) is
computed and then ∆q is calculated using (4). Iterations last
until the number of iterations reach a predefined maximum
iteration number or sum of ∆q vector elements are smaller
than the predefined threshold.

C. NCC-based Visual Tracking

NCC between I∗(w(x,q)) and T (x) can be computed as:

NCC(q) =

∑
x(I∗(w(x,q)) − I∗)(T (x) − T )√∑

x(I∗(w(x,q)) − I∗)2
√∑

x(T (x) − T )2
, (5)

where T and I∗ are the mean values of T (x) and
I∗(w(x,q)), respectively. The main goal of NCC-based
visual tracking is to find the q that maximizes the NCC
between T (x) and I∗(w(x,q)). Using Newton optimization
method, q can be iteratively computed by accumulating ∆q
in each iteration (q← q + ∆q). ∆q can be computed with
the inverse of Hessian (H−1) matrix and gradient (g) vector
of (5) as follows [14]:

∆q = −H−1g. (6)
Similar to SSD-based visual tracking, iterations last until the
sum of the elements of the vector ∆q is smaller than the
predefined threshold or the number of iterations reaches the
predefined maximum iteration number.
D. Pyramidal Implementation

In our experiments, it was observed that the motion of the
micro-sized agents can be very large in the image plane.
In this situation, the displacement of the agents between
the previous and the current frames can be large. Hence,
the number of iterations to calculate the motion parameters
between the template and current images increases dramati-
cally. Further, the agents can be so far away from the search
region in the image plane that tracking might fail. In order to
increase the convergence rate and robustness of the tracking,
pyramidal implementation of the proposed template-based
tracking method is applied. During the tracking, optimization
methods are first applied to the coarsest level of pyramid
and then, results are transferred to the next finer level of the
pyramid. The number of pyramid layer for the frames in our
data set and imaging system was selected as two [11]. If
the number of pyramid layers in the experiments was more
than two, significant texture loss was observed because our
maximum template size is 60× 60 square pixels.
E. Template Update Strategy

During the tracking, the template images are updated with
a drift correction strategy to minimize the registration error
and prevent template drifts [16]. This strategy consists of
two steps. In the first step, the template and current images
are registered. In the second step, the output image obtained
in the first step is registered with the master template.
The master template is the first appearance of the micro-
agent and updated every 1.5× fps frames. After the second
step, the template image is updated with registration output
obtained in the second step and position of the micro-
agents is obtained in the image. This position serves as a
measurement to the multi-rate state estimators presented in
the next section.

III. MULTI-RATE STATE ESTIMATION

In this section, a simplified kinematics-based model used
to design the multi-rate state estimators is described. This
is followed by the theory and application of a multi-rate
Luenberger state observer and a multi-rate Kalman filter.
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A. System Description
In the following, we assume that the dynamics of the

micro-agents can be approximated by a linear and time-
invariant model. Further, the influence of deviations of the
actual system from the linear system are modeled with a dis-
turbance term. It is possible to use a sophisticated nonlinear
model for multi-rate state estimation. However, the problem
with such a model is the identification of its parameters
and further the validation of these parameters due to the
unavailability of sensors or ground truth in micro-robotics.
Hence, a disturbance term is used to locally represent the
contributions of such nonlinear dynamics. The system (plant)
dynamics is expressed in continuous-time as follows:

ẋp = Apcxp + Bpcu + Bpcd, (7)
y = Cpcxp + Dpcu + v, (8)

where xp ∈ Rnp and u ∈ Rm are the state of the plant and
the control input, respectively. Further, d ∈ Rnd , v ∈ Rl and
y ∈ Rl represent the disturbance, the measurement noise and
the measured output, respectively. The measurement noise is
assumed to be zero-mean, Gaussian and white. Further, the
dynamics of the disturbance term ((7) and (8)) is denoted as:

η̇ηηd = Adcηηηd + Bdcw, (9)
d = Cdcηηηd, (10)

where ηηηd ∈ Rnη and w ∈ Rnw are the state of the distur-
bance dynamics and an external driving signal, respectively.
The signal w can either be deterministic but unknown or
stochastic with the assumption of being zero-mean, Gaussian
and white. If the signal w is deterministic but unknown and
bounded, then a Luenberger state observer can be designed.
But, if the signal w is stochastic with the assumption of
being zero-mean, Gaussian and white, then a Kalman filter
can be designed. The plant dynamics given by (7)-(8) and
the disturbance dynamics given by (9)-(10) can be combined
into the following augmented system:

ẋ = Acx + Bcu + Bwcw, (11)
y = Ccx + Dcu + v, (12)

where

Ac =

[
Apc BpcCdc

0nd×np Adc

]
,Bc =

[
Bpc

0nd×m

]
,Bwc =

[
0np×nw

Bdc

]
,

Cc =
[
Cpc 0l×nη

]
, Dc = Dpc, x =

[
xT
p ηηηTd

]T
, (13)

where 0 is a zero-matrix of appropriate size. For systems
with a low sampling rate, an appropriate discretization
method should be selected. The sampled representation of
a linear time-invariant system given by (11)-(12) can be
obtained exactly using the exact discretization method. The
system is discretized with a fast model sampling time,
Tf ∈ R>0 and the measured outputs are obtained with a
slower sampling time, Ts ∈ R>0. These two sampling times
satisfy Ts = NTf where N ∈ Z>0. In imaging systems, Ts
corresponds to reciprocal of the frames per second (1/fps) of
the system. The block diagram of the dynamic system ((11)
and (12)) with different sampling rates is shown in Fig. 3.

After discretizing (11) and (12), the resulting system of
difference equations are given as follows:

x [(i+ 1)Tf ] = Adx [iTf ] +Bdu [iTf ] +Bwdw [iTf ] , (14)

y [jTs] = Cdx [jTs] +Ddu [jTs] + v [jTs] . (15)

The matrices in (14)-(15) can be computed usingAd Bd Bwd

0 I 0

0 0 I

 = exp


Ac Bc Bwc

0 0 0

0 0 0

Tf

 (16)

Cd = Cc, Dd = Dc (17)

where exp () is the matrix exponential operator [17]. Here,
0 and I are the zero and identity matrices of appropriate
size, respectively. For clarity of notation, the sampling time
variables in (14)-(15) are omitted, and we obtain

x(i+ 1) =Adx(i) + Bdu(i) + Bwdw(i), (i = 1, 2, 3, . . .), (18)

y(j) =Cdx(j) + Ddu(j) + v(j), (j = N, 2N, . . .). (19)

The system (18)-(19) can be rewritten using a unified time
step k (k = 1, 2, 3, . . .) as follows:
x(kN + c+ 1) = Adx(kN + c) + Bdu(kN + c) + Bwdw(kN + c),

y(kN) = Cdx(kN) + Ddu(kN) + v(kN), (20)

where c = 0, 1, . . . , N − 1. The multi-rate system of (20)
can be lifted into a single-rate system (Ts) as follows:

x(kN +N) = Aex(kN) + ue +we, (21)

y(kN) = Cdx(kN) +Ddu(kN) + v(kN), (22)

where

Ae = AN
d ,ue =

N−1∑
c=0

AN−1−c
d Bdu(kN + c), (23)

we =

N−1∑
c=0

AN−1−c
d Bwdw(kN + c). (24)

In the following, as an example of (11)-(12), the model
used for estimating the 2D positions of a micro-agent in
camera or 2D ultrasound images is explained. Consider the
x- and y- position coordinates of the micro-agent denoted by
px ∈ R, py ∈ R and the corresponding velocities denoted
by vx ∈ R, vy ∈ R. We consider the case when there are
no control inputs, thus u = 0 holds. Considering the state
vector xp =

[
px py vx vy

]T
and the disturbance vector

d =
[
dx dy

]T
, the system dynamics is given as follows:

ṗx

ṗy

v̇x

v̇y


︸ ︷︷ ︸

ẋp

=


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

Apc


px

py

vx

vy


︸ ︷︷ ︸

xp

+


0 0

0 0

1 0

0 1


︸ ︷︷ ︸

Bpc

[
dx

dy

]
︸ ︷︷ ︸

d

, (25)

y =

[
1 0 0 0

0 1 0 0

]
︸ ︷︷ ︸

Cpc

xp +

[
vx

vy

]
︸ ︷︷ ︸

v

, (26)

where the matrices given by (7)-(8) are used. The system
dynamics described by Apc in (25) with d = 0 is commonly
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Fig. 3: The block diagram of a dynamic system sampled at
different rates is presented. The system is discretized with a
fast model sampling time Tf and the measured outputs are
obtained with a slower sampling time Ts.
used in vision applications in the literature. However, in
order to have a more general yet simple model, a disturbance
term should be included. There are different ways to model
the disturbance term depending on the application. In order
to keep the formulation sufficiently general a polynomial
function is selected [18]. The disturbance term can be
locally represented by an (n− 1)th degree family of Taylor
polynomial function of time as follows:

dj(t) =

n−1∑
i=0

dj,it
i + dj,r(t), (27)

where j ∈ {x, y}, dj,i ∈ R and dj,r(t) ∈ R are the coef-
ficients of the polynomial and a residual term, respectively.
It is assumed that the residual term, dj,r(t), is such that its
time derivatives for i ≥ n satisfy |d(i)j,r(t)| ≤ γi−r ≈ 0, thus
they are all uniformly absolutely bounded and small enough
to be negligible [18]. This implies that the residual term is
slowly varying with respect to time. When, the degree of the
polynomial is n we obtain,

η̇ηηd,1

η̇ηηd,2
...

η̇ηηd,n−1

η̇ηηd,n


︸ ︷︷ ︸

η̇ηηd

=



02 I2 . . . 02 02

02 02 . . . 02 02

...
...

. . .
...

...
02 02 . . . 02 I2

02 02 . . . 02 02


︸ ︷︷ ︸

Adc



ηηηd,1

ηηηd,2

...
ηηηd,n−1

ηηηd,n


︸ ︷︷ ︸

ηηηd

+



02

02

...
02

I2


︸ ︷︷ ︸
Bdc

[
d(n)
x,r

d(n)
y,r

]
︸ ︷︷ ︸

w

,

[
dx dy

]T
︸ ︷︷ ︸

d

=
[
I2 02 . . . 02 02

]
︸ ︷︷ ︸

Cdc

ηηηd, (28)

where 02 and I2 are zero and identity matrices, respectively.
Further, in (28) each element of the state vector ηηηd satisfies
ηηηd,i ∈ R2. In the following subsections, the applications of
multi-rate Luenberger state observer and multi-rate Kalman
filter to the system described by (21) and (22) are detailed.

B. A Multi-rate Luenberger Observer
The standard Luenberger observer uses the model of a

given system together with a suitable update term to estimate
state variables that cannot be measured. In order to apply
it to the multi-rate augmented system dynamics ((14)-(15))
certain modifications are required [19]. First of all the
system (21)-(22) should be observable. This condition is
satisfied for the micro-agent dynamics described in Section
III-A. This is satisfied if the observability matrix OT =[
CT
d AT

e C
T
d . . . (A

np+nd−1
e )TCT

d

]
has full rank, i.e.

rank (O) = np + nd. Since y (kN) is only available every
N th step for the samples between kN and kN + N , the
value y (kN) has to be used in the feedback term. Thus, the

observer is given as follows:
x̂ (kN + 1 + c) =

Adx̂ (kN + c) +Bdu (kN + c)− L (ŷ (kN)− y (kN)) (29)

for c = 0, 1, . . . , N − 1 with the observer state x̂ (kN + c)
and feedback gain matrix L. The observer state x̂ (kN +N)
after N time steps is given as follows:

x̂ (kN +N) =

Aex̂ (kN) + ue −

(
N−1∑
c=0

Ac
d

)
L (ŷ (kN)− y (kN)) (30)

and the observed output ŷ (kN) is given by

ŷ (kN) = Cdx̂ (kN) + Ddu (kN) . (31)

Using (21), (22) and (30) and defining the observation error
as e (kN) = x̂ (kN) − x (kN), the error dynamics can be
given as follows:

e (kN +N) =
(
Ae − LCd

)
e (kN) + Lv (kN)−we, (32)

where L = (
∑N−1
c=0 Ac

d)L is an auxiliary feedback gain
matrix. This is done such that if the system is observable,
the eigenvalues of the nominal system (i.e. for v = 0 and
we = 0) can be placed at arbitrary locations, for instance
using Ackermann’s formula. Consequently, the observer gain
matrix L can be selected as follows:

L =

(
N−1∑
c=0

Ac
d

)−1

L (33)

when the inverse of the matrix
∑N−1
c=0 Ac

d exists. The nom-
inal system is asymptotically stable if all of the eigenvalues
are inside the unit disk. The stability of the error dynamics
(32) can be shown using a variation of the input-to-state
stability theorem [20].

C. A Multi-rate Kalman Filter
The application of a Kalman Filter to a system with

multiple sampling rates where the measurement sampling
rate is low, is different as compared to a standard Kalman
filter [9]. The multi-rate Kalman filter involves two steps;
prediction and correction. In the prediction step, there are
no available measurements in between the measurement
sampling instants. Therefore, the prediction is based on the
augmented system dynamics (18)-(19) which is an open-loop
system. Denote x̂ ( i| j) as the estimate of x̂(i) based on the
measurement before and on time jTs. At the time instants
t = (Nk+m)Tf (∀m = 1, 2, . . . , N), the fast-rate estimate
is given as follows:

x̂ (Nk +m|Nk) =Am
d x̂ (Nk|Nk)

+

m−1∑
c=0

Am−1−c
d Bdu (kN + c) . (34)

At the time instants t = N(k + 1)Tf , new measurements
y(Nk + N) are available. Therefore, in the correction step
the estimate is given as follows:

x̂ (Nk +N |Nk +N) = x̂ (Nk +N |Nk)

+K (k + 1) [y (Nk +N)−Cdx̂ (Nk +N |Nk)] . (35)
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Consequently, the gain matrix K is updated through
K (k + 1) = M (k + 1)Cd

T
[
CdM (k + 1)Cd

T + V
]−1 (36)

M (k + 1) = AeM (k)AT
e + We

−AeM (k)Cd
T
[
CdM (k)Cd

T + V
]−1

CdM (k)AT
e , (37)

where V and We are the covariances of the measurement
v and process noise we, respectively. The covariance for
the measurement noise is given by V = cov (v). Since,
the correction step occurs every N samples with the slow
sampling time Ts, the covariance of the process noise for
(21) should be used. The covariance of the process noise
we for the system (21) with the slow sampling time Ts can
be related to the covariance of the process noise w for the
system (18) with the fast sampling time Tf using (24) as:

We = cov
(

N−1∑
c=0

AN−1−c
d Bwdw (kN + c)

)
= E

[
wew

T
e

]

=

(
N−1∑
c=0

AN−1−c
d Bwd

)
W

(
N−1∑
c=0

AN−1−c
d Bwd

)T

, (38)

where W = cov (w) and E [·] is the expectation operator.

IV. COLLABORATIVE TRACKING USING OBSERVERS

One of the most important issues in visual tracking is
error minimization. After the template and current images are
registered to find the position of a micro-agent in the current
image, there is a residual error called the registration error.
If the registration error is not minimized during the tracking,
the error accumulates over time and tracking eventually fails.
In order to minimize the error, template update with drift
correction strategy is used. This method is efficient when a
micro-agent is tracked using only one of the visual tracking
methods. In this study, SSD and NCC based visual tracking
methods are used to collaboratively track the micro-agents
[21]. If these two methods are used to track micro-agents in
parallel, the outputs of these methods can be merged using
either a Kalman or a Luenberger state observer to minimize
the error. Thus, tracking becomes more accurate and resilient
to failures. The data obtained from the SSD and NCC based
visual tracking methods can be merged as follows:

y =

[
ySSD

yNCC

]
=

[
Cd

Cd

]
x +

[
vSSD

vNCC

]
, (39)

where ySSD and yNCC are the outputs of the SSD and
NCC visual tracking methods, respectively. Further, vSSD
and vNCC denote the registration errors of SSD and NCC,
respectively. The scheme of the merging is shown in Fig. 4.

yNCC

ySSDVisual Tracking

Multiplexer

y byusing SSD

Visual Tracking
using NCC

State
Observer

Fig. 4: Observer based merging scheme for sum of squared
differences (SSD) and normalized cross correlation (NCC)
based tracking.

V. EXPERIMENTS

In this section, the experimental setup is first described.
This is followed by execution times and experimental results.

A. Experimental Setup
In the experiments, four iron-core coils placed on the

same plane were used for planar manipulation of the micro-
agents. Each coil was driven by an Elmo 1/60 Whistle
DC servo drive. Further details about the electromagnetic
setup can be found in our previous work [2], [22]. During
the manipulation of the micro-agents, 2D US images were
acquired using a Siemens ACUSON S2000 US machine with
a 18L6HD linear 2D US probe. The acquired 2D US images
were transferred to the computer using an Epiphan DVI2USB
3.0 frame grabber. Microscope images of the micro-agents
were captured using an Optem FUSION 7:1 zoom lens
module and a XIMEA xiQ USB 3.0 high speed camera pair.
B. Execution Times

The proposed method was implemented using both MAT-
LAB and C++ with OpenCV library. All of the experiments
were performed on a MacBook Pro which has a 2.9 GHz
Intel Core i5 CPU with 8 GB RAM. During the tracking,
the size of the template images was 60 × 60 square pixels.
The maximum iteration number and the predefined threshold
for terminating the iterations were set to 20 and 0.01,
respectively. The average execution times were measured as
69.68 [ms] in MATLAB and 13.22 [ms] in C++, respectively.
The execution time of the proposed method was significantly
reduced in C++ implementation, up to five fold, that allows
the real-time execution of the proposed method with the
frame rate of the imaging device, which is about 75 fps.
C. Experimental Results

1) Visual Tracking Results: During the experiments, mag-
netic hydrogel grippers, spherical and elliptical shaped
micro-agents are used. All of the agents are imaged using a
microscope and a 2D US machine. In total, 120652 images
are acquired. During the image acquisition, minimum and
maximum fps are 14 and 200, respectively. In order to eval-
uate the tracking performance, an elliptical shaped micro-
agent was manipulated using the electromagnetic system for
65 seconds. During the manipulation, frames were acquired
at 198 fps and 12801 frames were captured in total. The
tracking performance was quantitatively evaluated by com-
puting both NCC and a combination of Forward-Backward
error and NCC (FB+NCC) values [23]. NCC value was com-
puted between the template image and the image obtained
after registration. In order to compute the FB+NCC value, the
image obtained after registration, called the forward image,
and the previous frame was registered to obtain the backward
image. NCC+FB value was calculated by computing NCC
value between the backward and the template images. NCC
and FB+NCC values were computed as 0.9943 ± 0.0117
and 0.9970± 0.0082, respectively. As mentioned in Section
II, SSD and NCC based visual tracking methods can fail
if the agent moves too much between the measurements.
This was experimentally tested by magnetically steering an
elliptical shaped micro-agent with a length of 48 pixels. It
was observed that if the Euclidean distance between the agent
positions in two consecutive frames is more than 38 pixels,
which corresponds to a velocity of 163.57 mm/s, tracking
fails. But such a movement is an extreme case in our system.
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Visual tracking results of a magnetic hydrogel gripper with
a tip-to-tip distance of 4mm in 2D US images are shown
in Fig. 5. The images are acquired at 30 fps and the gripper
is manipulated using magnetic fields in a water filled tube.
Synthetic artifacts are also added to the images to show that
the proposed visual tracking method can track the micro-
agents in a dynamic background and under realistic condi-
tions. In order to obtain synthetic artifacts, abdominal region
of a volunteer is scanned and recorded with a 2D US probe.
After the raw image is acquired during manipulation of the
gripper, the raw and abdominal images are superimposed.

Fig. 5: Tracking results for a hydrogel gripper with a tip-to-
tip distance of 4mm in 2D ultrasound images. Please refer
to the accompanying video.

A 1mm elliptical shaped micro-agent is tracked in mi-
croscope images. Before image acquisition, a printed vein
pattern is placed at the bottom of the Petri dish and the agent
is magnetically steered. The motion of the micro-agent in the
images consists of translation and rotation transformations.
The agent is successfully tracked using the proposed visual
tracking method. During the tracking, images are acquired
at 20 fps. Fig. 6 shows results of visual tracking.

Fig. 6: Tracking results for a 1mm elliptical shaped micro-
agent in microscope images. Please refer to the accompany-
ing video.

Tracking results for a 1mm spherical micro-agent in mi-
croscope images are shown in Fig. 7. Similar to the previous
experiment, the Petri dish is put on a printed vein pattern.
Images are acquired at 25 fps. Instead of moving the agents
using magnetic fields, the Petri dish is moved by hand to test
the tracking robustness under large motion displacements.
Also, this image sequence suffers from strong illumination
variations. The center image shown in Fig. 7 suffers from
strong light intensity and shadow. Further, the right image
shown in Fig. 7 suffers from low intensity. The agent is
successfully tracked under these conditions which confirms
the robustness of the proposed visual tracking method.

Fig. 7: Tracking results for a 1mm spherical shaped micro-
agent in microscope images under large motion displace-
ments and significant illumination variations. Please refer to
the accompanying video.

The proposed visual tracking method can also track multi-
ple micro-sized agents. In our experiments, two spherically-
shaped 100µm agents are moved independently using the
controller described in [22]. The micro-agents are imaged
using a microscope and tracked using both SSD and NCC
based methods. During the tracking, images are acquired at
40 fps and the micro-agents are tracked in parallel. Tracking
results are shown in the accompanying video.

2) Multi-rate State Estimation Results: The accuracy of
multi-rate state estimation was evaluated using a high speed
camera. We have implemented both Luenberger and Kalman
state estimators offline. An elliptical shaped micro-agent
with a length of 48 pixels was magnetically steered for 50
seconds. During the manipulation, frames were acquired at
200 fps and 9091 frames were captured in total. The accuracy
of multi-rate state estimation is evaluated by tracking the
particle at 200 fps which serves as ground truth. Then,
multi-rate state estimation was performed by reducing the
acquisition rate to 25, 50, 100 fps for N equals to 2, 4, and
8, respectively. Note that Bd = 0 and Dd = 0 holds for the
system (25) and (26). Maximum absolute error (M.A.E) in
x− and y− axes, mean and standard deviation of the error
for different values of N and nd as described in Section III-A
are tabulated in Table I in pixels. An example output of multi-
rate state estimation using Luenberger observer and Kalman
filter in x− axes for N equal to 8 and nd equal to 2 were
depicted in Fig. 8. It can be observed from Table I, when nd
increases, the accuracy of the estimated state obtained using
either a Kalman or a Luenberger state estimator and when N
increases, the accuracy of the estimates reduces as expected.
TABLE I: Maximum absolute error (M.A.E), mean error,
and standard deviation (std) are presented to compare per-
formance between Luenberger and Kalman multi-rate state
estimators. All units are given in pixels.

nd = 0 nd = 1 nd = 2
(Luen.) (Kalm.) (Luen.) (Kalm.) (Luen.) (Kalm.)

N = 2

M.A.E. -X 1.203 0.848 0.688 0.842 0.656 0.808
M.A.E -Y 1.364 0.977 0.794 0.759 0.761 0.745

Mean 0.324 0.106 0.230 0.071 0.214 0.065
Std 0.197 0.094 0.107 0.074 0.010 0.073

N = 4

M.A.E. -X 3.952 1.779 1.211 1.222 0.721 0.864
M.A.E -Y 2.590 1.676 1.082 1.310 0.765 1.360

Mean 0.946 0.333 0.334 0.166 0.236 0.110
Std 0.746 0.301 0.195 0.164 0.113 0.125

N = 8

M.A.E. -X 12.022 6.196 3.908 4.806 1.793 2.273
M.A.E -Y 6.883 4.496 3.093 4.060 1.186 2.432

Mean 3.237 1.231 0.959 0.819 0.403 0.355
Std 2.441 1.109 0.733 0.793 0.305 0.394

3) Collaborative Tracking Results: A 100µm spherically
shaped micro-agent is tracked with SSD and NCC based
visual tracking methods in parallel. After each registration
of template and current images, the outputs are merged
separately by Luenberger (29) and Kalman (34), (35), (37),
(38) estimators. Further, the merging is also applied to the
case of multi-rate sampling. The results are shown in Fig. 9.

VI. CONCLUSIONS

This study presents multi-rate Luenberger and Kalman
state estimators for visual tracking of magnetic micro-agents.
The main contribution is the intersample state estimation of
micro-agents using slow medical imaging modalities. The
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Fig. 8: Multi-rate sampling results using a Luenberger ob-
server (top) and a Kalman filter (bottom) along the x− axis
for N equals to 8 and nd equal 2.

Fig. 9: Results of the merging process using Luenberger (left)
and Kalman (right) state estimators.

micro-agents are tracked using SSD and NCC cost functions
in medical images. Further, the outputs of SSD and NCC
are merged using state estimators for robust tracking. During
the experiments, magnetic micro-agents with different shapes
are steered using coils and imaged separately with a 2D US
machine and a microscope. The advantages of the proposed
method are demonstrated by means of extensive experiments
under challenging conditions such as strong illumination and
intensity variations and large motion displacements. During
the experiments, it was observed that Kalman filter was
more accurate than Luenberger observer and the agents could
be tracked more reliably using NCC based visual tracking
compared to SSD based visual tracking. Experimental results
demonstrate that the proposed method can accurately track
micro-agents with different shapes in images obtained from
slow medical imaging modalities while providing intersam-
ple estimates in real-time. We envision that this method could
be readily utilized with clinical instrumentation to accelerate
translation of the use of microrobots in realistic minimally
invasive operations.
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