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ABSTRACT: Remotely actuated synthetic micro-swimmers have many medical applications such as targeted
drug delivery and non-invasive surgery. This paper investigates the influence of structural resonances on the
propulsion of bio-inspired micro-swimmer designs in a traveling wave acoustic field. A second-order perturba-
tion approach was used to model and solve for the first order time-harmonic and second order acoustic streaming
fields and to evaluate propulsive forces on the swimmer. Actuation of the swimmer at its resonance frequencies
is found to influence these propulsive forces in a direction dependent on the excited swimmer mode shape. This
suggests a possibility for controlling the direction of movement of micro-swimmers remotely based on actuation
frequency.
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1 INTRODUCTION

A great diversity of propulsion mechanisms can
be observed in nature on a variety of scales. Of
special interest in medical applications are swim-
ming mechanisms that operate at the micro scale.
Micro-robots that can be maneuvered precisely in
biological environments would have tremendous
applications in medical care, for example in targeted
drug applications. The physics of swimming at
micro-scale are very different from those occurring at
larger scales [1]. At such small scales the Reynolds
number is very low, meaning that viscous forces
dominate over inertial forces [2]. This presents a
challenge in finding suitable methods of propulsion
of micro-robots as the propulsion methods commonly
employed at larger scales cannot be used. Whereas
in the high Reynolds number flows of ships or fish
in water the swimming motion can be reasonably
decomposed into a propulsive force due to inertial
effects and a counter-acting drag force due to viscous
contributions, both the propulsive and resistive forces
in low Reynolds number flows originate from viscous
effects. Illustrative of the dissimilarity of propulsion
at high and low Reynolds numbers is that any sort
of reciprocal motion such as that employed by, for
example, scallops cannot produce any nonzero time-
averaged displacement in a low Reynolds number
flow as illustrated in the paper by Purcell [3].

Acoustics have been successfully used to manipulate
particles in a fluid by a variety of mechanisms [4].

The two main acoustofluidic forces on particles in a
fluid are the acoustic radiation force and the Stokes’
drag force, of which the relative magnitude is deter-
mined by particle size as described by Lamprecht [5].
Many current acoustic particle manipulation methods
rely on generating standing wave fields within a
channel containing the particles. A downside of this
is the strong dependence on channel geometry to
accurately control particle movement. For in-,vivo
applications such control of channel geometry is in
general not possible.

Recent research by Ahmed [6] found that structural
resonances can be used to induce propulsive forces on
a micro-swimmer in a traveling wave field. This is a
promising area of study as such a traveling wave field
is largely independent of channel geometry. However
the exact mechanism responsible for the propulsive
forces in this situation remains unclear. This paper
aims to investigate the relationship between structural
resonances and propulsive forces on a swimmer in
a traveling acoustic wave field by means of FEM
simulations in COMSOL multiphysics software.
Special attention is paid to the influence of geometry
and swimmer dimensions.

2 METHODOLOGY

The numerical simulations performed consist of a
structural analysis, the addition of acoustics and



finally a simulation of the entire acoustofluidic prob-
lem. To reduce computational load all analyses were
performed in 2D. All simulations were carried out
using COMSOL multiphysics 5.3a software with the
solid mechanics, pressure acoustics, thermoviscous
acoustics and laminar flow interfaces.

2.1 Structural analysis

The structural analysis serves to investigate swimmer
vibrational modes when excited by a harmonic
perturbation of varying frequency. Various swimmer
geometries were created using the CAD software
SolidW.orks and then imported into COMSOL mul-
tiphysics simulation software. Two main variations
in geometry were explored: variation in swimmer
tail size and the addition of sharp-edged protrusions
to the head of the swimmer. Three swimmer lengths
from 180μm to 380μm were simulated as well as
two designs of 180μm in length utilizing small and
large protrusion sizes. These will be referred to as
the stingray I and stingray II designs respectively.
An overview of the designs can be seen in figure 1.
In the simulations the swimmer’s material properties
were taken to be that of PDMS as listed in table 2 in
appendix A. A small amount of internal damping was
added which was modeled as proportional damping.
Damping coefficients of 0.01 were chosen on the first
two asymmetric mode eigenfrequencies.

Fig. 1: Geometry of the simulated swimmers

The eigenfrequencies and the corresponding eigen-
modes of each swimmer design were determined
using COMSOL’s eigenfrequency study. Of these
modes the ones showing an asymmetric swimmer
motion are most relevant as these should theoretically
provide a propulsive force if the swimmer were
immersed in a viscous medium.

In order to assess the magnitude of the deformation
when the swimmers are excited in or around their
eigenfrequencies a frequency sweep was carried out.
In this study a harmonic load was placed on one side
of the swimmer to simulate the situation of excitation
by sinusoidal acoustic waves. Elastic strain energy
was used as a measure of deformation magnitude.

2.2 Acoustics

Following the structural analysis the model was
extended to examine the effects of acoustic actuation.
This was done by modeling a 1500μm by 1000μm
rectangular domain filled with water representing the
medium around each swimmer using the pressure
acoustics module in COMSOL. Plane-wave radiation
boundary conditions were imposed upon the top and
bottom sides of the domain to simulate incoming and
exiting acoustic waves. To mimic the situation of
acoustic waves propagating in the lateral direction of
the swimmer the sides of the medium were assigned
hard boundary wall conditions.

On the bottom side of the medium the incoming
acoustic waves were modelled using an incident pres-
sure field boundary condition. Pressure variations
of the form p(x, t) = p0sin(ω0t) were applied in
which p0 and ω0 represent the pressure amplitude and
angular excitation frequency respectively. In this case
a value of 10MPa was used for p0 and ω0 was varied
between 1kHz and 100kHz.

To determine whether the asymmetric motion of the
eigenmodes found in the structural analysis can be
successfully induced using acoustics a frequency do-
main study was carried out. First the eigenfrequen-
cies of the swimmer were once again determined us-
ing an eigenfrequency study, this time with the sur-
rounding medium. Then the frequency response was
determined by sweeping ω0 over a range of values en-
compassing these eigenfrequencies.

2.3 Fluids

Finally the complete acoustofluidic problem was
simulated to investigate streaming patterns and
evaluate propulsive forces on the swimmer. In the
following a brief explanation of the physics and
mathematics involved will be given followed by the
implementation in COMSOL.



2.3.a Governing equations
The governing equations for the fluid medium are the
continuity equation and the Navier-Stokes equation:

∂ρ

∂t
+∇ · (ρ~u) = 0 (1)

∂

∂t
(ρ~u)+ρ(~u·∇)~u = −∇p+µ

[
∇2~u+(

1

3
+µb)∇(∇·~u)

]
(2)

where ρ is the mass density, ~u is the velocity and p is
the fluid pressure. µ represents the dynamic viscosity
and µb ratio of dynamic to bulk viscosity µb = µB/µ.
Solving these nonlinear partial differential equations
numerically on a sufficiently fine mesh would require
tremendous computing power. A common approach
to simplify the calculations is to apply a second-order
perturbation approach as described in the paper by
Bruus [7] in which the velocity, pressure and density
fields are assumed to have the form of:

~u = ~u1 + ~u2 (3)
p = p0 + p1 + p2 (4)
ρ = ρ0 + ρ1 + ρ2 (5)

where the subscript 0, 1 and 2 denote the quiescent,
first order and second order terms respectively. In
the equations (3), (4) and (5) the first order terms
correspond to the time-harmonic acoustic perturba-
tions and the second order terms are due to acoustic
streaming effects. These streaming effects arise due
to the nonlinear terms in the Navier-Stokes equations
[7]. Physically their origin is explained by the viscous
attenuation of sound waves as they travel through a
medium and interact with boundaries [8].

By linearizing equations (1) and (2) it is possible to
solve for the first and second order fields separately
and use superposition to determine the complete
approximate solution. Due to the time-harmonic
nature of the first-order quantities the first-order fields
can be assumed to be of the form eiωt as described in
the book by Mason [9]. The nonlinear terms omitted
in the first order equations are then used as source
terms in the second order equations.

The linearized continuity and Navier-Stokes equa-
tions applied to the first-order fields are given by the
equations:

∂ρ1
∂t

+ ρ0∇ · ~u1 = 0 (6)

ρ0
∂ ~u1
∂t

= −∇p1 +µ
[
∇2 ~u1 +(

1

3
+µb)∇(∇ · ~u1)

]
(7)

where the two nonlinear terms −∇ · (p1 ~u1) and
ρ1(∂ ~u1/∂t) + ρ0( ~u1 · ∇) ~u1 which have been omitted
in equations (6) and (7) will be used as source terms
for the second order equations.

As the second-order acoustic streaming fields are
steady, evaluating these on the microsecond timescale
of the acoustic oscillations is not of interest. This
simplifies the problem to first solving the first-order
equations in the frequency domain and then solving
the time-averaged second order equations. The time-
averaged second order continuity and Navier-Stokes
equations are given by:

ρ0∇ · 〈 ~u2〉 = −∇ · 〈ρ1 ~u1〉 (8)

−∇p2 + µ
[
∇2 ~u2 + (

1

3
+ µb)∇(∇ · ~u2)

]
=〈

ρ1
∂ ~u1
∂t

〉
+ ρ0 〈( ~u1 · ∇) ~u1〉

(9)

where the angle brackets indicate a time-averaged
value over one oscillation period. The time-averaged
harmonic first order quantities can be calculated using
the real-part rule:

〈f(t)g(t)〉 = 0.5Re
[
f(t)g(t)

]
(10)

in which the overbar indicates the complex conjugate.
These second order equations can then be used to
model the steady-state acoustic streaming fields that
result from the nonlinear effects in the first-order
acoustic problem.

After solving for the first and second order fields the
forces by the fluid on the swimmer can be evaluated.



In general the force on an object immersed in a fluid
medium can be calculated using:

F =

∫
S(t)

(σ · ~n)dS (11)

where the bold face indicates a tensor quantity. In
equation (11) σ is the stress tensor and ~n is the unit
normal vector pointing from the surface of the object
S(t) towards the fluid. Applying this to the situation
of the swimmer and making use of the perturbation
theory approach this force can be time-averaged and
divided into first and second order contributions:

〈F 〉 =
〈∫

S(t)

(σ1 · ~n)dS
〉
+

∫
S0

(〈σ2〉 · ~n)dS (12)

Note that for the second order contribution the sur-
face S0 is time-invariant as a steady flow is assumed in
the second simulation step. This contribution contains
the acoustic radiation force which is caused by the
nonzero time-averaged pressure 〈p2〉 and the Stokes’
drag force caused by the nonzero time-averaged ve-
locity 〈 ~u2〉. Additionally, though the time-averaged
first-order stress tensor itself is 0, integrating it over
the time-varying surface of the swimmer S(t) gives
rise to a nonlinear term which can be obtained via the
Leibniz-Reynolds transport theorem [5]. Physically
this force originates from the harmonic motion of the
swimmer in the varying first-order pressure and veloc-
ity fields. This force will be referred to as the LRTT
force and is calculated using:

〈∫
S(t)

(σ1 · ~n)dS
〉

= −
〈∫

S(t)

ρ0 ~u1 ~u1 · ~ndS
〉

(13)

2.3.b Model description
The acoustofluidic simulations consist of two steps:
one to solve for the time-harmonic first-order acous-
tic fields as described in equations (6) and (7) and
another to solve for the second-order time-averaged
acoustic streaming according to equations (8) and (9).

The first-order acoustic field around the swimmer
was computed using the thermoviscous acoustics and
solid mechanics modules for the fluid and swimmer,
respectively. The physics of both modules were cou-
pled using an acoustic-structure interaction boundary

condition on the perimeter of the swimmer.

For this simulation the fluid medium was modeled
as a rectangular domain of 1050μm by 600μm. A
smaller domain size was chosen to limit the increase
in computational load when solving for the more
complex physics compared to the acoustics analysis.
On the lower border of the domain a harmonically
varying velocity was prescribed to model an acoustic
perturbation in the form of a traveling wave. The
amplitude of this velocity perturbation was normal-
ized with respect to frequency to yield a similar
magnitude of the resulting acoustic pressure field.
This was done using a normalization function derived
by fitting a curve to unscaled values of the acoustic
pressure magnitude as a function of frequency. All
other domain borders were modeled using perfectly
matched layers to mimic an infinite domain.

The steady second-order acoustic streaming field
was modeled on the same domain using a stationary
study in the laminar flow module in COMSOL. In
this case all boundaries of the fluid domain including
that between the swimmer and the medium have
been modeled using wall boundary conditions. The
nonlinear source terms from the first order equations
have been implemented using weak contributions
applied to the fluid domain.

After solving for the first and second order fields suc-
cessively the propulsive forces on the swimmer were
determined. The force component due to the integra-
tion of the first-order stress tensor was calculated us-
ing the expression in equation (13). For the second-
order force contributions the total fluid stress tensor in
the steady acoustic streaming field was integrated over
the swimmer surface. Additionally the viscous stress
was integrated to discern the magnitude and direction
of Stokes’ drag force. The acoustic radiation force
was computed as the difference of the total propulsive
force and Stokes’ drag force.

3 RESULTS

3.1 Structural analysis

The eigenmodes and the corresponding eigenfrequen-
cies for the regular 180μm swimmer and the stingray
I swimmer are shown in figure 2. For these swimmer
designs the modes consist of harmonics of the tail.



Fig. 2: Eigenmodes and corresponding frequencies of 180μm
swimmer without protrusions (top) and stingray I swimmer (bot-
tom)

For the protrusion-less swimmers elastic strain energy
is plotted against the excitation frequency in figure
3. Changing swimmer tail size did not alter the
shape of the eigenmodes, instead solely changing the
frequencies at which these occur. Greater tail size
results in a shift of the eigenmodes towards lower
frequencies.

Fig. 3: Elastic strain energy of various size micro-swimmers
without protrusions.

Contrary to the stingray I model, the large protru-
sions of the stingray II model introduce new vibra-
tional modes as shown in figure 4. These modes show
up as additional peaks in the frequency response plot
of figure 5. Additionally the elastic strain energy of
the protrusion-less 180µm swimmer was plotted for
comparison reasons. It can be seen that the stingray
I swimmer has an equal number of eigenfrequencies
which are shifted to slightly higher frequencies com-
pared to those of the protrusion-less swimmer.

Fig. 4: Eigenmodes and corresponding frequencies of stingray II
swimmer

Fig. 5: Elastic strain energy of 180μm micro-swimmers with dif-
ferent protrusion sizes.

3.2 Acoustics

The eigenfrequencies in the acoustic model were low-
ered by a factor of 2 to 3 depending on swimmer
design compared to the results obtained in the struc-
tural analysis. It was found that exciting the swimmer
with an incident pressure field corresponding to these
shifted eigenfrequencies indeed succeeded in produc-
ing the desired asymmetric motion. Pressure nodes
are observed at the antinodes of the swimmer dis-
placement wave as shown for the 180μm swimmer
and stingray II swimmer in figure 6.

3.3 Acoustofluidics

In the results from the acoustofluidic analysis a great
similarity was observed in the flow fields of the
protrusion-less swimmers and the stingray I swim-
mer. For this reason only those results pertaining
to the regular 180μm swimmer and the stingray II
swimmer will be discussed.



(a) 15202Hz (b) 36236hz

Fig. 6: Pressure fields around acoustically-actuated swimmers
excited at eigenfrequencies

Evaluation of the forces on the swimmers at different
excitation frequencies shows that the second-order
contributions of the acoustic radiation force and
Stokes’ drag force are dominant over the first-order
contributions from the integral in equation (13) by at
least three orders of magnitude for the investigated
frequencies. For this reason these first-order contri-
butions will be neglected in the following discussion.
As the force in the x direction longitudinal to the
swimmer is much larger than that in the lateral y
direction this will be the topic of discussion in the
following.

For all swimmer designs the propulsive forces
when using the aforementioned normalization to
the first-order pressure field decrease with actuation
frequency. The acoustic impedance of the swimmer
material is of great influence on both the swimmer
deformations and the propulsive forces. This can be
illustrated by changing the mass density (and hence
the acoustic impedance) of the swimmer and plotting
the propulsive forces as in figure 7. Regular PDMS
has a density of 970kg/m3 and its acoustic impedance
is very similar to that of water. This reduces scattering
of incoming acoustic waves and leads the swimmer
to behave similarly to the fluid around it [10]. Hence
its movement consists predominantly of rigid-body
motion with only small modal deformations.

By changing the density the relative magnitude of
modal deformations becomes much greater as shown
in the inset of figure 7. This change in deformation
has an influence on both the direction and magnitude
of the propulsive forces. As the influence of these
modal vibrations on propulsive forces is the main
focus of this research a mass density of 9700kg/m3

was used for all of the following results.

To further investigate the effect of modal vibrations on

Fig. 7: Propulsive force magnitude in the x direction at various
frequencies for the 180µm swimmer with different density val-
ues. The swimmer deformation at 30kHz is shown as an inset.
The arrows next to the inset figures indicate the direction of the
propulsive force.

the propulsive forces first a frequency sweep was car-
ried out for the increased-density PDMS swimmers.
Then propulsive forces were evaluated on a narrow
range around the eigenfrequencies. The frequency re-
sponse of the increased-density swimmers is shown in
figure 8.

Fig. 8: Frequency response of the increased-density 180µm
swimmer and stingray II swimmer

At low frequencies the effect of excitation at the
eigenfrequencies (peaks of figure 8) is obscured by
general tendency of a rapid decrease in propulsive



force with frequency until around 60kHz as seen
in figure 7. Around higher eigenfrequencies an
appreciable relation between large deformations and
propulsive forces can be observed.

The second-order velocity field near the eigenfre-
quency of 81350Hz is shown in figure 9. Note the
pair of vortices near the tail, which are also observed
for the flow fields at the other eigenfrequencies of
66200Hz and 89950Hz.

Evaluating the propulsive forces near the eigenfre-
quencies of 66200Hz, 81350Hz and 89550Hz reveals
a positive relationship between propulsive forces and
elastic strain energy (deformation). The force compo-
nents and elastic strain energy when exciting at these
frequencies is shown on the top of row figure 11. It
was found that an increased viscous (Stokes’ drag)
force contribution at the tail is primarily responsible
for the increased propulsive forces at 66200Hz and
81350Hz as seen in figures 10a and 10b. At 89550Hz
a sharp increase in acoustic radiation force acting on
the front of the swimmer head causes an increase in
total propulsive forces despite some rearward viscous
force contributions as seen in figure 10c.

Fig. 9: Second-order velocity field at 81350Hz

The propulsive forces on the stingray II swimmer are
plotted against frequency near the eigenfrequencies
in the bottom of figure 11. At eigenfrequencies of
40700Hz and 66200Hz propulsive forces increase
akin to the case of the regular 180μm swimmer,
though the effect is less pronounced. However near
the eigenfrequency at 80700Hz a decrease in propul-
sive forces occurs. The corresponding second-order
velocity and pressure fields are shown in figure 12.

(a) 84000Hz

(b) Eigenfrequency of 81350Hz

(c) Eigenfrequency of 89550Hz

Fig. 10: X-components of the acoustic radiation force (gray) and
Stokes’ drag force (black) on the protrusion-less swimmer sur-
face

(a) Velocity (b) Pressure

Fig. 12: Second-order fields for the stingray II swimmer excited
at its eigenfrequency of 80700Hz

The x-components of the acoustic radiation force and
Stokes’ drag force plotted on the swimmer surface as
shown in figure 13.

For excitation frequencies above and below the eigen-
frequency the acoustic radiation force has a positive
component in the regions just behind the protrusions
which disappears as the swimmer vibrates at reso-
nance. Additionally a negative Stokes’ drag force
component appears at the protrusions.



Fig. 11: Propulsive forces on the protrusion-less 180μm and stingray II swimmer.

(a) 77000Hz

(b) Eigenfrequency of 80700Hz

Fig. 13: X-components of the acoustic radiation force (gray) and
Stokes’ drag force (black) on the stingray II swimmer surface

4 DISCUSSION

A structural analysis of swimmer designs shows
that lengthening the swimmer tail or adding small
protrusions shifts eigenfrequencies to lower values.
This can be explained by the decreased specific
stiffness of the long-tailed designs. Similarly the
lower eigenfrequencies of the stingray I design can
be explained by the increased mass from the larger
head size while the stiffness of the tail remains about
the same as in the regular 180μm model. Large pro-
trusions as in the stingray II design lead to additional
vibrational modes in which the protrusions vibrate.

A similar rationale can be used to explain the
lowering of eigenfrequencies for all designs with
the addition of fluid in the acoustic analysis. This
surrounding medium must move with the swimmer
as it vibrates, effectively adding mass to the system
and hence lowering the eigenfrequencies.

From the acoustofluidic analysis the acoustic
impedance of the swimmer material was found to
be relevant for the first and second order streaming
fields as it influences the scattering of acoustic
waves as they hit the swimmer. It is expected that
manipulating the acoustic impedance of different
parts of the swimmer may provide further control
over the acoustic fields and propulsive forces. This
is a promising topic for new research to further gain
insight into possible means of controlling synthetic
micro-swimmers using acoustics.

Excitation at the eigenfrequencies in general results
in an increase of propulsive forces for the 180μm
swimmer which most readily presents itself in the vis-
cous force term. An exception is the eigenfrequency
of 89550Hz where the acoustic radiation force is
responsible for the increased propulsive force, in fact
counteracting a rearward viscous force contribution.



A physical explanation for this increase in viscous
forces pointing towards the head may be found in
the position of the two counter-rotating vortices at
the tail tip. These vortices produce a high-velocity
flow along the tail tip in the direction of the head
as seen in figure 9. At frequencies above or below
the eigenfrequency the alignment of these vortices is
skewed, yielding a smaller flow around the tail-tip.
This explains the increase in the viscous force term
at the eigenfrequency which is visible in figure 10.
In the unique case of excitation at 89550Hz the
described pairs of vortices occur at both sides of the
head as well as the tail, which explains the ,rearward
viscous force at the back of the head. The vortices to
the front of the head create a low pressure region by
increasing flow velocity, hence the increased acoustic
radiation force in this area as seen in figure 10c.

In contrast, the stingray II design exhibits a decrease
in total propulsive force at its eigenfrequency of
80700Hz. Both the acoustic radiation force and
Stokes’ drag force contribute to this phenomenon. At
excitation frequencies above and below the eigenfre-
quency high-pressure regions behind the protrusions
yield a headward-facing acoustic radiation force.
Excitation at the eigenfrequency results in a vibration
which leads to stagnant flow regions immediately
behind the protrusions, explaining the reduced head-
ward pressure force. The increase in tailward viscous
forces at the protrusion tips may be explained by the
strong vortex formation in these areas when the tips
are made to vibrate at resonance.

It is noted that though the 2D analyses performed are
sufficient to illustrate the effect of resonance vibra-
tions on propulsive forces, this simplification influ-
ences both the mode shapes and resonance frequen-
cies of the swimmer as well as the acoustic fields. Fu-
ture research is required to evaluate 3D effects.

5 CONCLUSION

Structural mechanics and pressure acoustics sim-
ulations show that external actuation can induce
micro-swimmer resonance vibrations mimicking the
movements of biological swimmers. The frequencies
at which these vibrations occur vary with swimmer
dimensions and geometry. Placing the swimmer in

a medium has the effect of lowering the frequencies
at which the resonance modes occur due to the addi-
tional inertia of the surrounding fluid. Knowledge of
these effects could be used to accommodate swimmer
eigenfrequencies to those of a transducer.

Applying a perturbation approach to the linearized
continuity and Navier-Stokes equations simplifies
the acoustofluidic numerical problem by decoupling
the first-order time-harmonic acoustic fields and the
second-order streaming fields. Thermoviscous acous-
tics simulations revealed that the swimmer’s acoustic
impedance, geometry and vibrational modes have a
strong influence on the streaming fields and direction-
ality of the propulsive forces. Exciting swimmers at
their resonance frequencies in general increases pos-
itive propulsive forces due to the alignment of vor-
tices at the tail. Addition of protrusions to the swim-
mer head complicates the relationship between reso-
nances and propulsive forces, producing some modes
in which a negative force contribution is induced as
the streaming field pressure drops behind the oscillat-
ing protrusions. This modal dependence of direction-
ality suggests the possibility of controlling swimmers
by matching excitation frequency to particular swim-
mer modes.
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A MATERIAL PROPERTIES

Table 1: Thermoviscous acoustics fluid properties

Property Symbol Value

Equilibrium mass density ρ0 1000[kg/m3]
Equilibrium pressure p0 1 [atm]

Equilibrium temperature T0
293.15[K
]

Dynamic viscosity µ 8.5e-4[Pa·s]
Bulk viscosity µB 2.4e-3[Pa·s]
Thermal conductivity k 0.61[W/(m·K)]
Heat capacity at constant pressure Cp 4.18e3[J/(kg·K)]
Coefficient of thermal expansion αp 2.75e-4[1/K]
Isentropic compressibility βs 4.45e-10[1/Pa]
Ratio of specific heats γ 1.012

Table 2: Solid mechanics properties

Property Symbol Value

Young’s modulus E 750[kPa]
Poisson’s ratio ν 0.49
Mass density ρpdms 970[kg/m3]

Table 3: Laminar flow fluid properties

Property Symbol Value

Mass density ρ 1000[kg/m3]
Dynamic viscosity µ 8.5e-4[Pa·s]

B ORDER OF MAGNITUDE OF PROPULSIVE FORCES

Force component Order of magnitude

Acoustic radiation force -2 to -7
Stokes’ drag force -2 to -7
LRTT force -10 to -12
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