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Abstract

This paper presents the derivation and experimental validation of algorithms for modeling

and estimation of soft continuum manipulators using Lie group variational integration. Exist-

ing approaches are generally limited to static and quasi-static analyses, and are not suffi-

ciently validated for dynamic motion. However, in several applications, models need to

consider the dynamical behavior of the continuum manipulators. The proposed modeling

and estimation formulation is obtained from a discrete variational principle, and therefore

grants outstanding conservation properties to the continuum mechanical model. The main

contribution of this article is the experimental validation of the dynamic model of soft contin-

uum manipulators, including external torques and forces (e.g., generated by magnetic fields,

friction, and the gravity), by carrying out different experiments with metal rods and polymer-

based soft rods. To consider dissipative forces in the validation process, distributed estima-

tion filters are proposed. The experimental and numerical tests also illustrate the algorithm’s

performance on a magnetically-actuated soft continuum manipulator. The model demon-

strates good agreement with dynamic experiments in estimating the tip position of a Polydi-

methylsiloxane (PDMS) rod. The experimental results show an average absolute error and

maximum error in tip position estimation of 0.13 mm and 0.58 mm, respectively, for a manip-

ulator length of 60.55 mm.

1 Introduction

Reachability, high level of dexterity, and large elastic deformability are the primary driving fac-
tors behind the growth of research in the design, modeling, and control of continuum manipu-
lators. Flexible continuum manipulators have recently generated interest in several fields [1–
3], especially in minimally invasive surgical robotics and interventional medicine, such as
catheter-based endovascular intervention [4, 5] and cardiac surgeries [6, 7]. In contrast to
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conventional rigid link manipulators, soft manipulators are able to reshape their configura-
tions to allow for redundancies in path planning, and are capable of precise and delicate
manipulation of objects in complex and varying environments.

There are numerous candidate actuation mechanisms for continuum manipulators such as
tendon-drives and concentric tubes [8–11]. Compared to other actuation mechanisms, mag-
netic actuation benefits from high dexterity, versatility, and wireless actuation [12–15]. By
applying remote magnetic torques on permanent magnets or coils which are embedded inside
the body of a manipulator and/or at its tip, one can control the motion and configuration of
the manipulator.

This paper aims to develop a computational model for analyzing the dynamics of soft con-
tinuum manipulators, which is one of the key challenges in soft robotics. In many tasks,
dynamic models of manipulators are essential for control, trajectory planning, and optimal
design purposes, especially in Minimally Invasive Surgeries (MIS) for operation in unknown
and unstructured environments such as inside the human body. Due to elastic characteristics
and geometric nonlinearities (i.e., bending, torsion, shear, elongation, including large defor-
mation) of continuum manipulators, their dynamics have highly nonlinear behavior and are
expressed as partial differential equations. Some recent modeling approaches of soft contin-
uum manipulators/robots, which have been employed in the surgical robotics field, are sum-
marized in Table 1.

Table 1. References on dynamics/static analysis of soft continuum manipulators in surgical robotics field.

References Modeling Approach and its Properties Robot type/ Application

[16] Static analysis: Cosserat rod model. 3D
elesticity

Surgical suture/ strands

[17] Beam mechanics based on elastic energy Concentric tubes/ General MIS

[18] Static analysis based on screw theory and a
virtual-work model

Multiple parallel backbones/ General MIS

[10, 19] Linear elasticity theory Single/Redundant tendons

[20] 3D Static analysis with loads: Cosserat rod
model

General purpose CRs

[21] Beam mechanics based on elastic energy
(includes both bending and torsion)

Concentric tubes/ General MIS

[22] Bernoulli–Euler elastica theory: statics, 2D Multibackbone

[23] Static analysis based on a virtual-work
model

Serial Segments/ General surgical end-effectors

[24, 25] Static analysis: Cosserat rod theory Concentric tubes with and without external loads

[26] Static analysis: Cosserat rod theory Magnetic Catheter/ General purposes

[27] Loaded static analysis: Cosserat rod theory General MIS

[28] Dynamic analysis: Cosserat rod model. 3D
elesticity

Guidewire/ Interventional Radiology procedures

[29] FEM: large deformation and inflation Simulations on general medical robots

[30] Lumped-parameter model Multiple parallel shafts/ general Magnetic resonance
imaging (MRI)-compatible medical manipulators

[31] Pseudo-rigid-body model Multiple parallel shafts/ cardiac robotic catheter

[32] 2D static analysis: rigid-link modeling Planar tendon-driven continuum manipulator/ general
medical robots

[33] Static analysis: α Lie group formulation Planar continuum: simulations and bechmark analysis/
intravascular shaping operations

[34] 3D static analysis: pseudo rigid body model Magnetic catheter/ General surgical catheters

https://doi.org/10.1371/journal.pone.0236121.t001
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Soft continuum manipulators are analogous to specific Cosserat continuums. Therefore,
Lie group synchronous variational integrators [35, 36], a novel time and space integration
scheme, is employed in this paper to model geometrically exact beams based on the Simo
beam model [37] and Hamiltonian formulation. The core idea of this algorithm is to obtain
the dynamic behavior of the system while conserving the invariants (energy, momentum
maps) of the system, especially for long-time simulations. The distinguishing characteristic of
variational integrators is that they define the equations of motion based on the discretized vari-
ational principle of the system. Combining the integrators with Lie-group/algebraic techniques
enables the algorithm to respect not only the structure of the dynamics and its properties but
also preserve the structure of the configuration space. The advantages of employing the Lie
group variational integration method compared to other modeling strategies is that the pro-
posed solver is applicable to exact nonlinear dynamic models of continuum manipulators sub-
ject to large deformations. The algorithm preserves the symplectic structure, i.e., the invariants
of mechanical systems. Also, it allows the usage of different time steps at different points in a
given finite element for the geometry of soft manipulators. These properties are investigated in
previous work (e.g., [35, 38, 39]), while the main focus of this paper is the experimental valida-
tion of the method on magnetically-actuated soft continuum manipulators.

Investigation of previous work in modeling of the continuum manipulators suggests that
existing literature focuses primarily on static or quasi-static approaches, or does not provide
sufficient experimental validation in realistic application scenarios. By contrast, the main con-
tribution of this article compared with the existing work in literature is the validation of an
accurate dynamic model of a soft continuum manipulator, considering spatial motion. Also,
it should be noted that the model accounts for the geometric nonlinearities (e.g., large defor-
mation) and respects conservation of dynamical properties of the system (e.g., energy and
momentum maps conservation), and structures of configuration space simultaneously.
Besides, it should be pointed out that three-dimensional internal and external dissipation
forces act on the continuum manipulator and hence affect the dynamics. Therefore, it is neces-
sary to consider these friction/ dissipation forces in the validation process. To this end, distrib-
uted prediction filters have been proposed.

In summary, this article’s contributions can be stated as follows.

• Existing studies on the modeling of continuum manipulators primarily consider static or
quasi-static approaches. However, in numerous applications, the fully spatial dynamics of
manipulators need to be considered for accurate control and design purposes. The primary
contribution of this article is the derivation and experimental validation of a dynamic model
for forced continuum manipulators with soft materials undergoing spatial deformation. The
model accounts for the nonlinearities of the continuum manipulator; loading resulted from
magnetic fields, the gravity, and internal and external dissipation forces generated by friction.

• Due to the difficulty in obtaining knowledge about the internal and external dissipation
forces, distributed estimation filters have been designed to take these forces into account and
capture their behavior.

The rest of the paper is organized as follows. In Section 2, mathematical preliminaries,
including the system description and notation, are discussed. Next, Section 3 addresses the
algorithm and numerical results. The experimental framework and implementation results
are described in Section 4, demonstrating the effectiveness of the theoretical formulation. In
addition, Section 5 provides a discussion on the implementation of the modeling algorithm.
Finally, Section 6 summarizes the results of this work and draws conclusions and posits direc-
tions for future work.
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2 Continuum manipulator dynamics

This section is devoted to describing kinematics and full three-dimensional dynamics for
continuum manipulators undergoing large deflections (for detailed explanations, refer to the
reference [35]). We review the static description of a continuum manipulator in three-dimen-

sional spaceR3 toward deriving the dynamic equations of motion of geometrically exact con-
tinuum manipulator by applying Hamilton’s principle to the Lagrangian of the system.

2.1 Kinematics

The manifold of configuration space of a continuum manipulator considering Boundary Con-
ditions (BCs) is defined as

Q à fÖO;PÜ 2 C1Ö�Ü : â0; Lä! SOÖ3Ü ⇥ R3jBCs are satisfiedg

in which L is the length of the undeformed continuum manipulator, P : â0; Lä! R3 maps the

line of continuum manipulator’s centroids (i.e. center of mass) to Euclidean space R3 and the
orthogonal transformationO : â0; Lä! SOÖ3Ü determines the orientation of moving cross-
sections at points PÖsÜ in the terms of a fixed basis fE1ÖsÜ; E2ÖsÜ; E3ÖsÜg. Therefore, the orienta-
tion of each cross-section which is denoted by directors or moving basis fD1ÖsÜ;D2ÖsÜ;D3ÖsÜg
can be written as

DiÖsÜ à OÖsÜE i; i à 1; 2; 3:

Fig 1 shows initial and a time-evolved configuration of the continuum manipulator with the

free right tip and clamped left end, i.e, BCs:OÖ0Ü à I3, @PÖ0Ü
@s à E3. The BCs imply that the

clamped cross section is orthogonal to the plane defined by E1 and E2. In addition, a curve
qÖs; tÜ à ÖOÖs; tÜ;PÖs; tÜÜ 2 Q characterizes a time-evolved configuration space of the contin-
uum manipulator. The family of tangent vectors to the curve q(t) is defined as

_qÖs; tÜ à dqÖs; tÜ
dt

à _OÖs; tÜ; _PÖs; tÜ
⇣ ⌘

2 TqQ;

which characterize tangent bundle TqQ toQ at the manifold q(s, t).

2.2 Lagrangian and equation of motion

To derive the equations of motion, we first need to introduce the Lagrangian L : TqQ of the

system which can be written as

LÖO;P; _O; _PÜ à 1

2

Z L

0

Mk _Pk2 á oTJo
� �

ds
|ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ}

Kinetic energy

� 1

2

Z L

0

ÖG� E3Ü
TC1ÖG� E3Ü á O

TC2O
� �

ds
|ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ}

Elastic energy

�
Z L

0

Fc � Pds
|ÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇ}

Conservative potential energy

Ö1Ü

where the matrices C1 and C2 are defined as C1 ≔ diag(GA GA EA) and C2 ≔ diag(EI1 EI2 GJp).
For brevity, other parameters are defined in Table 2.
where each cross section is given by a compact setA à fÖx; yÜjx; y 2 Rg, Lie algebra soÖ3Ü is

associated with the Lie group SO(3), and Hat map/ operator ^ : R3 ! soÖ3Ü which is a one-to-
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one invertible map, i.e., an isomorphism, is defined as

v à
v1

v2

v3

2

64

3

75! v̂ à
0 �v3 v2

v3 0 �v1

�v2 v1 0

2

64

3

75: Ö2Ü

The Euler-Lagrange equations are obtained by applying by the Lagrange-d’Alembert princi-
ple to the action functionalH associated to L, namely

YÖO;PÜ à
Z tf

to

ÖLÖO;P; _O; _PÜ á FncÖO;P; _O; _PÜÜdt

By employing the Lagrange-d’Alembert principle, one computes

dY à
Z tf

to

✓ Z L

0

ÖM _PTÖd _PÜ á oTJdoÜds

�
Z L

0

ÖÖG� E3Ü
TC1dGá O

TC2dOÜds

�
Z L

0

FcdP ds� Fnc � dqÖs; tÜ
◆
dt

Fig 1. Initial and time-evolved configurations of the continuum manipulator. The highlighted frames depict cross-
sections at discretization points. Fixed bases or material frame fE1; E2; E3g are also shown at the fixed end of the
manipulators. Also, moving bases fD1;D2;D3g are attached to the cross section at the centroid s and the tip of
manipulators.

https://doi.org/10.1371/journal.pone.0236121.g001

Table 2. Definition of parameters in Lagrangian (1) as described in [35].

M = ρ0 × A ρ0 and A are the body constant mass density and cross section’s area.

oÖs; tÜ 2 soÖ3Ü the body angular velocity

J à �r0

R
A

dÖxE1 á yE2Ü2dxdy inertia matrix in the fixed frame

ÖOÖs; tÜ;GÖs; tÜÜ à O�1 @O
@s ;O

�1 @P
@s

� �
deformation gradients as viewed at the time t by an observer that is located at
the position s

E, G = E/(2(1 + ν)), ν, I1, I2, and Jp Young’s modulus, shear modulus, Poisson’s ratio, principal moments of
inertia of the cross-section, and polar moment of inertia, respectively.

https://doi.org/10.1371/journal.pone.0236121.t002
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The terms δω, δO, and δΓ are defined ([38]) as follows:

do à o⇥ Zá d
dt
Z

dO à @

@s
Zá O⇥ Z

dG à OTd
@

@s
P

✓ ◆
á G⇥ Z

Ö3Ü

where dO à OẐ.
Taking into account the expressions for δω, δO, and δΓ in Eq (3) and using integration by

parts in space and time, we obtain Euler-Lagrange equations with non-conservative force

FncÖO;P; _O; _PÜ : TqQ! T⇤qQ as

J _o � Jo⇥ o� G⇥ C1ÖG� E3Ü � O⇥ C2O� C2

@O
@s

à O�1N

M �P � @OC1ÖG� E3Ü
@s

á Fc à F
Ö4Ü

in which we could consider 6 × 1 representations of general non-conservative force vector

Fnc à N
F

⇥ ⇤
where F andN are force and moment vectors in R3, respectively. Also, T⇤qQ

denotes the cotangent bundle ofQ. For simplicity, one may think of the cotangent boundle as
the space of positions and momenta. For the exact definitions, refer to [40] or [41].

3 Lie group variational integrators for the forced continuum
manipulator

In this section, the focus is on analyzing a Lie group variational integrator for continuum
manipulators with conservative (e.g., the gravity) and non-conservative forces (e.g., friction
and loads inserted by actuators). In the following subsection, the discretized version of the
forced Euler-Lagrange Eq (4) is given (for further details and stability analysis, see [35]), and
afterward, the estimation process is discussed.

3.1 Modeling

This section is devoted to introducing a Lie group variational integration scheme for contin-
uum manipulators with external loading. First, one needs to consider the spatial discretization
of Lagrangian introduced in the previous section. Afterward, discrete Lagrange-d’Alembert
equations need to be expressed on Lie group SE(3). These equations are employed to propose
a model-based distributed estimation scheme. Fig 2 depicts the modeling procedure in this
section.

Here notations of the paper are provided. Additionally, concepts and definitions on Lie
groups and Lie algebra are presented in Appendix 6.

Notations: The undeformed continuum manipulator’s length [0, L] is spatially discretized
into N subsets I i à âsai ; saiá1

ä of length lI i à saiá1
� sai . For an element I i, ai and ai+1 denote

its left and right nodes. The configuration of the continuum manipulator at the node ai is
given byOai

:à OÖsaiÜ and pai :à PÖsaiÜ. Also, oai
denotes the angular velocity of a node

ai. Given a node ai, the discrete time evolution of this node is given by the discrete curve

ÖOj
ai
; pjaiÜ 2 SEÖ3Ü à SOÖ3Ü ⇥ R3; j à 0; � � � ;V and is based on the discrete Euler-Lagrange

equations on Lie group SE(3), The discrete variables Fj
ai

associated with the node ai are
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defined as Fj
ai
à ÖOj

ai
ÜTOjá1

ai
. We denote the fixed time step by Δt = tj − tj+1, j = 0, � � �, V. In

time discretization of the continuum manipulator, we have Dpjai :à pjá1
ai
� pjai .

By identifying the configuration spaceQ of the continuum manipulator with the infinite

dimensional Lie group G à C1Öâ0; Lä;SOÖ3Ü ⇥ R3, we consider the trivialized Lagrangian
L : G⇥ g! R, where g is a Lie algebra associated with the Lie group G. A spatial discretiza-
tion of the trivialized Lagrangian for an element I i and the total system are computed as fol-
lows, respectfully. It should be noted that the evaluation of Lagrangian at midpoints of nodes is
employed. Other evaluations of the Lagrangian depending on a different number or combina-
tions of nodes are possible (see [38]).

For an element I i:

LI i à
lI i
4
M kpaik

2 á kpaiá1
k2

⇣ ⌘
á
lI i
4

oT
ai
Joai
á oT

aiá1
Joaiá1

⇣ ⌘
� VI i Ö5Ü

where VI i is conservative potential energy of an element I i due to the gravity and elasticity

and given by

VI i à
lI i
4

OT
ai

Dpa
lI i
� E3Ü

TC1 O
T
ai

Dpa
lI i
� E3

 !

á OT
aiá1

Dpa
lI i
� E3Ü

TC1 O
T
aiá1

Dpa
lI i
� E3

 ! #

Ö6Ü
 "

For the whole continuum manipulator:

L à
PN

ià1

lI i
2
Mkpaik

2 á
lI i
2
oai Joai

✓ ◆
á
P

ià0;Ná1

lI i
4
Mkpaik

2 á
lI i
4
oai Joai

✓ ◆

�
PNá1

ià0 VI i

The temporal discretized Lagrangian Lj
I i

approximates the Lagrangian LI i in Eq (5) during

the time step Δt is therefore

Lj
I i
à

X

aàai ;aiá1

lI i
4
M
kHj

ak
2

Dt
á

lI i
2

TraceÖÖI3 � Fj
aÜJdÜ

Dt

✓ ◆
� DtVj

I i
Ö7Ü

✓

where Hj
a à ÖO

j
aÜ

TDpja and Jd à
TraceÖJÜ

2
I3 � J.

Fig 2. Steps 1 through 5 toward deriving continuum manipulator discrete dynamics.

https://doi.org/10.1371/journal.pone.0236121.g002
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The discrete action sum over the discretized time interval [0, T] = {t0, � � �, tj|tj = tj−1 + Δt,
t0 = 0, tV = T}, is computed as follows.

Yd à
XNá1

ià0

XV

jà1

Lj
I i

The discrete Lagrange–d’Alembert principle is

d
XNá1

ià0

XV

jà0

Lj á
XV

jà0

XNá1

ià0

Fd
nc
ai
j � dÖOj

ai
; pjaiÜ à 0 Ö8Ü

By applying the discrete Lagrange–d’Alembert principle (8), we get the discrete Euler–
Lagrange equations for a node ai in a compact form as

T⇤e LÖFj�1
ai ;Hj�1

ai Ü
ÖDFj�1

ai
Lj�1
ai
;DHj�1

ai
Lj�1
ai
Ü

�Ad⇤
ÖFjai ;H

j
ai Ü
�1T⇤e LÖFjai ;Hj

ai Ü
ÖDFjai

Lj
ai
;DHj

ai
Lj
ai
Ü

áT⇤e LÖOj
ai ;p

j
ai Ü
ÖDOj

ai
Lj
ai
;Dpjai

Lj
ai
Ü á ÖOj

ai
; pjaiÜ

�1Fd
nc
ai
j à 0

Ö9Ü

Finally, using the definitions of adjoint and coadjoint actions, and cotangent lift of left
translation which are presented in Appendix 6, Eqs (7) and (9) yields Eqs (10)–(12) and (14)–
(16) to update rotations and positions of each node.

3.1.1 Discrete Euler-Lagrange equations for rotations.

• For the left node of the continuum manipulator (ai=0)

ÖFj
a0
Jd � JdÖFj

a0
ÜTÜ_ à � 2Dt2

lI0


1

2
C1 O

T
a0

Dpa0

lI0

� E3

 !

⇥OT
a0
Dpa0

á 1

lI0

ÖÖÖI áOT
a0á1
Oa0
Ü�1 dC2ca0

Öĉa0
� 2IÜÜÖAÜÜ_

�DtO�1
a0
N a0

�����
tàtj
á ÖJdFj�1

a0
� ÖFj�1

a0
ÜTJdÜ

_

Ö10Ü

• For the interior nodes of the continuum manipulator 8ai, i 2 {1, � � �, N − 1}

ÖFj
ai
Jd � JdÖFj

ai
ÜTÜ_ à �Dt

2

lI i


1

2
C1 O

T
ai

Dpai�1

lI i
� E3

 !

⇥OT
ai
Dpai�1

á 1

2
C1ÖO

T
ai

Dpai
lI i
� E3Ü ⇥O

T
ai
Dpai á

1

lI i
ÖÖÖI áOT

aiá1
OaiÜ

�1 dC2cai Öĉai � 2IÜÜÖAÜÜ_

á 1

lI i
ÖÖÖI áOT

ai�1
Oai
Ü�1 dC2cai�1

Ö�ĉai�1
á 2IÜOT

ai�1
Oai
ÜÖAÜÜ_ � DtO�1

ai
N ai

�����
tàtj

áÖJdFj�1
ai
� ÖFj�1

ai
ÜTJdÜ

_

Ö11Ü
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• For the right node of the continuum manipulator (ai=N)

ÖFj
aN
Jd � JdÖFj

aN
ÜTÜ_ à � 2Dt2

lIN


1

2
C1 O

T
aN

DpaN�1

lIN
� E3

 !

⇥OT
aN
DpaN�1

á 1

lIN
ÖÖÖI áOT

aN�1
OaN Ü

�1 dC2caN�1ÖĉaN�1
� 2IÜÜÖAÜÜ_

�DtO�1
aN
N aN

�����
tàtj
á ÖJdFj�1

aN
� ÖFj�1

aN
ÜTJdÜ

_

Ö12Ü

where the variable cai
is defined as ĉai

≔exp�1ÖOT
ai
Oaiá1
Ü which is approximated by the Cayley

transformation as ĉai
≔Cay�1ÖOT

ai
Oaiá1
Ü, where The Cayley transformation and its inverse

are defined in the following form for convenienceOT
aOaá1 à CayÖĉaÜ à

Iáĉa
I�ĉa

with inverse

ĉa à Cay�1ÖOT
aOaá1Ü à 2 O

T
aOaá1�I
OT
aOaá1áI

(see, [35, 42]). In addition, Dpai jtàtj à pjá1
ai
� pjai .

For discrete Euler-Lagrange equations for rotations, Eqs (10)–(12), one has to solve an
implicit expression of the form

Û à FaJd � JdFT
a ; 8a 2 fa0; � � � ; aNg Ö13Ü

In order to solve Eq (13) for F 2 SO(3), (the vector U or the right hand sides of Eqs (10)–
(12) and the symmetric non-standard inertia matrix Jd are known), a Newton iteration method
based on the Cayley transformation is applied (as described in [39], Section 3:3:8]).

3.1.2 Discrete Euler-Lagrange equations for translations.

• For the left node of the continuum manipulator (ai=0)

pjá1
a0
à 2Dt2

lI0
M


1

2
Oa0

C1 O
T
a0

Dpa0

lI0

� E3

 !

á 1

2
Oa0á1

C1 O
T
a0á1

Dpa0

lI0

� E3

 !

�
lI0

2
Fc
a0
� DtO�1

a0
F a0

�����
tàtj
á 2pja0

á pj�1
a0

Ö14Ü

• For the interior nodes of the continuum manipulator 8ai, i 2 {1, � � �, N − 1}

pjá1
ai
à Dt2

lI iM


1

2
OaiC1 O

T
ai

Dpai
lI i
� E3

 !

� 1

2
Oai�1

C1 O
T
ai�1

Dpai�1

lI i
� E3

 !

á 1

2
Oaiá1

C1 O
T
aiá1

Dpai
lI i
� E3

 !

� 1

2
OaiC1 O

T
ai

Dpai�1

lI i
� E3

 !

�
lI i
2
Fc
ai
� DtO�1

ai
F ai

�����
tàtj
á 2pjai á pj�1

ai

Ö15Ü
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• For the right node of the continuum manipulator (ai=N)

pjá1
aN
à 2Dt2

lINM


� 1

2
OaN�1

C1 O
T
aN�1

DpaN�1

lIN
� E3

 !

� 1

2
OaNC1 O

T
aN

DpaN�1

lIN
� E3

 !

�
lIN
2
Fc
aN
� DtO�1

aN
F aN

�����
tàtj
á 2pjaN á pj�1

aN

Ö16Ü

Remark 1 For magnetic actuation, we fabricate manipulators with embedded permanent mag-
nets. Consider Magnet i with weight mi in an interval I i in which ai and ai+1, i 2 {0, � � �, N − 1}
are considered as left and right nodes of the interval. Therefore, the distributed load per unit
length for Nodes ai and ai+1 are approximately considered as M á mi

2lI i
. In addition, if Magnet i is

embedded at the tip, M á mi
lIN

replaces the distributed load per unit length of Node aN+1 while the

distributed load per unit length of Node aN is unchanged.

3.2 Estimation

In this section, online distributed estimation algorithms are developed to predict the model
dissipation error. The structure of the estimator mimics the model’s structure, as explained in
Section 3.1. To design the estimation protocol, we follow the same line of ideas as in [42] but
in distributed multi-systems configuration. We consider each node as an individual system
coupled with the other adjacent nodes, i.e., neighbors, in succession. In other words, each
node exchanges its local pose (position and orientation) with its neighbors. It should be noted
that the estimation filters are designed and implemented for each node. Fig 3 shows the config-
uration of the distributed filters and nodes.

For simplicity, we assume that each node’s position is included in its state vector. Therefore,
given node ai, i = {0, � � �, N}, the time-varying dynamic equations based on Eqs (14)–(16) can
be written as

Sjá1
ai
à FaiÖS

j
ai
;Uj

ai
; jÜ á Gj

ai
ÖSj

ai
ÜF j

ai
;

Yjá1
ai
à Hjá1

ai
Sjá1

ai
;

Ö17Ü

where j = {1, 2, � � �}, i = {0, 2, � � �, N}, Sj
ai
à âpj�1

ai
pjai ä

T 2 R6 is the true state vector, Uj
ai

is a

known input vector, Fai
2 R6 is sufficiently differentiable, Gj

ai
à 03⇥3;

�2Dt3
lI i M
Oj

ai
�1

h iT
2 R6⇥3 is

the model dissipation error matrix and in the considered systems is time-varying, F j
ai
2 R3

Fig 3. Configuration of the nodes of the model and the corresponding distributed filters. Filter ai and Node ai are
coupled with the adjacent nodes in succession.

https://doi.org/10.1371/journal.pone.0236121.g003
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is a modified viscous model dissipation force or hysteretic damping force in the form of

Kj
ai
� Dt�1Öpjai � pj�1

ai
Ü, where � denotes Hadamard product andKj

ai
2 R3 is damping capacity

that is independent of frequency of motion and needs to be estimated, Hjá1
ai
2 R3⇥6 is the out-

put matrix, and Yjá1
ai
2 R3⇥1 is the output vector.

By substituting F j
ai
à Kj

ai
� Dt�1Öpjai � pj�1

ai
Ü into Eq (17), one has

Sjá1
ai
à Fai

ÖSj
ai
;Uj

ai
; jÜ á Gj

ai
ÖSj

ai
ÜKj

ai
� Dt�1Öpjai � pj�1

ai
Ü;

Yjá1
ai
à Hjá1

ai
Sjá1

ai
;

Ö18Ü

Using commutative property of Hadamard product, we can write Gj
ai
ÖSj

ai
ÜKj

ai
� Dt�1Öpjai�

pj�1
ai
Ü à Gj

ai
ÖSj

ai
ÜDt�1Öpjai � pj�1

ai
Ü �Kj

ai
. Then, Hadamard product can be converted to matrix

multiplication by the corresponding diagonal matrix of the vector Gj
ai
ÖSj

ai
ÜDt�1Öpjai � pj�1

ai
Ü

which is denoted by Gjai à Gj
ai
ÖSj

ai
ÜDt�1diagÖpjai � pj�1

ai
Ü and Gjai 2 R

6⇥3. Therefore, Eq (18)

may be written as

Sjá1
ai
à FaiÖS

j
ai
;Uj

ai
; jÜ á GjaiÖS

j
ai
ÜKj

ai
;

Yjá1
ai
à Hjá1

ai
Sjá1

ai
;

Estimation of the state and output vector is given by

Ŝ já1
ai
à Fai

ÖŜ j
ai
;Uj

ai
; jÜ á GjaiÖŜ

j
ai
ÜK̂ j

ai
;

Ŷ já1
ai
à Hjá1

ai
Ŝ já1

ai
;

where Ŝj
ai
à âp̂j�1

ai
p̂j
ai
äT 2 R6 is the estimation of the state vector, K̂ j

ai
2 R3 is the model dissi-

pation error estimates, Ŷ já1
ai
2 R3⇥1 is the output vector estimates. Finally, ~Y já1

ai
denotes the

measurement. The block diagram of the filter integrated with the model is shown in Fig 4. To

find K̂ j
ai

for the node ai at the time j, we consider a pointwise cost function that penalizes and

minimizes the estimation error vector (the error between measurement and the output esti-

mation) at the next sampling time j + 1, and estimated damping capacityKjá1
ai

. The cost func-

tion for each node ai is given as

JaiÖK
já1
ai
Ü à 1

2
ejá2

ai

T Rejá2
ai
á 1

2
Kjá1

ai

TWKjá1
ai

Ö19Ü

where ejá2
ai
à Ŷ já2

ai
� ~Yjá2

ai
, W 2 R3⇥3, and R 2 R3⇥3 are positive semi-definite and positive def-

inite matrices, respectively.
In order to derive an optimal estimation law, we need to approximate the output estimation

vector Ŷjá2
ai

at the next sampling time j + 2, which is given by its Taylor series expansion as fol-

lows

Ŷ já2
ai
⇡ Ŷ já1

ai
á ZÖŜ já1

ai
;DtÜ á LÖDtÜMÖŜ já1

ai
ÜK̂ já1

ai
Ö20Ü
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where

ZÖŜ já1
ai
; jÜ à DtL1

Fai
ÖHjá1

ai
Ŝjá1

ai
Ü à Dt

@Hjá1
ai
Ŝjá1

ai

@Ŝ já1
ai

Fai

LÖDtÜ à DtI3

MÖŜ já1
ai
Ü à �2Dt2

lI iM
Oj

ai

�1diag pjai � pj�1
ai

⇣ ⌘

Similarly, we may expand the ith component of ~Yjá2
ai

in an first-order Taylor series so that

~Yjá2
ai
⇡ ~Y já1

ai
á djá1

ai

where the hth component of djá1
ai
2 R3 is

djá1
ai
h à ~Y já1

ai h � ~Y j
ai h

Fig 4. Block diagram of the proposed prediction filter ai coupled with the node ai’s model. The filter employs the

model’s output to perform a pointwise optimization problem to predict the damping capacity K̂ i
ai

.

https://doi.org/10.1371/journal.pone.0236121.g004

PLOS ONE Dynamic modeling of soft continuum manipulators

PLOS ONE | https://doi.org/10.1371/journal.pone.0236121 July 22, 2020 12 / 29



Solving Eq (19) for K̂ já1
ai

by considering Eq (20) yields

K̂ já1
ai
à âLÖDtÜMÖŜ já1

ai
ÜäTRâLÖDtÜMÖŜjá1

ai
Üä áW

n o�1

⇥âLÖDtÜMÖŜ já1
ai
ÜäTR

⇥âZÖŜ já1
ai
; jÜ á ejá1

ai
� djá1

ai
ä

Ö21Ü

Stability and convergence analysis of the filters can be found in [42]. Here we skip the analy-
sis for brevity.

4 Simulation and experimental results

In this section, we investigate and analyze the solver’s performance with different continuum
manipulators through experiments. The experiments here are expected to provide validation
of the theoretical formulation for a variety of scenarios. As discussed earlier, it is worth
remembering that the dynamic equations for translation and rotation are decoupled. Eqs
(14)–(16) can be solved explicitly to update nodes translation, while an iterative method—as it
is discussed in Section 3.1.1—is necessary to solve Eqs (10)–(12) for updating the rotations. It
should be pointed out that the estimation law (21) is implemented for every node to estimate
conservative forces. The required parameters for the simulation will be discussed for each
experiment.

4.1 Flexible metal rods

As a first case, we consider a cylindrical rod made of aluminum (Al4043/ AlSi5) with diameter

of 2 mm, length 200 mm, mass density 2690 kg
m3, Young’s modulus 75 GPa and Poisson’s ratio

0.33. As a first example, we suppose a planar motion of the rod in the E1E3-plane with the ini-
tial deflection yE1E3

à 3:69. yE1E3
denotes the rotation of the tip around E1 in the E1E3-plane. It

is worth pointing out that the nondissipative force is the gravity in the E3-axis direction. In
addition, we run a simulation with the given specifications with N = 15 discretization nodes.
These points are depicted in Fig 5 together with some time-evolved configurations of the rod.
For simplicity, only tip positions are used for the comparison with the simulation results. The
maximum and mean absolute error are 0.15 mm (i.e., 2.5% of displacement), and 0.05 mm,
respectively. The error, simulation and experiment results are shown in Fig 6 and the simula-
tion parameters are summarized in Table 3.

Next, we consider a three-dimensional motion for a rod with the same material as the first
case but with diameter d = 1 mm with initial deflections yE1E2

à �5:53 (i.e., the tip distance

is 8 mm from E2-axis) and yE1E3
à 6:52 (i.e., the tip distance is 10 mm from E3-axis) in the

E3E2 and E1E2 planes, respectively. The results of the experiment, simulation, and error are
depicted in Fig 7. Maximum and mean absolute error in both E3 and E1 axes are 0.15 mm
(i.e., 2.12%), and 0.05 mm, respectively. The simulation parameters are summarized in
Table 4.

4.2 Polymer-based rods

In the second experiment, a cylindrical Polydimethylsiloxane (PDMS) rod is considered. Fig 8
depicts the rod, which has diameter D = 5 mm, length L = 60.5 mm. In addition, for the rod,

mass density r à 1101 kg
m3, Young’s modulus E = 365.12 MPa, and Poisson’s ratio ν = 0.5. In

this experiment, the rod is kept straight initially, with the gravity acting along E2, Fig 8(a).
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Fig 5. Sample of grabbed images of flexible rod (AlSi05) configurations, in-plane experiment (E1E3-plane). 15
discretization nodes, depicted in blue squares, are superimposed on the flexible rod.

https://doi.org/10.1371/journal.pone.0236121.g005
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Experiment and simulation results for the tip position and the error are depicted in Fig 9.
Also, maximum and mean absolute error in E2-axis are 0.56 mm (i.e., 4.87%), and 0.05 mm,
respectively. In E3-axis, maximum and mean absolute error are 0.28 mm (i.e., 4.89%), and 0.05
mm, respectively. The simulation parameters are summarized in Table 5.

For the next experiment, we fabricated a cylindrical PDMS manipulator with a permanent
magnet at the tip. The initial and some time-evolved configurations of the rod are depicted in
Fig 10. The specifications of the rod are as follows: diameter D = 4 mm, length L = 60.55 mm.
In addition, the embedded neodymium magnet is a cylindrical magnet with diameter Dm = 2
mm, height Lm = 4 mm, mass Mm = 9.6 × 10−5 kg. The rod moves around E1 with the initial
deflection yE2E3

à �41:74 in the E2E3-plane. Also, maximum and mean absolute error in

E3-axis are 0.55 mm (i.e., 1.16%), and 0.13 mm, respectively. In E2-axis, maximum and mean
absolute error are 0.61 mm (i.e., 3.35%), and 0.14 mm, respectively. Tip positions in the experi-
ment, simulation and the error are shown in Fig 11. The simulation parameters are summa-
rized in Table 6.

Hereafter, a magnetic field generation setup is employed to actuate the manipulators. The
following section introduces magnetic field generation setup and the related background.

Fig 6. Simulation and experiment results for flexible rod (AlSi05), in-plane experiment: (a) Tip position in E1-axis direction.
Inset highlights the results in a small time range. (b) Error in E1-axis direction.

https://doi.org/10.1371/journal.pone.0236121.g006

Table 3. Simulation parameters in Eqs (10)–(16) and (21) for in-plane experiment of flexible cylindrical rod
(AlSi05).

M 8:45⇥ 10�3 g
mm

Number of elements 15

lI i jiàf1;2;���;Ng
200
15

mm

Jd diag(0, 2.11, 2.11) g × mm2

E3 [1, 0, 0]T

Fc
ai
jiàf1;2;���;Ná1g â0; 0; 8:29äT ⇥ 104 g

S2

C1 diag(2.35, 0.88, 0.88) × 1014

C2 diag(4.42, 5.89, 5.89) × 1013

Time step 1 × 10−6

Simulation time 1.5 (S)

R I3 × 104

W I3 × 10−1

https://doi.org/10.1371/journal.pone.0236121.t003
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4.3 Magnetic field generation

The setup used here consists of two pairs of Helmholtz coils to generate magnetic fields. Each
pair consists of two identical electromagnetic coils, as shown in Fig 12. The first pair of coils
generates a uniform magnetic field along the E1-axis. The second pair of smaller coils are
placed inside the first pair to produce a field along the E2-axis. Two cameras are placed next to
the setup to monitor the side view of the workspace. For image acquisition, we use both cam-
eras in a stereo vision setup to reconstruct 3D views of the manipulator’s motion. The setup
produces a maximum magnetic field Bu = 45 mT.

For the first experiment using magnetic actuation, we use the rod with a neodymium mag-
net with diameter 2 mm, height 4 mm, and magnetisation N45.

Fig 7. Simulation and experiment results for flexible rod (AlSi05), out-of-plane experiment: (a) Tip position in E3-axis
direction. (b) Tip position in E1-axis direction. (c) Error in E3-axis direction. (d) Error in E1-axis direction. (e) Tip 3D position:
non-planar experiment. (f) Tip 3D position: simulation.

https://doi.org/10.1371/journal.pone.0236121.g007
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First, a magnetic field Bg = 7.75 mT is applied to compensate for the gravity. Then, the tip
of the manipulator is induced to rotate in a circle in the E2E3-plane using a rotating magnetic
field of magnitude Bu = 14.5 mT.

The magnetic field produces force and torque Frot and τrot, respectively, given by

Frot à rÖm � BrotÜ;

trot à m⇥ Brot

where m is the dipole moment of the tip’s magnet. The dipole moment can be computed as
m à 1

m0
BrV in which residual magnetism Br 2 [1.32, 1.37] mT, μ0 is the permeability of vac-

uum, and the volume of the magnet, V = 4π mm3. Experiment, simulation results and the
error are shown in Fig 13. It should be noted that the error plot shows Euclidean norm of the
tip position in the experiment and simulation. Also, the maximum and mean absolute errors
are 1.20 mm (i.e., 1.43%) and 0.59 mm, respectively. Since we use the same manipulator as the
previous experiment, simulation parameters can be found in Table 6.

As a last experiment, we fabricated a PDMS continuum manipulator with a square cross-
section and two embedded permanent magnets, one at the tip and another in the middle—
36.1 mm from the tip—of the manipulator. The embedded neodymium magnets are identical
cylindrical magnets with different dipole moment’s directions and diameter Dm = 2 mm,
height Lm = 3 mm, weight Mm = 7.2 × 10−5 kg. The embedded magnets are induced to pursue
a prescribed motion in the E2E3-plane using a varying magnetic field of initial and final magni-
tude Bu = 20 mT and 19.85 mT. The initial and some time-evolved configurations of the rod
are depicted in Fig 14. It should be noted that analysis of magnetic force and torque follows the
same procedure as described above. The specifications of the manipulator are as follows: edge
length a = 2 mm, length L = 85.5 mm. The maximum and mean absolute error for the tip mag-
net are 1.00 mm (i.e., 2.24%) and 0.15 mm, in E2-axis direction, respectively. In E3-axis direc-
tion, the maximum and mean absolute error for the tip magnet are 1.40 mm (i.e., 5.13%) and
0.33 mm, respectively. The maximum and mean absolute error for the middle magnet are 0.47
mm (i.e., 2.05%) and 0.08 mm, in E2-axis direction, respectively. In E3-axis direction, the maxi-
mum and mean absolute error for the middle magnet are 0.40 mm (i.e., 3.68%) and 0.10 mm,
respectively.

Table 4. Simulation parameters in Eqs (10)–(16) and (21) for out-of-plane experiment of flexible cylindrical rod
(AlSi05).

M 2:11⇥ 10�3 g
mm

Number of elements 15

lI i jiàf1;2;���;Ng
200
15

mm

Jd diag(0, 0.13, 0.13) g × mm2

E3 [1, 0, 0]T

Fc
ai
jiàf1;2;���;Ná1g â0; 0; 2:07äT ⇥ 104 g

S2

C1 diag(5.89, 2.21, 2.21) × 1013

C2 diag(2.76, 3.68, 3.68) × 1012

Time step 1 × 10−6

Simulation time 1.5 (S)

R I3 × 104

W I3 × 10−1

https://doi.org/10.1371/journal.pone.0236121.t004
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The position of the tip and middle magnets in the experiment and simulation and also the
error is shown in Fig 15. For this experiment, the simulation parameters are summarized in
Table 7.

5 Discussion

We validate our approach by designing and carrying out different experiments with flexible
metal rods and polymer-based soft rods. The results are summarized in Table 8.

Fig 8. Sample of grabbed images for Polydimethylsiloxane (PDMS) rod without any embedded magnet in 2D experiment:
In-plane motion. Also, 10 discretization points are superimposed on the soft rod.

https://doi.org/10.1371/journal.pone.0236121.g008
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Table 8 demonstrates the maximum and the mean absolute values of the errors. As we
observe from this table, the simulation results closely match the experimental responses, i.e.,
for Experiments 1 and 2 in which the flexible metal rods (AlSi05) are employed, the worst-case
errors are< 0.01% of the manipulators’ length. For dynamic Experiments 3 and 4 in which the
PDMS rods are used, maximum of errors respectively are 0.95% and 1% of the manipulator’s
length. For the polymer rods, higher errors are due to the uncertainties in fabrication and non-
linear elastic properties. In quasi-static Experiments 5 and 6, the manipulators experience
large deformations and external loads; the worst-case errors are less than 2% and 1% of the

Fig 9. Simulation and experiment results of Polydimethylsiloxane (PDMS) rod, planar motion: (a) Tip Position in E2-axis
direction. Inset magnifies the results in a small time range. (b) Tip Position in E3-axis direction. (c) Error in E2-axis direction.
(d) Error in E3-axis direction.

https://doi.org/10.1371/journal.pone.0236121.g009

Table 5. Simulation parameters in Eqs (10)–(16) and (21) for in-plane experiment of PDMS rod (without
magnet).

M 21:62⇥ 10�3 g
mm

Number of elements 10

lI i jiàf1;2;���;Ng
60:5
10

mm

Jd diag(0, 33.78, 33.78) g × mm2

E3 [1, 0, 0]T

Fc
ai
jiàf1;2;���;Ná1g â0; 0; 2:12äT ⇥ 105 g

S2

C1 diag(7.17, 2.39, 2.39) × 109

C2 diag(0.75, 1.12, 1.12) × 1010

Time step 8 × 10−5

Simulation time 1.5 (S)

R I3 × 105

W I3 × 10−1

https://doi.org/10.1371/journal.pone.0236121.t005
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manipulators’ length. It should be pointed out that compared to the manipulators’ length, the
mean absolute deviations are small, which reflect the model’s performance.

During the implementation of the modeling approach, it was observed that the number of
nodes affects the frequency of motion. Increasing the number of nodes provides a more accu-
rate solution for the frequency of the system. However, the computation time increases signifi-
cantly with the number of nodes. Therefore, to be able to run the simulations in a reasonable
amount of time and with a small number of nodes, frequency shaping was necessary to be able
to match the results.

The following example shows the motivation behind the frequency shaping of the motion.
Consider a manipulator with the following specifications: Length L = 0.5 m, mass density

Fig 10. Sample of grabbed images: Polydimethylsiloxane (PDMS) rod with an embedded magnet at the tip in 2D
experiment: Motion in a plane. Also, 10 discretization points are shown on the soft rod.

https://doi.org/10.1371/journal.pone.0236121.g010
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r à 1000 kg
m3, square cross-section with edge length a = 5 cm, Poisson’s ratio ν = 0.35, and

Young’s modulus Ehf = 5 × 104 KPa in the high frequency case and Elf = 500 KPa. Fig 16 com-
pares the position between high and low-frequency cases. The base of the manipulator is fixed
at the origin. From Fig 16, it is observed that by changing the Young Modulus from Ehf to Elf,
tip motion is preserved but in a scaled frequency.

Fig 11. Simulation and experiment results of Polydimethylsiloxane (PDMS) rod with an embedded magnet at the tip, planar
experiment: (a) Tip Position in E3-axis direction. Inset highlights the results in a small time range. (b) Tip Position in E2-axis
direction. (c) Error in E3-axis direction. (d) Error in E2-axis direction.

https://doi.org/10.1371/journal.pone.0236121.g011

Table 6. Simulation parameters in Eqs (10)–(16) and (21) for in-plane and circular-motion experiments of PDMS
rod (with tip magnet).

M 13:83⇥ 10�3 g
mm

Number of elements 10

lI i jiàf1;2;���;Ng
60:55

10
mm

Jd diag(0, 13.83, 13.83) g × mm2

E3 [1, 0, 0]T

Fc
ai
jiàf1;2;���;Ng â0; 0; 1:357äT ⇥ 105 g

S2

Fc
aNá1 â0; 0; 1:36äT ⇥ 105 g

S2

C1 diag(4.58, 1.53, 1.53) × 109

C2 diag(3.06, 4.59, 4.59) × 109

Time step 9 × 10−5

Simulation time 2 (S)

R I3 × 105

W I3 × 10−1

Magnet weight 0.096 g

https://doi.org/10.1371/journal.pone.0236121.t006
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The frequency of the continuum motion is only dependant on parameters such as length,
the moment of inertia of the cross-section, Young modulus, and material density. Then, the
natural frequency of the continuum manipulator with a fixed end and free tip can be written
as

onf /
ÅÅÅÅÅÅÅÅÅÅÅ
EI

rAL4

r

Consider a manipulator with an equivalent spatial discretization of its central line by �N ele-

ments. onf
�N denotes the natural frequency of the manipulator in the simulation with �N ele-

ments, and one has

onf �N
/

ÅÅÅÅÅÅÅÅÅÅÅÅ
gcorrEI
rAL4

r

Fig 12. Magnetic field generation setup with the stereo vision cameras. Two nested pairs of Helmholtz coils
generate uniform magnetic fields in E1 and E2-axes direction.

https://doi.org/10.1371/journal.pone.0236121.g012
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The correction factor which needs to be multiplied by Young Modulus in the simulation is
obtained as

gcorr à
onf �N

onf

 !2

By employing this correction factor in the simulation, the effect of the number of discretiza-
tion elements on the frequency of motion can be eliminated.

High fidelity models are helpful for explaining and predicting the behavior of a system
with complex dynamics. However, due to computational constraints, these models may not be
employed for closed-loop control purposes in a real-time implementation of robotic applica-
tions. Additionally, recent developments in computer simulations demand superior, robust,
and efficient numerical frameworks compared to traditional approaches. Discrete geometric
mechanics, which are employed in this paper, provides a systematic method to cope with the
complexity of continuum manipulators’ dynamics. The necessity of guaranteeing robots’ per-
formance in sensitive applications such as minimally invasive surgeries requires the use of pre-
existing knowledge or a model in control architecture to obtain guaranteed and reliable behav-
ior in the presence of disturbances and uncertainties. Although model-free control approaches

Fig 13. Reconstruction of the scene for circular motion of Polydimethylsiloxane (PDMS) rod with an embedded magnet at the
tip: (a,b) 3D experiment and simulation results. (c) Euclidean distance/error of experiment and simulation results in tip
position.

https://doi.org/10.1371/journal.pone.0236121.g013
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are easy to implement, they do not provide and ensure any performance level and high con-
trol-loop bandwidths.

6 Conclusions and future work

This article studies the estimation and model validation problem of continuum manipula-
tors’ dynamics using Lie group variational integrators. Using magnetic actuation, dynamic
and static experiments were conducted on manipulators with rigid and soft materials (e.g.,
Aluminum and PDMS) to illustrate the validity of the presented algorithm for a wide range
of experiments.

Due to the lack of knowledge about friction/damping, distributed predictive filters were
designed to provide information about the unknown signals. Therefore, the dynamical model

Fig 14. Sample of grabbed images: Polydimethylsiloxane (PDMS) rod with two embedded magnets, 2D experiment:
Motion in a plane. Also, 10 discretization points, (blue squares,) are shown on the rod.

https://doi.org/10.1371/journal.pone.0236121.g014
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Fig 15. Simulation and experiment results of Polydimethylsiloxane (PDMS) rod with two embedded magnets, 2D experiment:
(a) Tip magnet’s position in E2-axis direction. (b) Error of tip magnet’s position in E2-axis direction. (c) Tip magnet’s position
in E3-axis direction. (d) Error of tip magnet’s position in E3-axis direction. (e) Middle magnet’s position in E2-axis direction. (f)
Error of middle magnet’s position in E2-axis direction. (g) Middle magnet’s position in E3-axis direction. (h) Error of middle
magnet’s position in E3-axis direction.

https://doi.org/10.1371/journal.pone.0236121.g015
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equipped with the estimation algorithm is a self-contained generic model for continuum
manipulator integration, which provides us with a systematic approach to employ optimal
control theory for realistic trajectory planning in the presence of user/environment-specified
constraints. The designing of a controller and the parallel variational integration algorithm are
to be investigated as future work.

Table 7. Simulation parameters in Eqs (10)–(16) and (21) for in-plane experiment of square cross-section PDMS
rod (with 2 magnets).

M 4:40⇥ 10�3 g
mm

Number of elements 10

lI i jiàf1;2;���;Ng
85:5
10

mm

Jd diag(0, 1.47, 1.47) g × mm2

E3 [1, 0, 0]T

Fc
ai
jiàf1;2;5;���;Ng â0; 0; 4:32äT ⇥ 104 g

S2

Fc
aNá1
⇡ Fc

a3;4 â0; 0; 4:33äT ⇥ 104 g
S2

C1 diag(1.46, 0.49, 0.49) × 1010

C2 diag(3.25, 4.87, 4.87) × 109

Time step 1 × 10−4

Simulation time 7.5 (S)

R I3 × 105

W I3 × 10−1

Tip and middle magnets weight 0.072 g

https://doi.org/10.1371/journal.pone.0236121.t007

Table 8. Maximum and mean absolute error in the experiments using flexible metal rods (AlSi05) and Polydi-
methylsiloxane (PDMS) rods.

Experiments Max. Error Mean Absolute
Error

(1) Flexible rod (AlSi05): in-plane experiment 0.15 mm (i.e.,
2.50%)

0.05 mm

(2) Flexible rod (AlSi05): out-of-plane experiment, both axes 0.15 mm (i.e.,
2.12%)

0.05 mm

(3) PDMS rod (without magnet): in-plane experiment E2-axis 0.56 mm (i.e.,
4.87%)

0.05 mm

E3-axis 0.28 mm (i.e.,
4.89%)

0.05 mm

(4) PDMS rod (with magnet): in-plane experiment E2-axis 0.61 mm (i.e.,
3.35%)

0.14 mm

E3-axis 0.55 mm (i.e.,
1.16%)

0.13 mm

(5) PDMS rod (with magnet): circular motion 1.20 mm (i.e.,
1.43%)

0.59 mm

(6) Square cross-section PDMS rod (with 2 magnets):
in-plane experiment

Tip magnet:
E2-axis

1.00 mm (i.e.,
2.24%)

0.15 mm

Tip magnet:
E3-axis

1.40 mm (i.e.,
5.13%)

0.33 mm

Middle magnet:
E2-axis

0.47 mm (i.e.,
2.05%)

0.08 mm

Middle magnet:
E3-axis

0.40 mm (i.e.,
3.68%)

0.10 mm

https://doi.org/10.1371/journal.pone.0236121.t008
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