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This paper introduces and validates a real-time dynamic predictive model based on a
neural network approach for soft continuum manipulators. The presented model provides
a real-time prediction framework using neural-network-based strategies and continuum
mechanics principles. A time-space integration scheme is employed to discretize the
continuous dynamics and decouple the dynamic equations for translation and rotation for
each node of a soft continuum manipulator. Then the resulting architecture is used to
develop distributed prediction algorithms using recurrent neural networks. The proposed
RNN-based parallel predictive scheme does not rely on computationally intensive
algorithms; therefore, it is useful in real-time applications. Furthermore, simulations are
shown to illustrate the approach performance on soft continuum elastica, and the
approach is also validated through an experiment on a magnetically-actuated soft
continuum manipulator. The results demonstrate that the presented model can
outperform classical modeling approaches such as the Cosserat rod model while also
shows possibilities for being used in practice.

Keywords: continuum manipulators, soft robotics, dynamic models, Cosserat rod theory, Lie group variational
integration, recurrent neural network

INTRODUCTION

Soft continuummanipulators are flexible and highly deformable robots composed of soft and mostly
elastic materials, and can serve as possible substitutes for rigid robots. Advantages of soft
manipulator robots such as their compliance, dexterity, and adaptability to complex workspaces
are driving the emergent research in this field. By contrast, rigidity of traditional rigid robots limits
their use in constrained and confined environments, and reduces the possibilities for safe interaction
with humans. Soft continuum manipulators have found applications in many areas, such as
dexterous grasping (McMahan et al., 2006; Katzschmann et al., 2015) and assistive devices
(Ansari et al., 2017), and particularly in the field of minimally invasive surgeries, such as
laryngeal surgery (Simaan et al., 2004), catheter-based endovascular intervention (Grady et al.,
2000; Burgner et al., 2013), and cardiovascular surgery (Kesner and Howe, 2011).

Analytical modeling of soft manipulators helps evaluate their motion and determine their
workspace, in order to be used for control, motion planning, and animation purposes. Soft
manipulators distinguish themselves by having an infinite number of degrees of freedom in any
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workspace they occupy. This characterization makes modeling
complicated for soft manipulators. Several approaches have been
investigated thus far in the literature. Most of the approaches
consider the kinematic (i.e. static or quasi-static) modeling of the
manipulators such as static analysis using virtual-workmodel (Xu
and Simaan, 2010), Cosserat rod theory (Pai, 2002; Jones et al.,
2009; Mahvash and Dupont, 2011), and α Lie group formulation
(Grazioso et al., 2019). These models do not describe full
dynamics of the manipulators, and they may show
performance degradation when it comes to high-frequency
applications or large and complex deformations. On the other
hand, dynamical modeling approaches [e.g. Wen et al. (2012),
Jung et al. (2014), Hyatt et al. (2019), Sadati et al. (2019), Till et al.
(2019), Tariverdi et al. (2020)], contain dynamics of the
manipulators and also take into account time-varying
responses of manipulators, including high-frequency modes.
However, the dynamic models mostly rely on traditional
methods, such as finite elements and finite differences
(i.e., quantitative and numerical methods), making the
algorithms computationally expensive for real-time
applications. In other words, to obtain sufficiently accurate
solutions, methods need to deal with fine meshes, which
increase memory use and computation time. Another
limitation is that their solutions are discrete or not sufficiently
differentiable. It is worth noting that in model-based controllers
or observers, having a differentiable solution (i.e., a solution that
can be evaluated continuously on the workspace) is crucial in the
design process. Furthermore, when softer materials are employed
for manipulator construction with more complex geometries or
large deformations, modeling their behavior analytically becomes
challenging. Therefore, there is a need for appropriate data-
driven approaches without compromising computational
bandwidths and the prediction quality.

Dynamics of soft continuum manipulators have highly
nonlinear behavior and are expressed as Partial Differential
Equations (PDEs). An effective approach to represent and
model PDEs solutions is to use Neural Networks (NN). NN-
based solutions of PDEs are infinitely differentiable by
eliminating the need for interpolation. Furthermore, compared
to finite elements or difference methods, solutions are
represented by fewer parameters, which reduces the memory
use. There are studies that use machine learning algorithms to
find a solution for special types of PDEs such as (Lagaris et al.,
1998; Lee and Kang, 1990; Weinan et al., 2017; Raissi et al., 2019).
However, to the authors’ best knowledge, there is no study that
investigates possible NN-based solutions for partial differential
equations that describe the full dynamics of continuum
manipulators. In this work, inspired by a time-space
integration scheme and by using the Lie group variational
integration method (Demoures et al., 2015), the dynamic
equations for translation and rotation for each node of a soft
continuum manipulator are decoupled, providing an appropriate
structure aimed at developing a real-time modeling algorithm.
Afterward, Recurrent Neural Networks (RNNs)-basedmodels are
employed to approximate the high-dimensional discretized
equations. Additionally, external torques and forces (e.g.,

control inputs, friction, and gravity) are incorporated into the
model in a real-time manner for control applications.

The ability of RNNs to learn and approximate large classes of
nonlinear functions over sequences of inputs accurately makes
them prime candidates for use in dynamic modeling of complex
nonlinear systems. RNNs with Long Short-Term Memory
(LSTM) layers process sequences by iterating through the
sequence elements. Using an internal feedback, the network is
capable of preserving long-term dependencies. Essentially, LSTM
layers prevent older information from gradually vanishing. These
networks also have been used for several applications in soft
robotics. To name a few, Thuruthel in Thuruthel et al. (2019)
proposes a model-free, real-time sensing method for soft robots
perception. The authors in Thuruthel et al. (2017) uses RNNs to
model and control soft robotic manipulators. Also, force and
motion estimation using RNNs has been investigated in Marban
et al. (2019) and Turan et al. (2018), respectively.

This paper aims to develop a real-time dynamic model for
analyzing the dynamics of soft manipulators. Investigation of
previous work on the modeling of the continuum manipulators
suggests that existing literature focuses primarily on static or
quasi-static approaches, or does not provide a real-time model.
The contribution of this article is to present a scalable, parallel
and real-time modeling algorithm for soft manipulators
dynamics. The contributions of this paper are as follows.

• Existing approaches primarily deal with kinematic modeling
methods. Nevertheless, in this study, real-time prediction of
soft manipulators full spatial dynamics is considered in the
proposed RNN-based algorithm by proposing multiple
light-weight RNN-based models.

• In traditional modeling approaches, there are no systematic
methods to obtain knowledge about dissipation forces, in
particular friction, in the modeling procedure. The
presented algorithm intrinsically takes the dissipation
forces into account and incorporates their effects into
the model.

• Through an experiment, results of the proposed RNN-based
model and Cosserat rod theory method are compared,
revealing the practical effectiveness of the proposed
methodology.

The remainder of this paper is organized as follows: the
problem statement is given in Section 2. Section 3 describes
the proposed RNN-based algorithm in details. In Section 4 and
Section 5, different simulations and experimental validation are
presented to demonstrate the efficacy of the proposed RNN-based
method, in terms of the model performances and accurately
predicting poses of manipulators. Finally, the main
conclusions are stated in Section 7.

2 PROBLEM STATEMENT

Consider a continuum manipulator with large deflections
described by dynamic equations of motion [as presented in
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Tariverdi et al. (2020) and Demoures et al. (2015)] in the PDEs
form as

Hωt + ω ×Hω + n × Λ−1ϕx − Λ−1Λx ×m −mx � Λ−1τ
Mϕtt − Λ(Λ−1Λx × n) − Λnx + f c � f

(1)

where M � ρ × A (ρ and A are the manipulator constant mass
density and its cross-section area), ω ∈ R3 is the manipulator’s
angular velocity, H ∈ R3×3 is the manipulator’s inertia matrix,
ϕ ∈ R3 is the position of the manipulator’s line of centroids in its
workspace, Λ ∈ SO(3) denotes the orientation of moving cross-
sections at point ϕ. Also, n ∈ R3 and m ∈ R3 are the stresses and
momenta along the manipulator, f c ∈ R3 represents conservative
forces (e.g. gravity). Furthermore, (·)x , (·)t , and (·)tt denote
partial derivatives with respect to position, time, and the
second partial derivative with respect to time, respectively.
Finally, f ∈ R3 and τ ∈ R3 are non-conservative forces and
torques (e.g., frictions and control inputs)1.

Although high fidelity models given in the references can
describe continuum manipulators dynamics efficiently, they
suffer from limitations that are discussed in Section 1.
Inspired by the structure and formulation of the dynamics
based on the Lie group variational integration scheme, the aim
is to propose distributed deep recurrent neural networks to
capture and simulate soft manipulators dynamics in real-time
to be able control them more accurately than existing models.

3 PROPOSED RNN-BASED MODEL

This section is devoted to develop a model based on the time
series prediction using RNNs. To solve PDEs numerically using

NNs, one approach is to utilize discrete solutions of finite element
or difference methods to train an NN. A Lie group variational
time integration model is employed to discretize the continuous
dynamics of a soft manipulator2. The whole manipulator is
discretized into an arbitrary number of nodes where the
position and orientation equations of each node are
decoupled. In our study, we discretize the manipulator with
equidistant nodes, but this can be changed depending on the
application.

Figure 1 demonstrates a soft continuummanipulator at time t
where x* is the undeformed length of Node n − 1. The force
F(xp, t), torque τ(xp, t) are applied to Node n − 1 at the position
ϕ(xp, t). Also, Λ(xp, t) is the orientation matrix from the frame
{O} to the frame {On−1

t } attached to the cross-section of Node
n − 1.

The discrete equations suggest an appropriate structure for the
RNNs-based model. Given time-sequence inputs (as a first input
layer), i.e., poses (positions and orientations) of nodes, and also
forces and torques (as a second input layer) applied to each node,
the RNN-based model of Node n is depicted in Figure 2A,B. For
Node n, the first input layer is a time-sequence series of poses
pn−1, pn, and pn+1 (i.e., poses of Node n and its adjacent nodes
n − 1 and n + 1) and the second input layer includes forces and
torques of node n at time t, i.e., [Fn

t , τ
n
t ]T which are incorporated

into the model through dense layers.
The network takes specific size vectors as inputs, which are

called input layers. The inputs are transformed through a series
of hidden layers (LSTM, dense, or fully connected layers) to
produce an output. The output vectors are called an output
layer. Dense or fully connected layers perform linear operations
(i.e., multiplication and summation) on their inputs.
Furthermore, LSTM layers consist of LSTM units, which can
process sequences of data of any length, for example, poses of
nodes. An LSTM unit controls contributions of each element of
the input layer in the output and keeps track of the
dependencies between the elements (Hochreiter and
Schmidhuber, 1997).

For the training process, data-sets contain time-sequence
inputs and forces and torques applied to each node. Also, for
each node, the poses of the node and its neighbors are considered
features, as shown in Figure 2A,B. The first and second input
layers proceed through LSTM layers and dense layers as hidden
layers, respectively. Finally, output layers have resulted from fully
connected layers.

By augmenting the given models for all nodes (see Figure 2B)
as a series, the proposed RNN-based models of the whole
continuum manipulator with N nodes with non-conservative
forces and torques are depicted in Figure 2C. Output of every
node is updated at each time step by using a history (at least two
previous time steps) of neighboring node outputs. Therefore, the
proposed architecture suggests a suitable framework to construct
a parallel modeling algorithm.

FIGURE 1 | A soft manipulator at time t with discretization nodes n and
n − 1 are shown. ϕ(x* , t) andΛ(xp , t) denote the position and the orientation of
cross-section of Node n − 1, respectively. In addition, the force F(x* , t), torque
τ(x* , t), and the conservative force f c (e.g., gravity) are applied to Node
n − 1 at the position ϕ(x* , t).

1For the details see Demoures et al. (2015). 2Dynamic equations are given in Tariverdi et al. (2020), Sec. 2.
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4 SIMULATIONS RESULTS

In this section, we consider different examples and evaluate the
performance of the proposed RNN-based model in Figure 2C. It
is worth mentioning that data-sets play a crucial role in efficiency
and accuracy in machine learning-based algorithms. The data
acquisition process from a robot in real-world environments is
both time and cost-consuming (implementation of multiple

sensors, data filtering, and fusion, etc.). As an alternative
approach, the required data can be acquired through
simulations of high fidelity models. The obtained data can
thus be transferred to train the algorithms to be implemented
in real-world scenarios. In this section and for the presented
examples, required data for the training of the proposed RNN-
based model are acquired through simulations of the algorithm
presented in Tariverdi et al. (2020), Sec. 2). For clarity, this model

FIGURE 2 | Recurrent Neural Network-based model, length of the time history horizon is determined by η and features composed of adjacent nodes pose: (A):
Poses of Nodes n − 1, n, and n + 1 are the input layer and no forces or torques are applied to the node. (B): The first input layer is composed of poses pn−1, pn, and pn+1 at
time history horizon [t − η, t − η + 1, . . . , t] and the second input layer includes forces and torques [Fn

t , τ
n
t ]T which are incorporated into the model through the Hidden

Layers II (dense and flatten layers). (C): Proposed RNN-based models of the continuum manipulator with N nodes including Input, Hidden, and Output Layers. A
history of each node output is used as an input for adjacent nodes. Nodes poses (Input Layer I) and forces and torques (Input Layer II) through the Hidden layers I and II
are proceed and concatenated together.
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is henceforth referred to as the analytical dynamic model. In
addition, since thin rods are considered in the examples,
orientations of cross-sections are not of any concern. Also, it
should be noted that orientations, except the twisting angle, can
be reconstructed from manipulators’ configuration. Therefore, to
obtain a computationally light model, the focus of attention is
only on the prediction of positions.

4.1 First Simulation: An Ellipse Without
External Wrenches
As a first case, a cylindrical rod is bent into a circle and its ends are
attached to one another. The rod is then deformed into an
elliptical shape and released. Due to potential energies in the
ellipse, it starts to move without any external disturbances. The
goal is to model the behavior of the ellipse resultant from its
internal elastic energy.

The ellipse is formed in the xy-plane with the width 0.2 m and
height 0.6 m. As boundary conditions, the first and last nodes are
fixed to the origin and their orientations are set to Ry(18.07°) and
Ry(341.92°), respectively, where Ry(θ) denotes a rotation matrix
describing a rotation around the y-axis by θ degrees. The rod
properties, simulation parameters, and the structure of the
proposed RNN-based model are given in Figure 3A,B.
Furthermore, the initial and a few time-evolved configurations
are shown in Figure 3C. As seen, the ellipse oscillates back and

forth due to its internal elastic energy. Since orientations except
the twisting angle can be reconstructed from the configuration of
the manipulator, to have a light model and for brevity, positions
of the node located at (−0.01,−0.59)—Node 30th—are predicted.
The chosen node is the furthest from the origin and would,
compared to other nodes, most likely have the largest errors.

50,001 position samples are generated from the analytical
model for each node. We augment 1-by-3 position vectors of
Node 30th and its adjacent nodes (Nodes 29th and 31st) at each
time step. Therefore, the augmentation results in a 1-by-9 vector.
Furthermore, the size of history horizons is chosen to be 2. In
other words, η � 1 in Figure 2A,B. Finally, augmented 2-by-9
tensors are obtained for each time step. The prepared data-set is
called Data-set I and 60 percent of it is used for training process.
The architecture in Figure 3A shows the input layer consists of
tensors of size 2 × 9. The first dimension of all layers are reserved
for batch sizes and for the training, the batch size 1 was chosen. In
the architecture of the model in Figure 3A, the Input, Hidden and
Output Layers I together with the number of nodes and type of
layers are demonstrated according to Figure 2A.

First, we evaluate themodel by using unseen data samples inData-
set I and the results are shown inFigure 3D. Themaximumandmean
absolute error are (1.57 mm, 0.27 mm), (2.27 mm, 0.46 mm),
and (0.23 mm, 0.06 mm), or in other words, the percentage of the
maximum errors with respect to the length of the manipulator are
0.11, 0.17, and 0.02 in the x, y, and z-axes, respectively. It is worth

FIGURE 3 | First simulation example: (A): The model architecture used for the first simulation example. The first stage is the Input layer, the intermediate stages are
the Hidden layers, and the last stage is the Output layer. The first dimension of inputs and outputs in each layer are unspecified and can vary with the size of batches. (B):
Rod properties and simulation parameters used in the first example. (C): Initial and time-evolved configurations. Positions of node specified by a red rectangle are
measured and predicted. (D): Measured position calculated from analytical dynamic model and predicted by the proposed RNN-based model in the x, y, and
z-axes are given. (E): RMS error considering all the axes.
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mentioning that it is prior knowledge that the manipulator does not
have anymotion in the z-axis and therefore, components of the z-axis
in position vectors can be ignored. Furthermore, the evaluation Root-
Mean-Square (RMS) errors of the considered node in all axes at every
time step is calculated by

RMSE(t) �
�����������������������������������������������
1
3
((xp(t) − xm(t))2 + (yp(t) − ym(t))2 + (zp(t) − zm(t))2)√

(2)

where predicted positions [xp(t), yp(t), zp(t)]T obtained from the
proposed RNN-based model and measurement positions
[xm(t), ym(t), zm(t)]T in Data-set I and the results are shown
in Figure 3E.

To demonstrate that the model can be extended to different
boundary and initial conditions, the cylindrical rod is employed to
form a horizontal ellipse with the width 0.6 m and height 0.2 m. The
rod properties and the simulation parameters given in Figure 3B are
used. As boundary conditions, the first and last nodes are attached to
the origin and their orientations are set to the identity. The
manipulator with the new boundary and initial conditions is only
used for the evaluation of the trained model by predicting positions
of the node located at (−0.01,−0.19). Based on the prediction, the
maximum and mean absolute errors are (26.33 mm, 3.37 mm),
(21.71 mm, 3.70 mm), and (4.92 mm, 4.22 mm) in the x, y,
and z-axes, respectively. Furthermore, the maximum/worst-case
errors with respect to the length of the manipulator are 1.97%,
1.62%, and 0.37% in each axis, respectively.

Let us assume that the analytical dynamic model is implemented
in a parallel scheme, i.e., each node of 59 nodes is handled with a
CPU core or different hardware such that there is no latency in
communications. Then, the dynamics of each node can be solved in
1.62 × 10− 4 s on average. In addition, to preserve the convergence of
the solver of the analytical dynamic model, the maximum constant
time step for this simulation is 10− 3 s. Aminimum criterion to have
a real-time performance is that the time required to solve each node
dynamics must be less than the constant step simulation. To be
more specific, to have a real-time model, the CPU time, i.e., the
amount of time spent in a user code must be less than Wall-clock
time thatmeasures the time elapsed to run a user code. According to
this minimal criterion, as long as the computation-time for
simulation of a method/model is less than a user-defined time
for the simulation, the model is called a real-time model. It can be
shown that in this example and based on the given assumption, the
maximum bandwidth for a real-time performance is 3.93 Hz on
average (calculation is done on a 16 GB, 1.99 GHz Intel i7 machine
running windows 10). It should be pointed out that we use the same
machine for calculations in this paper. It will be discussed that even
achieving this bandwidth limit is not feasible. On the other hand, for
the proposed RNN-based model, the bandwidth of a real-time
performance is 65.70 Hz, which can be further improved by
optimizing the number of layers and trainable parameters.

It is worth mentioning that the considered assumption is very
strict, which cannot be satisfied in reality. First of all,
conventional algorithms need a relatively high number of
nodes to have numerical stability and an acceptable
convergence rate. Furthermore, due to limitations in
computation resources, more than one node will be assigned

to each core of CPU, and there is always latency in
communications between threads in parallel programmings.
Therefore, reaching the mentioned bandwidth through the
analytical dynamic model is infeasible. However, the real-time
performance of the proposed RNN-based model can be
applicable in closed-loop control applications.

4.2 Second Simulation: A Cylindrical Rod
With External Wrenches
In the second example, we simulate a rod with a circular cross
section, which is actuated by external forces such that its tip tracks a
square in space. In this example, the goal is to model the behavior
of the rod which results from applied external forces on its end-
effector. For boundary conditions, the first node is fixed to the
origin and its orientation is set to the identity for all time steps. The
rod properties and simulation parameters, and the structure of the
proposed model are given in Figure 4. The trajectory of the end-
effector and the applied forces onto it are shown in Figure 5A.

160,001 position and force samples are generated from the
analytical model for each node. We augment 1-by-3 position
vectors of the last node (end-effector) and its adjacent node at
each time step. Therefore, the augmentation results in a 1-by-6
vector. Furthermore, the size of history horizons is chosen to be 2
(η � 1). Finally, augmented 2-by-6 tensors are obtained for each
time steps which are fed to the model as the Input Layer I. The
same preparation process are applied for the force data samples
which are used as the Input Layer II. The prepared data-set is
called Data-set II and 60% of it is used for training process. The
architecture in Figure 4A shows the Input layers I and II consist
of tensors of size (Batch Size × 2 × 6) and (Batch Size × 2 × 3),
respectively. The first dimension of all layers are reserved for
batch sizes and for the training, the batch size 1 was chosen. In the
architecture of the model in Figure 4A, the Input, Hidden and
Output Layers I and II together with the number of nodes and
type of layers are demonstrated according to Figure 2B.

First, unseen data samples in Data-set II are employed to
evaluate the model, and tip positions are calculated and the results
are shown in Figure 5B. The maximum and mean absolute error
are (3.58 mm, 1.70 mm), (1.80 mm, 0.69 mm), and
(2.73 mm, 1.41 mm), or in other words, the maximum
errors with respect to the length of the manipulator are 0.71%,
0.36%, and 0.54% in x, y, and z-axes, respectively. The RMS errors
of the end-effector through Eq. 2 are shown in Figure 5C.

To evaluate the generalizability of the trained model, different
profiles of forces are applied to the model aiming at obtaining
different position trajectories for the end-effector as depicted in
Figure 6A,D. To fulfill the goal of the second example, the new
forces are only used for the evaluation of the trained model by
predicting the positions of the end-effector. Results of the
prediction are plotted in Figure 6B and are as follows: The
maximum and mean absolute errors are (10.49 mm, 2.61 mm),
(5.54 mm, 1.05 mm), and (5.97 mm, 2.83 mm), furthermore,
the percentage of the maximum/worst-case errors with respect to
the length of the manipulator are 1.90, 1, and 1.08 in the x, y, and
z-axes, respectively. The RMS errors of the end-effector through Eq. 2
are shown in Figure 6C.
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In this example, the maximum constant time step for this
simulation is 10− 4 s, to have a convergent numerical solver for the
analytical dynamic model. In addition, on average, the time
1.89 × 10− 4 s is required for solving the dynamics of each
node. In other words, the analytical dynamic model can not
achieve any real-time performance for this example. However, the
proposed model achieves a real-time performance of the
bandwidth of 60.30 Hz on average.

4.3 Third Simulation: A Cylindrical Rod With
and Without External Wrenches
In the last example, we form a semi-circular shape with a
cylindrical rod. A force is applied to the middle node—Node
51th—in the -y-axis direction for 0.5 s and then the force is
removed. Furthermore, the boundary conditions are as follows:

the first and last nodes are fixed to the origin and their
orientations are set to the identity and Rz(181.81°),
respectively, where Rz(θ) describes rotation around the z-axis
by θ degrees. In this example, the idea is to model the behavior of
the rod resulted from applied external forces and internal elastic
energy. The structure of the proposed model is given in
Figure 7A and the rod properties and simulation parameters
are given in Figure 7B. The initial and a few time-evolved
configurations together with the applied forces are given in
Figure 8A.

20,001 position and force samples are generated from the
analytical model for each node. We augment 1-by-3 position
vectors of Node 15th and its adjacent nodes at each time step.
Therefore, the augmentation results in a 1-by-9 vector.
Furthermore, the size of history horizons is chosen to be 2
(η � 1). Finally, augmented 2-by-9 tensors are obtained for

FIGURE 4 | (A): The model architecture used for the second simulation example. There are two Input layers, the first one is the poses of the node and the second
input is the applied forces on the node. The first dimension of inputs and outputs in each layer are unspecified and can vary with the size of batches. (B): Rod properties
and simulation parameters used in the second example.
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each time steps which are fed to the model as the Input Layer I.
The same preparation process are applied for the force data
samples which are used as the Input Layer II. The prepared data-
set is called Data-set III and 60% of the data is used for training
process. The architecture in Figure 7A shows the Input layers I
and II consist of tensors of size (Batch Size × 2 × 9) and
(Batch Size × 2 × 3), respectively. The first dimension of all

layers are reserved for batch sizes and for the training, the
batch size 1 was chosen. In the architecture of the model in
Figure 7A, the Input, Hidden and Output Layers I and II together
with the number of nodes and type of layers are demonstrated
according to Figure 2B.

The positions of Node 51th are predicted using seen and
unseen data samples in Data-set III and the results are shown in

FIGURE 5 | Second simulation example: (A): Initial, Time-evolved configurations and forces on the last node. (B): Tip positions: calculated from the analytical
dynamic model and predicted by the proposed RNN-based model. (C) RMS error considering all the axes. (D) Predicted and measured trajectories.
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FIGURE 6 | Evaluation Example of Second simulation: (A): Initial, Time-evolved configurations and forces on the end-effector (B): Tip positions: calculated from the
analytical dynamic model and predicted by the proposed RNN-based model. (C) RMS error considering all the axes (D) Predicted and measured trajectories.
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Figure 8B,C. The maximum and mean absolute error are
(1.36 mm, 0.78 mm), (0.23 mm, 0.13 mm), and
(2.22 mm, 0.81 mm). Furthermore, the maximum/worst-
case errors with respect to the length of the manipulator are
0.22%, 0.04%, and 0.37% in the x, y, and z-axes, respectively.

For the evaluation of the trained model and to fulfill the goal
of this example, force vector [0, 0,−100 × cos(πt)]T mN mN is
applied to Node 51th for t ∈ [1, 2] s. Results of the prediction
are as follows: The maximum and mean absolute errors
are (3.73 mm, 1.25 mm), (2 mm, 0.2 mm), and
(8.1 mm, 1.2 mm), furthermore, the maximum/worst-case
errors with respect to the length of the manipulator are
0.62%, 0.33%, and 1.35% in the x, y, and z-axes, respectively.

In this example, the maximum constant time step for this
simulation is 10− 4 s using the analytical model. In other words,
the analytical model does not show a real-time performance since,
on average, the time 2.22 × 10− 4 s is required for solving the
dynamics of each node. On the other hand, the proposed model
can achieve a real-time performance of the bandwidth 58.13 Hz
on average.

5 EXPERIMENTAL RESULTS

This section is devoted to the experimental validation of the
presentedmodel. To that end, we fabricated a soft manipulator on
which magnetic fields are used to produce necessary forces and
torques. Compared to the simulations in which positions are
predicted, time-sequence input is composed of orientations of
nodes in the experiment. Furthermore, to show the performance
of the algorithm, results from the presented method and a
Cosserat rod-based theoretical model are compared to show
the efficiency of the proposed RNN-based model. The
Cosserat rod model of the soft manipulator is detailed in
Appendix.

5.1 Soft Continuum Manipulator
A soft continuum manipulator is fabricated from a urethane
rubber Polymer Matrix Composite 770 (PMC-770, Smooth-On
Inc., Macungie, United States) and neodymium (NdFeB) block
magnets whose dimensions are given in Figure 9A. When the
manipulator is subjected to an external magnetic field, the

FIGURE 7 | (A): Themodel architecture used for the third simulation example. There are two Input layers, the first one is the poses of the node and the second input
is the applied forces on the node. The first dimension of inputs and outputs in each layer are unspecified, and can vary with the size of batches (B): Rod properties and
simulation parameters used in the third example.
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embeddedmagnets experience forces and torques. This causes the
flexible portions of the manipulator comprised of the PMC to
undergo elastic deformation.

The PMC-770 has a density ρ � 1000 kg/m3, Young modulus
E � 2.5 MPa, and Poisson ratio ] � 0.5. The distal and proximal
NdFeb magnets have grades N45 and N42, respectively. In
addition, they have density ρ � 7000 kg/m3, Young modulus
E � 41.4 GPa, and Poisson ratio ] � 0.3. It should be pointed
out that Young’s modulus and densities of the soft manipulator
constituent materials were determined using a combination of
supplier data and experiments until theoretical results (predicted
by the Cosserat rod model) would resemble the experiment
results. The magnitude of the magnetic dipoles carried by the
manipulator was calculated from the magnets volume and
manufacturer-supplied residual flux density.

5.2 Experimental Setup
The experimental setup consists of 6 stationary electromagnets
surrounding a spherical workspace of 100 mm diameter Sikorski
et al. (2017). Figure 9B shows the setup of the experiment. In
addition, the final shape of manipulator has been segmented and is
shown in the workspace. The continuummanipulator is suspended
horizontally (along x) in the workspace and actuated to move in a
plane, steering the magnets by manipulating the magnetic field
generated by the electromagnets. Orientations are represented
using the axis-angle notation. Let km ∈ R3 and ϕm ∈ R denote
the axis- and angle-of-rotation, respectively, where m � 1, 2
denotes the magnet index counting from the manipulator base.
In the 2D experiment, km � y, and ϕm is defined relative to z.

Figure 9C represents the shape reconstruction of the soft
manipulator through images coming from two Dalsa Genie

FIGURE 8 | Third simulation example: (A): Initial, Time-evolved configurations and forces applied on the rod. Positions of the middle node, where the force is
applied, are measured and predicted. (B): Measured position calculated from analytical dynamic model and predicted by the proposed RNN-based model in the x, y,
and z-axes are given. (C) RMS error considering all the axes.
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Nano C1940 Red-Green-Blue (RGB) cameras (TeledyneDalsa,
Waterloo, ON, Canada). The flexible PMC-770 and rigid NdFeb
magnets were colored blue and red, respectively. The RGB cameras
(horizontal and vertical) that formed a stereo vision setup recorded
the workspace during experiments. First, we discretize the
actuation workspace into voxels. The silhouette of the
continuum manipulator is segmented as binary masks and the
manipulator body represented as a 3D spatial point cloud. The
manipulator centerline is approximated by N ∈ N discrete
segments. A simple iterative shape reconstruction algorithm
Sikorski et al. (2019) moves through the voxels to represent the
manipulator centerline with N discrete points ({p0, p1, . . . , pN }) as
a function of centerline parameter s ∈ [0, L]. To be specific, with
knowledge of the RGB-camera frames, the points are projected
onto each camera image. If a point is projected onto both binary
masks, the point falls within the manipulator. This process is
repeated for all voxels. Subsequently a 3D polynomial fit (P(s)) is
made through the points. We assume that magnetically exerted
forces and torques are insufficient for the manipulator extension
along the centerline, and therefore assume constant positions of the
magnets along the centerline, sm ∈ (0, L). The measured magnet
position is thereafter obtained from the polynomial fit
(pm � P(sm)), and its orientation from the local gradient of the
polynomial fit (zsP(sm)) relative to a reference z axis,

ϕm � cos−1(z · [zsP(sm)]∧)
km � [z × zsP(sm)]∧

where [·]∧ represents a normalization. Furthermore, in the
experiments performed for this study, camera occlusions did not occur.

The magnetic torques and forces were computed from the
magnets position pm, magnets dipole moments μm ∈ R3, and
electromagnet currents IC ∈ R6. The magnets position and
orientations were obtained from the stereo vision setup.
Afterwards, the orientations are used to compute magnets
dipoles. To compute the magnetic field, each electromagnet is
associated with a unit-current field and field gradient map
(βi(p) ∈ R3 and β∇,i(p) ∈ R3×3, i � 1, . . . , 6), which computes
the unit-current contribution of the electromagnet to the field
at field point p. We define a map G(β∇,i) : R3×3 →R5 which takes
the five independent gradient terms of the field (Petruska and
Nelson, 2015). The field (gradient) at magnet position pm is then
given by the superposition principle

Bm � [β1(pm), . . . , β6(pm)]IC
G(B∇,m) � [G(β∇,1(pm)), . . . ,G(β∇,6(pm))]IC .

The torques and forces exerted on the magnets due to the field
is given by

FIGURE 9 | (A): Polymer matrix composite 770 (PMC-770) beam continuum manipulator with embedded neodymium (NdFeb) magnets located at tip and
intermediate positions. Dimensions are given in millimeter. (B): Experimental setup consists of six stationary electromagnets and contains a segmented photograph of
the final shape manipulator. The flexible PMC-770 and rigid NdFeb sections of the manipulator are blue and red, respectively. Six electromagnets generate a magnetic
field (B) in the workspace, exerting torques and forces (τm , fm, m � 1, 2) on the magnets, which deforms the continuum manipulator to its final shape at the time
t � 340 s. C: Representation of the shape reconstruction algorithm used for shape feedback. The manipulator is recorded with a stereo vision setup. The manipulator
body is represented by a 3D spatial point cloud. The manipulator centerline, characterized by parameter s ∈ [0, L], is approximated by N + 1 points ({p0 , . . . ,pN}). A 3D
polynomial fit (P(s)) is made through the points, and the magnet orientation at an assumed constant centerline position sm derived from the local gradient of the
polynomial fit.
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τm � μm × Bm

fm � ∇(μm · Bm)0 τm � [μm]×Bm

fm � M(μm)G(B∇,m)
where M(μm) : R3 ×R3×5 represents a map of the field
independent spatial gradients to forces on the dipole μm
(Petruska and Nelson, 2015). The applied magnetic forces and
torques together with the initial and a few time-evolved
configurations are shown in Figure 10.

For modeling, we consider three nodes located at the locations
of the proximal and distal magnets, and the clamped end of the
rod. It should be pointed out that the performance of the
proposed RNN-based model, unlike conventional algorithms,
is independent of the number of nodes considered for the
whole manipulator. Therefore, it is sufficient to model points

of interest. The idea is to independently manipulate each magnet
(actuation point). However, the setup provides us with 8 degrees
of freedom, meaning that positions and orientations (12 degrees
of freedom) cannot be manipulated at the same time. Therefore,
we carried out the experiment to achieve only orientation control.

669 1-by-3 position samples and 1-by-6 augmented wrench
samples (i.e., [τ, f ]T ) for the both magnets are obtained. By
choosing the size of history horizon 2 (η � 1), the augmented
2-by-6 position tensors are reshaped for each time step and fed to
the model as the Input Layer I. The same preparation process is
applied for the force data samples which are used as the Input
Layer II. The prepared data-set is called Data-set IV and 60% of
the data is used for training process. We suggest the same model
for both moving nodes and the architecture of the model is

FIGURE 10 | (A): Initial and time-evolved configurations. (B): Applied torques and forces on the distal and proximal magnets.
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depicted in Figure 11 which is the same for the proximal and
distal nodes. The architecture shows the Input layers I and II
consist of tensors of size (Batch Size × 2 × 6). The first dimension
of all layers are reserved for batch sizes and for the training, the
batch size 1 was chosen. In the architecture of the model in
Figure 11, the Input, Hidden and Output Layers I and II together
with the number of nodes and type of layers are demonstrated
according to Figure 2B.

5.3 RESULTS

The distal and proximal node rotations are predicted both by
Cosserat rod model and the proposed model, and the results are
shown in Figure 12. Also, the maximum and mean absolute
errors are stated in an ordered pair in Table 1.

The computation time required to find a solution of the
manipulator statics from a Boundary Value Problem (BVP) with
Cosserat rod theory depends on the quality of the initial solution
guess, i.e., n(s) and m(s) at s � 0, the tolerable error (E ∈ R), and
the number of nodes (N ∈ N) used to discretize the manipulator.

A tolerable error describes the error between the distal internal
forces andmoments obtained from forward integration which are
called ndf and md

f , and distal boundary condition, i.e., ndb and md
b .

The tolerable error can be written as [ ndf − ndb , md
f −md

b ]2 ≤ E.
Decreasing the tolerable error increases the solution accuracy,

but potentially requires more time to solve convex optimizations
for the BVP. Increasing the number of nodes is necessary to
describe complex manipulator geometries, but should be chosen
to minimize the required steps during forward integration.

To visualize how the required computation time changes with
the number of nodes and the tolerable error, multiple simulations
were performed by assigning known torques τm and forces fm for
m � 1, 2, to the manipulator, and finding a valid solution from
solving the BVP. Changes to tolerable errors (E) and number of
nodes (N) were made manually. For example, an error of 2% in
the initial solution guess was obtained by multiplying the valid
solution with 0.98. After each change the BVP was solved again
fifty times. The obtained mean and standard deviation of the
computation times are shown in Figure 13. By taking into
account all the aforementioned variables, i.e., number of nodes
and the tolerable error, the Cosserat rod model is capable of

FIGURE 11 | The model architecture used for the experiment. There are two Input layers, the first one is the poses of the node and the second input is the applied
forces on the proximal node. The first dimension of inputs and outputs in each layer are unspecified, and can vary with the size of batches.
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FIGURE 12 | (A): Measured and predicted orientations of tip/distal magnet by Cosserat rod model and proposed RNN-based model. (B): RMS error for distal/tip
magnet resulted from Cosserat rod model and proposed RNN-based model. (C): Measured and predicted orientations of middle/proximal magnet by Cosserat rod
model and proposed RNN-based model. (D): RMS error for middle/proximal magnet resulted from Cosserat rod model and proposed RNN-based model.
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achieving real-time performances of the bandwidths between 8.33
and 50 Hz.

Figure 13A shows how the computation time required for
solving a solution to the BVP changes with decreasing tolerable
error (E) and increasing percentage errors from a valid solution
(at 0%), for a constant number of nodes. Also, Figure 13B shows
how the computation time required for solving a solution to the
BVP changes with an increasing number of nodes (N) and
increasing percentage errors from a valid solution, for a
constant tolerable error. However, It should be mentioned that
the proposed RNN-based model shows a real-time performance
with a bandwidth of 60.75 Hz on average for the given
architecture in Figure 7, number of epochs � 25, and batch
size � 1. In addition, Figure 14A demonstrates the computation
bandwidth required for the prediction of the next step using the
trained model with a different number of LSTM units and a
different size of time history horizons in Data-set IV. The figure
suggests that computation bandwidths are fairly unchanged with
the number of LSTM units; however, increasing the length of time
history reduces bandwidth. The optimal region maximizing the
bandwidth is approximately with time history size in (2, 20) and
LSTM unit size in (5, 15). Figure 14B suggests that RMS error of
the prediction decreases by increasing the number of LSTM units
and the optimal area minimizing RMS errors is approximately
with time history size in (2, 20) and LSTM unit size in (20, 25).

To sum up, this experiment demonstrates that not only can the
presented RNN-based model outperform classical modeling
approaches such as the Cosserat rod model, but also it shows
possibilities to use the model in practice for closed-loop control
applications.

6 DISCUSSION

This work suggests a distributed architecture formodeling complex
dynamical systems by using multiple light-weight RNN-based
models. As a result, the architecture would be easier to design
and debug, and also benefits from faster convergence compared to
one large network. Furthermore, large networks may take longer
times to be trained, and they may not show an acceptable
performance and readjusting (hyper-)parameters and restarting
the training process might be necessary.

Increasing the size of history horizons in training stages may
reduce the error to some extent, but on the other hand, it makes
the model slower. Based on conventional dynamical models, the
length of the history size should be at least 2. To reach a state-of-
the-art performance, i.e., having less error and faster model
simultaneously, one may prefer varied batch sizes in the
training and run-time phases. As a suggestion, we can use
different batch sizes for training and run-time stages. A model
can be trained with appropriate batch sizes such that the model
performance suits the given criteria. Afterward, one can create a
new network with the pre-trained weights compiled with a batch
size of 1.

The performance, i.e., the convergence and stability, of the
presented algorithm in this paper, unlike conventional
algorithms, is independent of the number of nodes considered
for the whole manipulator. To be specific, in the analytical model,
there might be a need for several discretization nodes to achieve a
convergent solution with a specific tolerable error; however, in the
RNN-based model, only specific points/points of interests (e.g.,
two actuation points in the experiment) are considered. In other
words, in the experiment, 13 nodes (4 for each flexible subsection

TABLE 1 | The maximum and mean absolute errors around the x, y, and z-axes in
ordered pairs for the distal and proximal nodes.

x-axis y-axis z-axis

Results for distal node
Proposed RNN-based

model
(1.27°, 0.23°) (4.69°,1.27°) (0.60°, 0.10°)

Cosserat rod model (3.56°, 0.82°) (10.55°,5.03°) (4.02°, 2.22°)
Results for proximal node
Proposed RNN-based

model
(1.13°, 0.31°) (3.30°,0.89°) (3.93°, 0.31°)

Cosserat rod model (1.55°, 0.36°) (7.22°,3.51°) (3.29°, 1.99°)

FIGURE 13 | (A): Computation time required for solving a solution to the BVP changes with decreasing tolerable error (E) for a constant number of nodes. (B):
Computation time required for solving a solution to the BVP changes with an increasing number of nodes (N) and increasing percentage errors from a valid solution, for a
constant tolerable error.
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and two for each magnet, and 1 for the base) were chosen for
solving the Cosserat rod model, but two nodes were selected for
the RNN-based model. However, the complexity of dynamical
systems (i.e., PDEs) affects the complexity of the architecture used
in the RNN-based model, i.e., the number of layers and LSTM
units and generally how deep the model is. Nevertheless, the
suggested model suits parallel implementation and can benefit
from a high bandwidth for closed-loop control applications.
Furthermore, the architectures of the proposed RNN-based
model can be optimized by reducing the number of layers and
trainable parameters to maximize the achievable bandwidths.

The evaluations showed that incorporating poses of adjacent
nodes and also wrenches as a separated input might help to have,
to some extent, a generalizable model rather than just purely learning
the structure of data. However, supervised learning methods likely
tend to preserve structure of data, and thesemodelsmight not entirely
respect underlying physics (conservation laws). In other words, these
methods might not be wholly physics-aware and applicable for
untrained/unprecedented dynamics or geometries without any
adjustment, re-training, or using techniques such as transfer
learning, etc. One possible and interesting solution (Psichogios and
Ungar, 1992; Lagaris et al., 1998; Raissi et al., 2019) to overcome this
problem and move toward fully physics-aware neural networks is
revisiting lost functions for the training process. To be specific, it is
mentioned in Problem Statement Section that the idea is finding
solutions for PDEs given in Eq. 1, i.e., Λ(x, t) and ϕ(x, t) for
sufficiently large number (e.g., Nf ) of pair (xi, ti) ∈ (0, L) × [0,T]
in which L is the unreformed length of the manipulator and
parameter T is a user-defined time. Considering Eq. 1, a neural
network can be learned by minimizing the mean squared error loss

1
Nf

⎛⎝∑Nf

i�0

����Jωti +ω× Jω+n×Λ−1ϕxi
−Λ−1Λxi ×m−mxi −Λ−1τ

����2{xi ,ti}
+∑Nf

i�0

����Mϕti ti
−Λ(Λ−1Λxi ×n)−Λnxi + f nc − f ����2{xi ,ti}⎞⎠

This modified loss function enforces the structure imposed by
Eq. 1 for large number (e.g., Nf ) of pair (xi, ti) ∈ (0, L) × [0,T]
and the trained neural network will be aware of governing PDEs.

7 CONCLUSION

This paper describes an approach for the real-time prediction of
dynamics for general continuum soft manipulators, based on
machine learning techniques and Lie group variational
integration methods. Poses of a soft, polymer-based
manipulator, in the presence of conservative and non-
conservative wrenches, are predicted and validated
experimentally. The comparison results of the proposed model
and a well-known model for continuum manipulators,
i.e., Cosserat rod theory, are also provided, revealing the
practical effectiveness of the proposed model. The presented
method can be extended to different soft robots with different
shapes and materials. In addition, training of physics-aware neural
networks for solving PDEs and the procedure of a model-based
controller design are topics of research to be studied as future work.
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APPENDIX: COSSERAT ROD THEORY

The Cosserat rod model of the manipulator assigns a position
p(s) ∈ R3, orientation quaternion q(s) � (qr , qi) ∈ R4, internal
force n(s) ∈ R3, and internal moment m(s) ∈ R3 to a material
cross-section at centerline position s ∈ [0, L], where L ∈ R+ is the
length of the manipulator, giving a material state vector
y � [pT , qT , nT ,mT]T . A set of thirteen ordinary differential
equations describe how the state vector evolves between
centerline positions (Edelmann et al., 2017)

p’ � R(q)v,
q’ � 1

2
⎡⎢⎣ −qTi
qrI3 − [qi]× ⎤⎥⎦R(q)u,

n’ � −f ,
m’ � −p’ × n − τ,

v � K−1
s R(q)Tn + v̂

, u � K−1
b R(q)Tm + û,

where p’ ≡ zsp, [·]× : R3 →R3×3 a mapping to a skew-
symmetric matrix, R(q) ∈ SO(3) the rotation matrix
associated with orientation quaternion q, Ks,Kb ∈ R3×3
diagonal shear and bending stiffness matrices, I3 ∈ R3×3 a
unit matrix, v(s) ∈ R3 and u(s) ∈ R3 the material strain and
bending, and v̂(s) � [0, 0, 1]T and û(s) � [0, 0, 0]T the intrinsic

material strain and curvature. External forces f (s) ∈ R3 and
torques τ(s) ∈ R3 determine the shape of the manipulator
(Antman, 1995; Rucker and Webster, 2011). The manipulator
is subject to a distributed gravity force (not shown in
Figure 9) and magnetically exerted distributed forces f m
and torques τm due to interaction of the magnets with the
magnetic field Bm, where m � 1, 2 denotes the magnet index
from the base of manipulator. Given the exerted torques and
forces, the shape of the manipulator is solved as a Boundary
Value Problem (BVP). The base of the manipulator is fixed to
a rigid base with constant position p0 and orientation q0, and
its distal tip is free with constant internal force ndL and
moment md

L. The proximal and distal boundary conditions
are then formulated as follows, assuming no tip wrench, we
have P(y0) � [pT0 , qT0 ]T and D(yL) � [ndTL ,mdT

L ]T � 0. The BVP
is solved with a forward integration using an explicit
Runge–Kutta fourth order method, and convex
optimization using Levenberg–Marquardt (Till et al., 2019).
The unknown proximal state parameters ξ � [nT0 ,m0]T are
guessed and subject to the optimization where N ∈ N is the
number of discrete steps along s. Then yN are the manipulator
distal state parameters obtained from the forward integration
using an explicit Runge–Kutta fourth order method. The
error between desired distal boundary condition D(yL) and
D(yN ) determines if the solution (ξ) is accepted.
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