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ABSTRACT Medical ultrasound (US) systems are widely used for the diagnosis of internal tissues. However,
there are challenges associated with acquiring and interpreting US images, such as incorrect US probe
placement and limited available spatial information. In this study, we expand the capabilities of medical
US imaging using a robotic framework with a high level of autonomy. A 3D camera is used to capture
the surface of an anthropomorphic phantom as a point cloud, which is then used for path planning and
navigation of the US probe. Robotic positioning of the probe is realised using an impedance controller,
which maintains stable contact with the surface during US scanning and compensates for uneven and moving
surfaces. Robotic US positioning accuracy is measured to be 1.19±0.76mm. The mean force along US probe
z–direction is measured to be 6.11±1.18N on static surfaces and 6.63±2.18N on moving surfaces. Overall
lowest measured force of 1.58N demonstrates constant probe-to-surface contact during scanning. Acquired
US images are used for the 3D reconstruction and multi-modal visualization of the surface and the inner
anatomical structures of the phantom. Finally, K-means clustering is used to segment different tissues. Best
segmentation accuracy of the jugular vein according to Jaccard similarity coefficient is measured to be 0.89.
With such an accuracy, this system could substantially improve autonomous US acquisition and enhance the
diagnostic confidence of clinicians.

INDEX TERMS Biomedical imaging, medical robots, object segmentation, path planning, robot control.

I. INTRODUCTION
Robots are gradually transforming medical procedures by
facilitating the earlier diagnosis of diseases, improved oper-
ational efficiency, and implementation of advanced surgi-
cal techniques [1]. Medical imaging modalities are used to
acquire data and create a visual representation of the human
anatomy, that can be utilized for diagnostics or during sur-
gical procedures [2]. Specifically, medical ultrasound (US)
is widely used for the diagnosis of internal tissues due to
its beneficial features, including low cost of operation, non-
invasive nature, and real-time imaging. However, there are
challenges associated with acquiring and interpreting US
images. The acquisition of US images requires correct place-
ment and consistent force between the US probe and the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinhua Sheng .

patient. Variables such-as probe-to-surface orientation, probe
position, and tissue contact force affect the quality of the
US images [3]. Once the US images are acquired, an anal-
ysis follows, whereby the clinician localizes and inspects the
tissues. In order to enhance this process, image processing
and analysis techniques are used for extraction of additional
diagnostic information from the US images [4].

Volumetric data is useful to the clinicians to visualize
and inspect internal tissues. Such data is generated from 2D
and 3D US images using reconstruction techniques [5]and
knowledge of the US probe pose. The pose relation between
the US probe and the frame of reference is obtained using
electromagnetic [6], visual [7] or mechanical [8] spatial sens-
ing devices. Based on that notion a robotic system can be used
to manipulate the US probe and obtain accurate spatial data.
For example, Zhang et al. demonstrated the application of a
6-DOF robot with an in-hand 2D US probe that facilitates 3D
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US volume reconstruction [9]. Aalamifar et al. introduced a
calibrated robot-assisted US system, which employs visual
tracking ofmovements to follow and align to amanually oper-
ated probe [10]. US probe calibration has been investigated
by incorporating automatic calibration using a 6 degrees-
of-freedom (DOF) robot, a marker-based optical tracking
system, and a US calibration phantom [11], [12]. Employing
a robot is also useful to provide contact force information and
control the end-effector position in relation with the scanned
surface [13]. As shown by Jiang et al., a combination of US
images and force feedback from a 7-DOF robot can be used
to control the alignment of the US probe in reference to the
scanning surface [14]. Furthermore, Jiang et al. demonstrated
the importance of the US probe-to-surface alignment when
acquiring images of human tissue [15].

Despite the aforementioned large body of work in the sub-
ject, the planning and execution of trajectories ensuring stable
robot contact with an anthropomorphic body remains a vital
research problem.This problem is catalyzed by high anatomi-
cal variations in human population, including uneven geome-
tries of skin surfaces and varying skin elasticity. Robotic path
planning is intensively researched in the fields of mobile
robotics [16] and non-destructive testing [17]. Translation of
these techniques tomedical applications involving robotic US
and the use of point clouds acquired from the 3D camera for
path planning of a probe in contact with the body surface
is studied in [18]–[20]. For example, Graumann et al. gave
only a rudimentary account of using impedance control for
stable contact. Next, Huang et al. proposed the planning of
one line surface path and used two single-axis force sen-
sors for correcting US probe poses. Finally, Virga et al.
studied autonomous robotic US acquisition to automate 3D
camera-based single line trajectory planning, and reported on
force-based position compensation during breathingmotions.
Nevertheless, planning of paths that contain multiple scan-
ning sweeps on curved surfaces and motion control necessary
to execute these trajectories while compensating for both the
position and the orientation of the US probe in presence of
physiological movement, was not demonstrated. To address
this issue, we propose a novel approach, whereby the planned
path is transformed into a series of equilibrium poses for
the impedance controller. With this approach we maintain
constant contact with both deformable and moving surfaces
during US scanning.

US image analysis is a well-researched topic within the
context of manual US equipment without robotic assistance
[21]. While conventional US image analysis involves a clin-
ician and requires experience, automatic segmentation meth-
ods can improve accuracy and clinical outcome [22] or enable
real-time systems to control medical instruments like needles
[23]–[25], catheters [26], or drills [27]. However, US images
inherently contain many imaging artifacts and have low
signal-to-noise ratio so filtering of noise from the signal is
one of the main perceived challenges [28].

Furthermore, due to the aforementioned anatomical vari-
ances and US machine characteristics, the intensity, density,

FIGURE 1. RobUSt - ‘‘Robotic Ultrasound System’’ (a) A 3D camera is used
to obtain a point cloud of an anthropomorphic ultrasound (US) phantom
surface. This point cloud is used for planning of an US probe scanning
path. (b) US images are acquired using a probe that is manipulated, along
the planned path, with the impedance controller that ensures constant
surface contact. (c) A US volume is reconstructed and unsupervised
learning K-means clustering method is used for the segmentation of
scanned tissues and multi-modal visualization.

and speckle content of tissues can be perceived differently
in US images. This occurrence requires the use of machine
learning methods, which segment such tissues automatically
[29], [30]. In this study we demonstrate that the robotic-
aided reconstruction of US volumes and the utilization of
unsupervised learningmethod K-means enable the robust and
automatic segmentation of sub-dermal tissues. The resulting
accurate volumetric data of segmented tissue can be used
for diagnostics, computer-assisted surgery, and can be readily
integrated with other automated interventional systems.

This study presents a novel integrated medical imaging
solution, combining the 3D US volume reconstruction and
image analysis with autonomous path planning and robot
control. RobUSt is a ‘‘Robotic Ultrasound System’’ that per-
forms autonomous path planning and implements impedance
control during US scanning (Fig. 1). Such an approach facil-
itates the capture of US images while compensating for tis-
sue deformation, body motions, and positioning errors. Our
system improves on diagnostic capabilities by performing
3D US reconstruction, tissue segmentation, and registration
of the multi-modal data. To the best of our knowledge, this
study on robotic US is the first to combine path-to-motion
robot control and the generation of multi-modal data. The
paper is outlined as follows: In Section II, we present both
the hardware of RobUSt as well as its key software compo-
nents, comprising of novel algorithms for autonomous path
planning, robotic impedance control, 3D US reconstruction,
and tissue segmentation. The proposed solutions are vali-
dated through a series of experiments in Section III. Con-
clusions and directions for future studies are provided in
Section IV.
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FIGURE 2. System overview featuring major components and reference
frames used in this study: The robot base (B), robot flange (F), camera
(C), ultrasound (US) probe (U) and US image frames (I). Homogeneous
transformation between any two frames (Y) and (X ) is denoted as
TXY ∈ SE(3).

II. THE RobUSt SYSTEM
The main components of the RobUSt system are as follows:
a 7-DoF robot (Panda, Franka Emika GmbH) with integrated
torque sensors (force resolution < 0.05N and relative force
accuracy 0.8N), a diagnostic medical US machine (Sonix-
Touch Q+, BK Medical), and a 3D camera (Intel Realsense
SR305). The end-effector of the robot is used to manipulate
the attached 3D camera and the US probe. The 3D camera
uses a projected light pattern to capture a 3D-RGB point
cloud of the body surface (resolution of 640 × 480 pixels),
which is used for planning of the US scanning path. During
2D B-mode image acquisition the robot moves the US probe
along the planned path while keeping contact with the surface
using the impedance control.

US images are used for 3D volume reconstruction and seg-
mentation by employing Point Cloud Library (PCL v1.9.1)
for the handling of point clouds, and Open Source Com-
puter Vision Library (OpenCV v4.4.0) for image process-
ing. Algorithms for robot control and machine vision are
integrated into a C++ application on a portable worksta-
tion (Intel Core i7-9750H, 2.60Ghz, and 32 GB RAM)
running Ubuntu 18.04 with Kernel 5.4, and RT-PREEMPT
for real-time robot control capabilities. Experiments are
performed using an anthropomorphic US mannequin (Gen
II US Central Line Training Model, CAE Healthcare,
USA), which we will refer to as anthropomorphic US
phantom.

A. SYSTEM CALIBRATION
The robot base frame (B) is chosen to serve as a global
reference for position control of the robot (Fig. 2). Homo-
geneous transformation matrix between any two coordinate
frames (Y and X ) is denoted as TX

Y ∈ SE(3). It is composed

of the rotation matrix
(
RX
Y ∈ SO(3)

)
that describes the

orientation, and the position vector
(
pXY ∈ R3

)
of frame (X )

with respect to the reference frame (Y). Robot flange pose
is the transformation

(
TF
B
)
. 3D camera and the US probe

are rigidly fixed to the robot flange frame (F), making TU
F

and TC
F constant. TC

F is estimated using calibration method
implemented in Visual Servoing Platform (ViSP v3.3.0) [31].
The least square error solution for pUF is estimated by retriev-
ing

(
TF
B
)
while moving the robot in several configurations

while keeping constant position of the US probe. Positioning
of the 3d camera and the US probe on the robot end-effector
ensures that RU

F = RC
F .

Transformation of frame (A) which is originally observed
in camera frame (C) to robot base frame (B) is valid under
the assumption that TF

B is retrieved at the same time as TA
C :

TA
B = TF

BTC
FTA

C . (1)

During US scanning, the probe is in contact with the surface
and captures B-mode US images. Frame (I) is assigned to the
US image matrix and any pixel is transformed to the position
coordinates in frame (B) using the equation:[

pI(c,r)B
1

]
= TF

BTU
F [ cw−

v
2

0 rh 1]T , (2)

where c ∈ N and r ∈ N are the c-th column and r-th row in
the US image matrix, v is the width of the probe and h and w
are the height and width of any pixel, respectively.

B. PATH PLANNING
The goal of the path planning algorithm is to automatically
generate a sequence of poses on the body surface that are used
to image and reconstruct the underlying volume beneath this
area. These poses are based on user-defined outer point limits
of the scanning area. The developed path planning algorithm
is described in Fig. 3. First, the 3D camera is used to capture
3D-RGB point cloud of the anthropomorphic US phantom
surface. The point cloud ({κ}) is used in the algorithm that
autonomously plans a path that the robot carrying the US
probe needs to follow when preforming US scanning. Only
positional data (without the colors) are used to define the
point cloud ({κ}) in the (C) frame, comprised of f number of
points κ j ∈ R3 with j = 1, . . . , f . Outer limits of the scanning
area are defined by a set of points ({ι}), where ιk ∈ R3 and
k = 1, . . . , 4. The number of the generated grid points (s) and
the spacing between them depend on the distance between the
limit points and the user set variable (g) which is based on
US probe size. A set of grid points ({σ }), shown in Fig. 3(a),
is generated such that minimal number of points (σ i) with
i = 1, . . . , s are linearly spaced, and g is the largest allowed
distance between any two points. All the grid points (σ i)
are spaced in straight 3D lines between the points of the set
({ι}). Thus, they need to be projected to the actual surface to
compensate for curvatures. Each grid point (σ i) is projected
along the direction of normal (n) to the least square fitted grid
plane. The nearest κ j found on the surface of the body to the
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FIGURE 3. Path planning algorithm: (a) A set of grid points ({σ }) (denoted
red) is generated between a set of four limit points ({ι}) (denoted green).
(b) A surface path point

(
ρi
)

(red points), with i = 1, . . . , s and s equal to
number of grid points, is derived from a grid point

(
σ i
)

and point cloud
set ({κ}) using (3). The white lines connecting consecutive path points
denote the pass schedule. (c) The orientation

(
ϑ i
)

of the ultrasound (US)
probe in a path point

(
ρi
)

is defined using the z-axis unit vector as a
normal to local surface according to (4) and a vector

(
yyi
)

that connects
consecutive path points

(
ρi
)

and
(
ρi+1

)
and lies in the yz-plane.

It should be noted that for the last path point in every row, yyi from a
previous point is used. When the probe is returning on even row sweeps,
yyi := −yyi , to avoid the turning of the US probe. Unit vectors

(
xi
)

and(
yi
)

for orientation
(
ϑ i
)

are derived from zi and yyi . (d) The robot path in

frame (C) is a set of poses
(
{T

A1
C , . . . , TAs

C }

)
, where T

Ai
C is based on

position
(
ρi
)

and orientation
(
ϑ i
)
.

ray
(−→
σ in

)
then becomes a surface path point (ρi):

ρi = argmin
κ j∈{κ}

(||−−→σ iκ j × n||). (3)

Orientation of the US probe (ϑ i) is calculated for path point(
ρi
)
using surface points around it and the position of the next

path point
(
ρi+1

)
. The direction of z-axis unit vector for every

path point (ρi) is calculated based on the local neighborhood
of points in a radius of size (g) around it:

zi := normal{∀t|t ∈ {κ} ∧ ||t− ρi|| < g}, (4)

where t is any point in point cloud ({κ}). Therefore, value
of variable (g), the maximal distance between neighboring
path points, is used for calculation of local surface normal.
Normal to surface for a set of points is estimated using the
PCL function, denoted as normal{} in (4), that solves the
eigenvalues and eigenvectors of a given covariance matrix
and estimates the least-squares plane normal. Unit vectors
(xi) and (yi) are calculated in Fig. 3(c). Path point position
(ρi) and orientation (ϑ i) together define a transformation(
TAi
C

)
that is transformed to frame (B) using (1). A complete

set of robot end-effector path poses in frame (B) is denoted
as 0 = {TA1

B , . . . ,TAs
B }.

C. IMPEDANCE CONTROL FOR PROBE-TO-SURFACE
CONTACT
The autonomous positioning of the RobUSt probe in contact
with the body surface necessitates the use of a control algo-
rithm, which adheres to a number of requirements. First of
all, the control of the probe must involve contact forces which
are deemed safe. Second, at all times, the distal surface of the
probe must remain completely in contact with the surface of
the body for imaging. Finally, the positioning accuracy on a
plane tangent to the surface of the body must be sufficient
to ensure that the entire path (0) is mapped. We fulfil these
requirements by using a two-stage algorithm (Fig. 4) com-
prising of a motion generator and a closed-loop impedance
controller. As an input, the algorithm takes the Cartesian
position vector

(
pAi
B

)
and orientation quaternion

(
qAi
B ∈ H

)
of the desired robot pose

(
TAi
C

)
. Operating continuously,

the algorithm generates reference joint torques
(
τ r ∈ R7

)
fed

as an input to the low-level built-in controller of the robot.
The motion generator contains an internal model of the

Panda robot, described by joint angles
(
θm ∈ R7

)
. The gener-

ator uses an inverse kinematics scheme, based on the damped
Moore-Penrose pseudoinverse (†) [32]

J†B = JTB
(
JBJTB + ψI

)−1
(5)

of the space robot Jacobian
(
JB ∈ R6×7

)
, where ψ ∈ R>ε0

is the damping coefficient and I ∈ R6×6 is an identity
matrix. The generator provides a continuous motion trajec-
tory comprising of intermediate US reference (ref) poses,
described by the position vector

(
prefB ∈ R3

)
and orientation

quaternion
(
qrefB ∈ H

)
, between the discrete poses of the set

({0}), thereby smoothing the input to the controller.
The impedance control (Fig. 4) takes place in the reference

frame (U) of the US probe. We use the control law

τ r = JTU

(
KcecU +Kd

[
ṗU
ωU

])
+ τ c, (6)

where ecU ∈ R6 is the error between the reference and current
configuration of the robot expressed in frame (U), ṗU ∈ R3

and ωU ∈ R3 are linear and rotational velocities of TU
B

expressed in frame (U) [33], and τ c ∈ R7 are torques com-
pensating for robot dynamics. These torques are computed
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FIGURE 4. The control algorithm is used to steer the ultrasound (US) probe along discrete consecutive poses defined by frames
(
Ai
)
. Each pose is

converted to a Cartesian position vector
(

p
Ai
B

)
and orientation quaternion

(
q
Ai
B

)
. A smooth reference trajectory

(
ref
)
, described by the position(

pref
B

)
and orientation quaterion

(
qref
B

)
is generated with an internal kinematic model, described by joint angles

(
θm). This model is used in an

inverse-kinematics motion generator based on damped pseudo-inverse of the robot space Jacobian
(
JB
)
. The generator minimizes the error

(
em)

between the end-effector pose of the model and the path pose. The smooth trajectory is then used as an equilibrium reference in an impedance
controller. The control input comprises of reference torques (τ r ) for the low-level torque controllers of individual robot joints. The input is based on
the actual displacement of the US probe from the equilibrium, simulating a spring-dampener system with parameters defined by stiffness matrix(
Kc
)

and damping
(
Kd
)
.

using a dynamic model of the Panda robot provided by the
manufacturer. We use the gain matrices Kc ∈ R6×6

≥0 and
Kd ∈ R6×6

≥0 to define the stiffness and the damping of the
force-position relation. The stiffness is defined as follows:

Kc = diag
([
Kx Ky Kz Ki Kj Kk

])
, (7)

while

Kd = 2Kc
◦(1/2), (8)

such that the system is critically damped.
The force-position relation provided by impedance control

enables the robot compliance in the presence of contact force.
By introducing a constant offset (δz ∈ R+) to the instanta-
neous position reference

(
prefU

)
along the axis (̂zU ), we use

this phenomenon to achieve a sustained probe-to-surface con-
tact with the resulting normal force

(
F zU ∈ R+

)
. The steady-

state components of that force can be modelled as follows:

F zU = Kz(δz− erz ), (9)

where
(
erz ∈ R

)
represents the error between the location

surface as registered using the point-cloud and the actual
one. As long as δz > erz , the probe will remain in contact
with the body. By tuning the coefficient (Kz), the range
of contact forces can be selected. Additionally, we choose
Kj such that the resulting torsional compliance compensates
for uneven contact of the probe surface with the body [18].
The rest of the coefficients of Kc are Kx ,Ky � Kz, and
Ki,Kk � Kj to achieve high stiffness, which improves the
precision of the motion. The values for all coefficients are
specified in Section III.

D. ULTRASOUND VOLUME RECONSTRUCTION AND
SEGMENTATION
The 3D camera and impedance control are used to realise the
autonomous US surface scanning for volume reconstruction

FIGURE 5. Ultrasound (US) volume reconstruction and multi-modal
registration: (a) Acquisition of US images with no probe-to-surface
contact on the left side of the image; (b) US volume reconstruction based
on 2D US images and corresponding robot poses in base frame (B);
(c) Visualization of the registered multi-modal data set composed
of 3D-RGB surface point cloud and the reconstructed 3D-intensity US
point cloud.

and segmentation. During US scanning 2D-intensity images
are retrieved and inspected to detect potential loss of contact
between the US probe and the body. In case of uncertainties
(e.g., variation in tissue stiffness or body surfacemotion), part
of the probe can lose contact with the surface, resulting in
zero value pixels in columns of the US image (Fig. 5(a)). The
intensity check algorithm is developed to detect such columns
and prevent the conversion of their pixels to 3D points in the
reconstructed US volume. Redundant control using contact
force and US image inspection is used to detect unexpected
situations during US scanning.
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FIGURE 6. Volumetric segmentation: (a) A 2D Ultrasound (US) image of
the jugular vein; (b) A 2D US image of the jugular vein after processing
with an Edge-Preserving-Filter; (c) The reconstructed volume with a
cross-section of the jugular vein; (d) The K-means segmentation results
showing the jugular vein wall as green points, liquid within the jugular
vein as red points, and the surrounding tissue as blue points.

The acquired 2D US image and corresponding transfor-
mation

(
TF
B
)
of the robot flange are used with (2) to map

all the valid pixels to the 3D points that represent the recon-
structed US volume (Fig. 5(b)). Reconstructed US volume
and the surface previously captured with the 3D camera
are transformed to the robot base coordinate system using
(1) and (2). The result is a multi-modal data set registered
in frame (B), as shown in Fig. 5(c). The advantage of this
data set over a standard US data set is that visualisation
of inner tissues is shown relative to the surface of the
body.

Segmentation is used to visualize different tissues within
the reconstructed 3D US volume. The segmentation process
starts with speckle reduction and intensity homogenization
in 2D US images using the Edge-Preserving-Filter (EPF)
implemented in OpenCV (v4.4.0). EPF avoids edge shifting
which characterizes simpler methods, such as Mean or Gaus-
sian filters, and has a lower computational cost in comparison
to other edge-preserving algorithms, like bilateral texture
filter and anisotropic diffusion [34]. Before EPF filtering,
the image is transformed from the grey-scale to RGB color
representation. The filtering results are shown in Fig. 6(b).
Following the image processing, the pixels are transformed
to 3D space using (2). Due to anatomical variability and
changes in the US machine settings, identical tissues can be
observed differently in US images with regards to intensity,
density, and speckle content. K-means clustering method
[35], implemented in the PCL (v1.9.1), is used to separate
differently observed intensities of tissues in the reconstructed
US volume. K-means clustering is an unsupervised learning
method that identifies a set number of centroids in any given
data set and then appoints every data point to the nearest
cluster by reducing the in-cluster sum of squares. K-means
is chosen for the segmentation task because it requires no
prior knowledge and performs well in cases with large vari-
ability in the input data. In our implementation, the complete

FIGURE 7. Positioning accuracy measurements are performed using a
series of 5mm diameter cylindrical shafts fitted inside the phantom filled
with a gelatin-water mixture. Fabricated dimensions between the shafts
are considered as the ground truth since their accuracy is at least an
order of the magnitude higher than measured accuracy. Shafts localized
in US images are transformed to the robot base frame (B) using the
corresponding robot poses and (2).

3D-RGB type point cloud is used as an input for K-means
algorithm with three clusters. This results in clustering that
is predominantly influenced by color values while the impact
of point position grows with the distance between clustered
points. Segmentation of the neck area is shown in Fig. 6(d).

III. EXPERIMENTAL RESULTS
We validate the RobUSt system in a series of studies. First,
we assess the performance of the robotic system, by measur-
ing the positioning accuracy and the contact forces during US
scanning. Secondly, the segmented US volumes are evaluated
based on robustness to changes in US system parameters. The
protocol for all the experiments involves aligning the robot
end-effector with the attached 3D camera towards the surface
of interest and capturing the point cloud. The outer limits
of the scanning area are then selected interactively on the
visualization window. Based on those inputs the algorithm
autonomously plans the motion trajectory. The robot moves
the US probe with themotion controller while simultaneously
capturing the US images, end-effector poses and forces.

The positioning accuracy of the robot with the US probe
is defined as the ability of the robot to localize 3D points
in the gelatine phantom (Fig. 7). The positioning error
between localised points is a cumulative error composed of
robot positioning errors, robot-to-US probe calibration errors,
US image reconstruction parameters, and in-image localiza-
tion errors. Based on the localization of 20 points uniformly
distributed inside the phantom, the mean Euclidean error is
1.19±0.76mm. However, authors expect larger positioning
errors when scanning uneven surfaces, due to changes in
orientation of the robot end-effector [36].
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FIGURE 8. Force feedback measurements from the robot (using built-in
torque sensors) are recorded at 20Hz during ultrasound (US) scanning on
a static anthropomorphic US phantom. The parameters of the robot
compliance matrix are set to Kc = diag([3000 3000 200 150 10 150]).
Maximum distance between grid points

(
σ i
)

is set to g = 30mm and each
equilibrium point is translated along the z-axis of orientation

(
ϑ i
)

from
every path point position

(
ρi
)

for δz = 40mm. The reference pose changes

from frame
(
Ai
)

to frame
(
Ai+1

)
once

√
(x

Ai
U )2 + (y

Ai
U )2 < 3mm.

The probe-to-surface forces are measured during scan-
ning of four surfaces with different geometry on the static
anthropomorphic US phantom. Measured forces relative to
z-axis of frame (U) are reported in Fig. 8. The experiment
demonstrated the ability of the RobUSt to keep stable contact
with surfaces of different geometries. Themean normal (|Fz|)
forces exerted on the surface are between 5.31N and 6.93N,
which falls within the range advised for acquiring clear US
images [13], [37].

Next, the experiment with the moving surface is per-
formed. The probe position in frame (B) and the force in
frame (U) are measured during path execution while the

FIGURE 9. Force and position feedback measurements from the robot
(using built-in torque sensors) during ultrasound (US) scanning on a
moving anthropomorphic US phantom. The parameters of the robot
compliance matrix are set to Kc = diag([3000 3000 100 150 150 150]).
Each equilibrium point is translated along the z-axis of orientation

(
ϑ i
)

from every path point position
(
ρi
)

for δz = 80mm. (a) Scanning path
located in the chest area; (b) Scanning path located in the neck area.
Please refer to accompanying video for a demonstration of these
experiments.

anthropomorphic US phantom is moved using the second
robot with cycle time of 3s and vertical position amplitude
of 25mm (Fig. 9). The experiment is performed 4 times on
the chest and 2 times on the neck area, each with a duration
of 22s. The mean normal (|Fz|) forces exerted on the surface
are 6.63±2.18N, with overall lowest and highest force mea-
sured to be 1.58N and 11.86N, respectively. This experiment
demonstrates that probe-to-surface contact is consistent on a
moving body.

Robustness of the segmentation algorithm is validated
by changing US transducer frequency (f ), dynamic range
(DR, ratio of the largest to the smallest signal), and US
image gain (Ku, the overall brightness) during three sepa-
rate scanning experiments on the collum (neck) area of the
static anthropomorphic US phantom as shown in Fig. 10
(1a, 2a, and 3a). Changing the values of US settings results
in capturing US images that differ with regard to intensity,
speckle content, and the level of tissue homogeneity. Dur-
ing robotic US scanning, images of size 256 × 460 pix-
els (38× 70mm) are retrieved and filtered with EPF. The
parameters of the EPF algorithm are determined heuristically
with the size of the neighborhood being set to 60 and the
coefficient of the edge-preserving threshold set to 0.15. The
reconstructed US volume is segmented using the algorithm
described in Section II.D. A qualitative segmentation anal-
ysis is performed based on the visual examination of the
featured segmentation results shown in column (b) of Fig. 10.
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FIGURE 10. Evaluation of segmentation results using Intersection over Union (IoU) on the static anthropomorphic phantom: (1a) First reconstructed
Ultrasound (US) volume; (1b) Segmentation of the first US volume; (1c) Ground truth of the jugular vein; (1d) First volume IoU; (2a) Second
reconstructed US volume; (2b) Segmentation of the second US volume; (2c) Ground truth of the jugular vein; (2d) Second volume IoU; (3a) Third
reconstructed US volume; (3b) Segmentation of third US volume; (3c) Ground truth of the jugular vein; (3d) Third volume IoU. Please refer to
accompanying video for a demonstration of these experiments.

We conclude that, even with different US system parameters,
the algorithm can differentiate between the jugular vein wall
(green points), the liquid within the jugular vein (red points),
and the tissue surrounding the vein (blue points). For the
quantitative evaluation, the ground truth mask of the jugular
vein is manually denoted in 2D images and the 3D ground
truth volume is reconstructed. The pixels in the rectangular
area around every 2D ground truth mask are compared to
their corresponding segmented 3D points. As a measure of
similarity between the masks, the Jaccard similarity coef-
ficient, i.e., the Intersection over Union (IoU) is calculated
in column (d) of Fig. 10. In conclusion, the unsupervised
learning algorithm demonstrated that it can robustly segment
a variety of tissues with significant accuracy, with no prior
training data.

IV. CONCLUSION AND FUTURE WORK
In this study, we present a framework for RobUSt: a robotic
US system with high level of autonomy. RobUSt is capa-
ble of performing autonomous path planning that accounts
for anthropomorphic surface geometry, by utilizing the 3D
camera data. The positioning accuracy measured using the
gelatin phantom is 1.19±0.76mm. The impedance control
enables the positioning of the US probe while compensating
for tissue deformation or surface movement. This is shown
in by measuring probe-to-surface force during US scanning
of a static body and moving body with 6.17±1.19N and

6.63±2.18N, respectively. Furthermore, overall lowest mea-
sured force of 1.58N demonstrates constant probe-to-surface
contact is kept. The acquired US images and corresponding
probe poses are used for the 3D US reconstruction and reg-
istration of multi-modal images consisting of the US vol-
ume and the body surface point cloud. The resulting data
is used for the segmentation of the jugular vein in three
scenarios with varying US machine settings. Ground truth
and segmentation volumes of the jugular vein are used to
the calculate the best case IoU to be 0.89. Using K-means
clustering, we can reliably differentiate between the inside
of the vein, vein walls, and the surrounding tissue. In con-
clusion, with added task-specific functionalities, the RobUSt
system framework could be utilized for autonomous medi-
cal examinations, clinical diagnosis and automated surgical
interventions.

One of the challenges observed when registering the sur-
face point cloud to the US volume is the decreased accu-
racy between the two due to tissue deformations caused
by contact with the US probe. To account for this in
our future work, we plan to acquire 3D point-clouds of
the probe-surface contact area in real-time. Based on the
obtained US images and measured forces, a model can
be created that describes and predicts the internal tis-
sue deformations. This approach will enable estimation
and reconstruction of the undeformed US volume and
improve the registration accuracy with the surface point
cloud.
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Furthermore, we will utilize the RobUSt framework in
specific applications e.g., endovascular interventions in clin-
ically relevant scenarios.

REFERENCES
[1] J. Troccaz, G. Dagnino, and G.-Z. Yang, ‘‘Frontiers of medical robotics:

From concept to systems to clinical translation,’’ Annu. Rev. Biomed. Eng.,
vol. 21, no. 1, pp. 193–218, Jun. 2019.

[2] K. Cleary and T. M. Peters, ‘‘Image-guided interventions: Technology
review and clinical applications,’’ Annu. Rev. Biomed. Eng., vol. 12, no. 1,
pp. 119–142, Jul. 2010.

[3] A. Scorza, S. Conforto, C. D’Anna, and S. A. Sciuto, ‘‘A comparative study
on the influence of probe placement on quality assurance measurements
in B-mode ultrasound by means of ultrasound phantoms,’’ Open Biomed.
Eng. J., vol. 9, no. 1, pp. 164–178, Jul. 2015.

[4] K. Saini, M. L. Dewal, and M. Rohit, ‘‘Ultrasound imaging and image
segmentation in the area of ultrasound: A review,’’ Int. J. Adv. Sci. Technol.,
vol. 24, pp. 41–60, Nov. 2010.

[5] O. V. Solberg, F. Lindseth, H. Torp, R. E. Blake, and T. A. N. Hernes,
‘‘Freehand 3D ultrasound reconstruction algorithms—A review,’’ Ultra-
sound Med. Biol., vol. 33, no. 7, pp. 991–1009, 2007.

[6] Z. Chen and Q. Huang, ‘‘Real-time freehand 3D ultrasound imaging,’’
Comput. Methods Biomech. Biomed. Eng., Imag. Vis., vol. 6, no. 1,
pp. 74–83, Jan. 2018.

[7] Q. Cai, C. Peng, J. C. Prieto, A. J. Rosenbaum, J. S. A. Stringer,
and X. Jiang, ‘‘A low-cost camera-based ultrasound probe tracking sys-
tem: Design and prototype,’’ in Proc. IEEE Int. Ultrason. Symp. (IUS),
Oct. 2019, pp. 997–999.

[8] M. R. Morgan, J. S. Broder, J. J. Dahl, and C. D. Herickhoff, ‘‘Versatile
low-cost volumetric 3-D ultrasound platform for existing clinical 2-D sys-
tems,’’ IEEE Trans. Med. Imag., vol. 37, no. 10, pp. 2248–2256, Oct. 2018.

[9] H. K. Zhang, T. Y. Fang, R. Finocchi, and E. M. Boctor, ‘‘High resolution
three-dimensional robotic synthetic tracked aperture ultrasound imaging:
Feasibility study,’’ Proc. SPIE, vol. 10139, Mar. 2017, Art. no. 1013914.

[10] F. Aalamifar, R. Khurana, A. Cheng, R. H. Taylor, I. Iordachita, and
E. M. Boctor, ‘‘Enabling technologies for robot assisted ultrasound tomog-
raphy: System setup and calibration,’’ Proc. SPIE, vol. 9040, Apr. 2014,
Art. no. 90401X.

[11] A. Ahmad, M. C. Cavusoglu, and O. Bebek, ‘‘Calibration of 2D ultrasound
in 3D space for robotic biopsies,’’ in Proc. Int. Conf. Adv. Robot. (ICAR),
Jul. 2015, pp. 40–46.

[12] L. E. Bø, E. F. Hofstad, F. Lindseth, and T. A. N. Hernes, ‘‘Versatile robotic
probe calibration for position tracking in ultrasound imaging,’’ Phys. Med.
Biol., vol. 60, no. 9, pp. 3499–3513, May 2015.

[13] K. Mathiassen, J. E. Fjellin, K. Glette, P. K. Hol, and O. J. Elle, ‘‘An ultra-
sound robotic system using the commercial robot UR5,’’ Frontiers Robot.
AI, vol. 3, p. 1, Feb. 2016.

[14] Z. Jiang, M. Grimm, M. Zhou, J. Esteban, W. Simson, G. Zahnd, and
N. Navab, ‘‘Automatic normal positioning of robotic ultrasound probe
based only on confidencemap optimization and forcemeasurement,’’ IEEE
Robot. Autom. Lett., vol. 5, no. 2, pp. 1342–1349, Apr. 2020.

[15] Z. Jiang, M. Grimm, M. Zhou, Y. Hu, J. Esteban, and N. Navab, ‘‘Auto-
matic force-based probe positioning for precise robotic ultrasound acqui-
sition,’’ IEEE Trans. Ind. Electron., early access, Nov. 16, 2020, doi:
10.1109/TIE.2020.3036215.

[16] B. K. Patle, G. B. Loganathan, A. Pandey, D. R. K. Parhi, and A. Jagadeesh,
‘‘A review: On path planning strategies for navigation of mobile robot,’’
Defence Technol., vol. 15, no. 4, pp. 582–606, Aug. 2019.

[17] C. Mineo, S. G. Pierce, P. I. Nicholson, and I. Cooper, ‘‘Robotic path plan-
ning for non-destructive testing—A customMATLAB toolbox approach,’’
Robot. Comput.-Integr. Manuf., vol. 37, pp. 1–12, Feb. 2016.

[18] Q. Huang, J. Lan, and X. Li, ‘‘Robotic arm based automatic ultrasound
scanning for three-dimensional imaging,’’ IEEE Trans. Ind. Informat.,
vol. 15, no. 2, pp. 1173–1182, Feb. 2019.

[19] C. Graumann, B. Fuerst, C. Hennersperger, F. Bork, and N. Navab,
‘‘Robotic ultrasound trajectory planning for volume of interest coverage,’’
in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2016, pp. 736–741.

[20] S. Virga, O. Zettinig, M. Esposito, K. Pfister, B. Frisch, T. Neff, N. Navab,
and C. Hennersperger, ‘‘Automatic force-compliant robotic ultrasound
screening of abdominal aortic aneurysms,’’ in Proc. IEEE Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2016, pp. 508–513.

[21] J. A. Noble and D. Boukerroui, ‘‘Ultrasound image segmentation: A
survey,’’ IEEE Trans. Med. Imag., vol. 25, no. 8, pp. 987–1010, Aug. 2006.

[22] K.M.Meiburger, U. R. Acharya, and F. Molinari, ‘‘Automated localization
and segmentation techniques for B-mode ultrasound images: A review,’’
Comput. Biol. Med., vol. 92, pp. 210–235, Jan. 2018.

[23] J. Chevrie, N. Shahriari, M. Babel, A. Krupa, and S. Misra, ‘‘Flexible
needle steering in moving biological tissue with motion compensation
using ultrasound and force feedback,’’ IEEE Robot. Autom. Lett., vol. 3,
no. 3, pp. 2338–2345, Jul. 2018.

[24] B. Takacs and T. Haidegger, ‘‘Autonomous applied robotics: Ultrasound-
based robot-assisted needle insertion system concept and development,’’ in
Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 487–492.

[25] O. Zettinig, B. Frisch, S. Virga, M. Esposito, A. Rienmüller, B. Meyer,
C. Hennersperger, Y.-M. Ryang, and N. Navab, ‘‘3D ultrasound
registration-based visual servoing for neurosurgical navigation,’’ Int.
J. Comput. Assist. Radiol. Surg., vol. 12, no. 9, pp. 1607–1619, Sep. 2017.

[26] C. M. Heunis, Y. P. Wotte, J. Sikorski, G. P. Furtado, and S. Misra,
‘‘The ARMM system–autonomous steering of magnetically-actuated
catheters: Towards endovascular applications,’’ IEEE Robot. Autom. Lett.,
vol. 5, no. 2, pp. 705–712, Apr. 2020.

[27] P. J. S. Gonçalves, P. M. B. Torres, F. Santos, R. António, N. Catarino,
and J. M. M. Martins, ‘‘A vision system for robotic ultrasound guided
orthopaedic surgery,’’ J. Intell. Robot. Syst., vol. 77, no. 2, pp. 327–339,
Feb. 2015.

[28] N. Gupta, A. P. Shukla, and S. Agarwal, ‘‘Despeckling of medical ultra-
sound images: A technical review,’’ Int. J. Inf. Eng. Electron. Bus., vol. 8,
no. 3, p. 11, 2016.

[29] R.-M. Menchón-Lara and J.-L. Sancho-Gómez, ‘‘Fully automatic segmen-
tation of ultrasound common carotid artery images based on machine
learning,’’ Neurocomputing, vol. 151, pp. 161–167, Mar. 2015.

[30] H. Cui, Y. Xia, and Y. Zhang, ‘‘Supervised machine learning for coronary
artery lumen segmentation in intravascular ultrasound images,’’ Int. J.
Numer. Methods Biomed. Eng., vol. 36, no. 7, Jul. 2020, Art. no. e3348.

[31] E. Marchand, F. Spindler, and F. Chaumette, ‘‘ViSP for visual servoing: A
generic software platform with a wide class of robot control skills,’’ IEEE
Robot. Autom. Mag., vol. 12, no. 4, pp. 40–52, Dec. 2005.

[32] A. S. Deo and I. D. Walker, ‘‘Overview of damped least-squares meth-
ods for inverse kinematics of robot manipulators,’’ J. Intell. Robot. Syst.,
vol. 14, no. 1, pp. 43–68, Sep. 1995.

[33] N. Hogan, ‘‘Impedance control: An approach to manipulation: Part II—
Implementation,’’ J. Dyn. Syst., Meas., Control, vol. 107, no. 1, pp. 8–16,
Mar. 1985.

[34] E. S. L. Gastal and M. M. Oliveira, ‘‘Domain transform for edge-aware
image and video processing,’’ in Proc. ACM SIGGRAPH Papers, 2011,
pp. 1–12.

[35] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[36] F. Šuligoj, B. Jerbić, B. Šekoranja, J. Vidaković, and M. Švaco, ‘‘Influ-
ence of the localization strategy on the accuracy of a neurosurgical robot
system,’’ Trans. FAMENA, vol. 42, no. 2, pp. 27–38, Jun. 2018.

[37] M. W. Gilbertson and B. W. Anthony, ‘‘Force and position control system
for freehand ultrasound,’’ IEEE Trans. Robot., vol. 31, no. 4, pp. 835–849,
Aug. 2015.

FILIP S̆ULIGOJ received the M.Sc. degree in
mechanical engineering and the Ph.D. degree
in robotics and automation from the Faculty
of Mechanical Engineering and Naval Architec-
ture, University of Zagreb, Croatia, in 2009 and
2018, respectively. In 2020, he joined the Sur-
gical Robotics Laboratory, University of Twente,
The Netherlands, as a Postdoctoral Researcher.
His research interests include medical robotics,
machine vision with an emphasis on medical

image analysis, and artificial intelligence methods. His current research
interests include medical image processing methods and control of robots
in surgical procedures.

67464 VOLUME 9, 2021

http://dx.doi.org/10.1109/TIE.2020.3036215


F. S̆uligoj et al.: RobUSt–Autonomous Robotic US System for Medical Imaging

CHRISTOFF M. HEUNIS (Student Member,
IEEE) received the M.Sc. degree in mechatronic
engineering from the University of Stellenbosch,
Stellenbosch, South Africa, in 2016. He is cur-
rently pursuing the Ph.D. degree with the Sur-
gical Robotics Laboratory, University of Twente,
Enschede, The Netherlands. His work focuses on
adapting and integrating embedded sub-systems
for health care applications, with a specific focus
on surgical robotics, magnetic actuation systems,

and medical image processing. His research interest includes the design of
clinical equipment for the treatment of endovascular, cardiovascular, and
oncological disorders.

JAKUB SIKORSKI (Member, IEEE) received
the M.Eng. degree in biomedical engineering
from The University of Glasgow, Glasgow, U.K.,
in 2015, and the Ph.D. degree in biomechani-
cal engineering from the University of Twente,
Enschede, The Netherlands, in 2020. He currently
works as a Postdoctoral Researcher with the Surgi-
cal Robotics Laboratory, University of Twente. His
work focuses on the development of novel robotic
instruments for minimally-invasive surgical proce-

dures. His research interests include continuum and soft robotics, magnetic
devices, mechatronic design, and control of biomedical systems.

SARTHAK MISRA (Senior Member, IEEE)
received the master’s degree in mechanical engi-
neering from McGill University, Canada, and the
Ph.D. degree in mechanical engineering from
Johns Hopkins University, USA, in 2009. He is
currently a Full Professor with the Department
of Biomechanical Engineering, University of
Twente, Enschede, TheNetherlands, and also affil-
iated with the Department of Biomedical Engi-
neering, University of Groningen and University

Medical Center Groningen, The Netherlands. Prior to commencing his Ph.D.
studies, he was a Dynamics and Controls Analyst on the International Space
Station Program. His research interests include surgical robotics and medical
microrobotics. Hewas a recipient of the EuropeanResearchCouncil Starting,
Proof-of-Concept, and Consolidator Grants and the Netherlands Organiza-
tion for Scientific Research VENI and VIDI Awards. He is the Co-Chair
of the Robotics and Automation Society Technical Committee on Surgical
Robotics and the International Federation of Automatic Control Technical
Committee on Biological and Medical Systems.

VOLUME 9, 2021 67465


