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Abstract— Control of tetherless magnetically actuated helical
robots using rotating dipole fields has a wide variety of medical
applications. The most promising technique in manipulation of
these robots involves a rotating permanent magnet controlled
by a robotic manipulator. In this work, we study the open-loop
response of helical robots (in viscous fluids characterized by
low Reynolds numbers) in the presence of position constraints
on the actuating rotating permanent magnet. We first derive
a mapping between the space of the manipulator’s joints, the
produced magnetic fields in three-dimensional space, and the
translational and rotational velocities of the helical robot. Then,
we constrain the 3D position of the rotating dipole field and
predict the response of the helical robot by controlling its an-
gular velocity using the constrained mapping. We demonstrate
open-loop control and gravity compensation of the robot using
the angular velocities of the actuating permanent magnet while
enforcing constraints on the end-effector position.

I. INTRODUCTION
Over the past decade, robots at the nano- and micro-

scales have shown potential to revolutionize medicine by
reaching regions inaccessible to catheterization [1]–[4]. The
locomotion of these tetherless devices capitalizes on the
conversion of several forms of energies into mechanical
energy or movement. Magnetic [5], [6], acoustic [7], chemi-
cal [8], electric [9], thermal [10], and light [11] energy have
been utilized to actuate structures fabricated specifically to
work upon sensing one, or a combination [12], of these
external stimuli. Once the relation between the external
energy and the behavior of the stimuli-responsive material in
the fabricated structures is understood, a locomotion strategy
is designed to work based on the environment and the
potential application. For example, rolling or tumbling on
a solid boundary [13], [14], swimming using the drag-based
thrust [15], and pulling with a force [16] have been proven
to be efficient locomotion strategies. The form of energy
and the locomotion strategy must be selected specifically
based on the physical surroundings, intended application,
and the localization strategy. In practice, magnetic actuation
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Fig. 1: Helical propulsion in viscous fluid is achieved using rotating
magnetic fields. (a) An actuating rotating permanent magnet is con-
trolled in three-dimensional (3-D) space by a six degree-of-freedom
robotic manipulator. (b) The produced time-varying magnetic field
drives a helical robot controllably inside a viscous fluid. The helical
robot is controlled while enforcing a position constraint on actuating
dipole field.

using the drag-based thrust of helical microrobots is efficient
under a wide range of Reynolds numbers (Re). In this case,
it is reasonable to power these microrobots using actuating
time-varying magnetic field produced by rotating permanent
magnets fixed to the end-effector of a manipulator [17],
as shown in Fig. 1. Scalability and adaptability are two
direct consequences of the fact that the displacement of
the actuating permanent magnet can be fully controlled
in three-dimensional (3-D) space. First, the size of the
workspace is no longer limited by the projection distance of
the magnetic field, but rather depends on the relatively large
workspace of the manipulator. Second, the configuration of
this permanent magnet-based robotic system can be adapted
to incorporate important functionalities like non-invasive
imaging systems [18].

It has been shown that when a magnetic dipole, is rotated
around a fixed axis such that the dipole is perpendicular to
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the axis of rotation, the magnetic field vector at every point in
space also rotates around a fixed axis [17]. Mahoney et al.
have reformulated this phenomenon using linear algebraic
techniques, which enables finding the necessary dipole rota-
tion axis that is required to make the magnetic field at any
desired point in space rotate about any desired axis [17].
Such method has been tested using a rotating permanent
magnet fixed in space by a robotic manipulator to control
the displacement of the magnet, and actuation of capsule en-
doscopes, helical swimmers, and spherical agents have been
demonstrated inside fluid-filled confined environments. They
have also demonstrated closed-loop control of three degree-
of-freedom (3-DOF) and 2-DOF open-loop directional con-
trol of a magnetic capsule endoscope based on position
feedback only [19]. These control results are implemented
in the absence of constraints on the displacement of the
actuating dipole field or the robotic manipulator.

In this paper, we control the motion of helical robots
inside a viscous fluid in 3-D space using a rotating magnetic
field produced by an actuating permanent magnet fixed to a
robotic manipulator. We demonstrate the ability of the system
to control the motion of the helical robot in the presence of a
position constraint on the end-effector. We focus on changing
the actuation axis of the rotating dipole field while keeping
the magnet position fixed over time to follow a prescribed
path whilst compensating for gravity in an open-loop way.

II. MODELING OF HELICAL PROPULSION AND
MAGNETIC ACTUATION

In low-Re, the response of the robot to an externally
applied magnetic field is governed by balance between
magnetic, viscous drag, and gravitational forces and torques.

A. Helical Propulsion in Low-Re

Suppose we consider a helical body with length L and
magnetic moment m perpendicular to its helix axis, im-
mersed in a viscous fluid, with density ρf , characterized by
low-Re and actuated using non-uniform magnetic field, B,
as shown in Fig. 2. In low-Re, inertial forces are negligible
and the motion of helical robot is governed by

fvisc + fmag + fg = 0 (1)
Tvisc + Tmag + Tg = 0, (2)

where fvisc and Tvisc are the viscous drag force and torque,
respectively. Further, fmag and Tmag are the magnetic force
and torque, respectively. Furthermore, fg and Tg are the
force and torque due to gravity, respectively. One direct
consequence of the negligible inertia force is that the hy-
drodynamics is linear. Therefore, the viscous drag force and
torque are given by(

fvisc
Tvisc

)
=

(
A B

BT C

)(
U
ω

)
, (3)

where U and ω are the translational and angular velocity
of the helical body due to the external force and torque,
respectively. In Equation (3) the sub-matrices A, B, and
C are calculated using the Resistive-Force Theory and are

Fig. 2: A rotating actuating magnetic field, B(p), is produced by a
permanent magnet. The displacement of the permanent magnet is
controlled by a robotic manipulator. A helical robot with magnetic
moment perpendicular to its long axis aligns along the rotating field
lines and achieve helical propulsion in viscous fluid.

only dependent on the viscosity, η, of the medium and the
geometry of the helical body [15]. In Equations (1)-(2), the
magnetic force, fmag(p), and torque, Tmag(p) at point, p,
are given by

fmag(p) = (m · ∇)B(p) (4)
Tmag(p) = m×B(p). (5)

Finally, in Equations (1)-(2) the force, fg, and torque, Tg,
exerted on the helical robot due to gravity are given by

fg = V (ρr − ρf)g (6)
Tg = (rcov − rcom)× fg, (7)

where V is the volume the robot, ρr and ρf are its density and
the density of the fluid, respectively. Furthermore, g signifies
gravity, rcov and rcom are the position vectors of the center
of volume and center of mass, respectively. These force and
torque complete the relation between the external forces and
torques and the resulting velocities U and ω of the robot.

B. Rotating Actuating Magnetic Fields

Equations (1)-(3) show the velocities of the helical robots
can be directly determined from the balance between mag-
netic force, force due to gravity, and viscous drag. The mag-
netic force and torque are directly affected by the actuating
magnetic field, B(p), which is given by the following point-
dipole approximation:

B(p) =
µ0

4π

(
3ppT

‖p‖5
− I
‖p‖3

)
M(q), (8)

where µ0 = 4π × 10−7 N.A−2 is the permeability of free
space, M ∈ SO(3) is the dipole moment of the actuator
magnet and I ∈ R3×3 is the identity matrix. Equation (8)
gives the magnetic field at the position of the robot, p, when
the permanent magnet is fixed at x ∈ R3. Note that the
magnetic field at a point, p, is controlled by the joints of the
manipulator.
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Fig. 3: The magnetic field at a point, p, from the actuator
magnet varies with the joint variables of the robotic manipulator
(q1, . . . , q6). The coordinates x, y, and z characterize the position
of the actuator magnet in the manipulator frame of reference, and
the angles α, β, and γ characterize the orientation R.

The configuration-to-pose kinematics of the robotics ma-
nipulator is given by [20]

{x, R} = F(q), (9)

where F : Rn → {R3, SO(3)} is the forward kinematic
mapping and q ∈ Rn is the joint variables. Equations (8)
and (9) provide the relation between the magnetic field at
a point, p, and the configuration of the robotic manipulator.
Fig. 3 shows the magnetic field at a point calculated using
Equation (8) and the corresponding position and orientation
of the end-effector for a time-varying joint variables. It is
convenient to represent the composed linear and angular
velocities of the end-effector by the joint velocity, we have(

ẋ
Ω

)
= Jm(q)q̇, (10)

where Jm ∈ Rn×n is the manipulator Jacobian.
Mahoney and Abbott have shown that the velocity level

kinematics (10) can also be modified to include the contri-

Fig. 4: Magnetic field lines generated by a permanent magnet with
magnetization M = 18.89 A.m2 and ‖B(p)‖ = 2.75 mT at p =[
0 0 −110

]T mm. The magnetic dipole moment of the helical
robot is aligned along the magnetic field rotation axis, ω̂f . Control
of the axis of rotation of the actuator magnet, Ω̂a, enables the robot
to swim controllably and compensate its own weight.

bution of the magnetic moment of the actuator magnet using
Ṁ = Ω×M, and we obtain [19](

ẋ

Ṁ

)
=

(
I 0
0 SK(M)

)
Jm(q)q̇ = JA(q)q̇, (11)

where SK(·) : R3 → SO(3) is the skew-symmetric operator
of the cross product and JA ∈ Rn×n is the actuator
permanent magnet Jacobian. Equation (11) completes the
relation between the joint velocities of the manipulator and
the helical robot velocity, composed by the linear velocity
U and the angular velocity ω.

C. Actuation using Pose-Constrained Dipole Field

To test the helical propulsion under a position constraint
on the actuator magnet, we shall invoke ẋ = 0 into
Equation (12), which yields(

0

Ṁ

)
=

(
J11
m (q) J12

m (q)
SK(M)J21

m (q) SK(M)J22
m (q)

)
q̇, (12)

where J11
m (q), J12

m (q), J21
m (q), and J22

m (q) are the sub-
matrices of the geometric Jacobian. Equations (12) maps
the joint velocities into angular velocity of the actuator
magnet without translation. If the translation and rotation
of the actuator magnet are kept constant (Fig. 4), then the
helical robot will ultimately align along the the magnetic
field B(p). In this case, the magnetic field rotation axis, ω̂f ,
and the actuator magnet’s rotation axis, Ω̂a, are given as
Ω̂a = Ĥω̂f , where H = 3p̂p̂T − I. Therefore, the rotation
axis of the magnetic field varies with the position of the
helical robot with respect to the actuator magnet, p, and it
is not possible to maintain the swimming direction along a
straight line (along the x-axis). The angular velocity of the
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Fig. 5: Motion control achieves helical propulsion in the presence of a constraint on the position of the actuating permanent magnet. The
robot swims controllably under the influence of a rotating magnetic field at actuation frequency of 5 Hz. The robot swims at a maximum
velocity of U = 1.43 mm/s in silicon oil with density ρf = 971 kg/m3 and viscosity of η = 1 Pa.s (Re = 10−2).

actuator magnet must be controlled using Equation (12) to
orient the rotation axis of the magnetic field parallel to the
x-axis and enable forward swimming.

III. EXPERIMENTAL RESULTS

Open-loop motion control experiments are conducted us-
ing the permanent magnet-based robotic system shown in
Fig. 1 to drive the robot along a prescribed path while
enforcing a constraint on the end-effector, as shown in Fig. 5.

A. System Description

Our system consists of a 6-DOF serial manipulator
(KUKA KR-1100-2, KUKA, Augsburg, Germany) to control
the displacement of the rotating disc permanent magnet.
The magnet (NdFeB Grade-N45) has a diameter of 35 mm,
height of 20 mm, and is axially magnetized. The magnetic
flux density of the actuator magnet is measured using a
SENIS 3-axis digital Teslameter at varying distance, p. The
magnitude of the dipole moment ‖M‖ is determined using
a least squares solution for the point-dipole model. In this
experiment, 50 samples of the flux density are measured
between 40 mm and 100 mm from the center of the magnet,
resulting in ‖M‖ = 18.89 A.m2.

The disc magnet is actuated by a Maxon 18V brushless DC
motor with Hall-effect sensors, encoder and a planetary gear-
box with gear ratio of 3.7:1. The motor is controlled using
an EPOS4 Compact 50/5 CAN, digital position controller.

The continuous rotation of the permanent magnet enables the
robot to achieve helical propulsion. The kinematics and the
Denavit-Hartenberg parameters from the base frame to the
end-effector and to the actuator magnet frames of reference
are provided in Appendix A.

The robot consists of a cylindrical permanent magnet
(NdFeB Grade-N52) with diameter of 1 mm and height of
1 mm, attached to a helical body such that the helix axis
is perpendicular to the dipole moment. The helix has length,
pitch and radius of 11.7 mm, 3 mm and 0.6 mm, respectively.
The robot is immersed in silicon oil (reservoir of dimensions
100 mm × 100 mm × 50 mm) with density of ρf = 970
kg/m3 and viscosity of η = 1 Pa.s. Motion of the robot
is measured using two FLIR Blackfly cameras in the x-y
and x-z plane. Both cameras are fitted with Fujinon lens of
6 mm fixed focal length producing sub-millimeter tracking
accuracy at 60 frames per second.

The entire system is programmed and modeled through
Matlab Interface (Version R2020a). To achieve real-time
control of the the robotic manipulator, a connection be-
tween RoboDK (RoboDK Inc., Montreal, Canada) and the
robotic manipulator was established to move it automati-
cally using RoboDK’s user interface. The connection was
established through a standard Ethernet connection (TCP/IP).
For this purpose, a KUKAVARPROXY (Imts Srl, Taranto,
Italy) server was installed on the KRC4 controller (KUKA,
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Fig. 6: Experimental motion control result demonstrates swimming under the influence of a rotating field produced by a constrained
actuating magnet. The robot swims in silicone oil (ρf = 971 kg/m3 and η = 1 Pa.s) at an average speed of U = 0.98 mm/s and has
Reynolds number of Re = 10−3. Maximum swimming speed is achieved at t = 17 seconds when the robot swims toward the permanent
magnet and the magnetic force contributes to its propulsive thrust.

Augsburg, Germany) of the robotic manipulator. This server
allows the global variables from the robotic arm controller
to be exchanged with the remote RoboDK’s user interface.

B. Open-Loop Control of the Helical Robot

To control the helical robot along a desired path it is
critical to select the appropriate rotation axis ω̂f of the
magnetic field. When the robot swims away from the nearby
solid boundary and in the absence of any interactions, its
rotation axis aligns with ω̂f . Therefore, it is convenient to
steer the helical robot by controlling Ω̂a. In addition, the
rotation axis of the magnetic actuator can be determined
using the prescribed trajectory of the desired path such that
ω̂f and the local tangent are perpendicular.

Fig. 5 shows a representative open-loop control result
of the helical robot along a straight line along the x-axis.
Therefore, the rotation axis of the magnetic field, ω̂f , is
made parallel to the x-axis, while the constraint on the
position of the actuating permanent magnet is enforced using
Equations (12). In this experiment, the robot swims at a
maximum swimming speed of U = 1.43 mm/s at actuation
frequency of 5 Hz. The step-out frequency of the robot is
12 Hz. Therefore, the swimming speed of the robot can
be controlled by increasing the actuation frequency of the
magnetic field below the step-out frequency. In this case, the
angular velocity of the rotating dipole field will depend on
the linear velocity of the robot based on Equations (1)-(8).

The swimming path of the helical robot is shown in the

x-y and x-z planes. This experimental result shows that
associated with the translational motion of the helical robot
is a continuous change in the angular velocity of the actuator
magnet, as shown using the representative configurations of
the robotic manipulator at t = 0, t = 22, and t = 40 seconds.
The helical robot swims at an average velocity of 0.98 mm/s
along the x-axis and 0.15 mm/s along the y-axis, as shown
in Fig. 6. The average speed of the robot along the z-axis is
0.3 mm/s. For 0 < t ≤ 20 seconds, the forward swimming
speed of the robots increases as the distance to the actuator
magnet decreases. At t > 20 seconds, the swimming speed
decreases at the same rate as the gap with the actuator magnet
increases. The positive and negative slopes of the forward
swimming velocity signifies that the magnetic force (4) plays
an important role and contributes to the net propulsive thrust
of the robot. At t = 22 seconds, the robot is radially-actuated
as the axis of the actuating magnet and the long axis of the
robot are aligned. As the robot moves away from the actuator
magnet, the magnetic force acts against the propulsive trust
and we observe a noticeable decrease in the swimming speed,
as shown in Fig. 6.

IV. CONCLUSIONS AND FUTURE WORK

Magnetic actuation of helical robots is achieved using a
rotating dipole field in the presence of a constraint on its
position. We derive the mapping between the robot velocity,
composed by linear and angular velocity, and the joint ve-
locities of the robotic manipulator which fix the constrained
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rotating permanent magnet. The helical robot is actuated
in a viscous fluid characterized by low-Re using rotating
magnetic fields produced by a permanent magnet fixed in
space by the robotic manipulator. Our experimental results
demonstrate the capability to actuate the robot controllably
and compensate for its gravity by controlling the angular
velocities of the constrained actuator magnet.

As part of future work, we will implement closed-loop
control of the helical robot in 3-D space in the presence
of position constraint on the actuator magnet. In addition,
we will modify our permanent magnet-based robotic system
to actuate the helical robots using two synchronized rotating
dipole fields [22]. In the current study, we have demonstrated
radial actuation and gravity compensation by the pulling
magnetic force of the actuator magnet. To achieve closed-
loop motion control in 3-D space, we will mitigate the
pulling magnetic forces along the lateral directions of the
robots using two synchronized actuating magnets.
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APPENDIX A: DENAVIT-HARTENBERG PARAMETERS OF
THE ROBOTIC MANIPULATOR

The Denavit-Hartenberg parameters of the robotic manip-
ulator are provided in Table I. The homogeneous transforma-
tion matrix, T0

b, describes the transformation from the base
frame of the robotic manipulator to the rotating permanent
magnet that is attached to the end-effector. This magnet
produces the required magnetic field, B, at position p relative
to the helical microrobot, such that

T0
b = T0

6(q)T6
M(qM)TM

b (r,M) (13)

where T0
6(q) is the homogeneous transformation matrix of

the robotic manipulator from the joint space coordinates
q = [θ1, . . . , θ6] to the Cartesian coordinates of the end-
effector. Further, T6

M is the transformation from the per-
manent magnet to the end-effector’s position. Finally, the
transformation TM

b (r,M) maps the distance r to a location
p and magnetization vector M to the magnetic field in the
desired location.

TABLE I: The Denavit-Hartenberg parameters of the manipulator
are used in Equation (13) to determine M in the mapping (12).

qi θ α a [mm] d [mm] θmin θmax

q1 0◦ 0 0 400 −170◦ 170◦

q2 0◦ −90◦ 25 0 −190◦ 45◦

q3 θ3 − 90◦ 0 560 0 −120◦ 156◦

q4 θ4 −90◦ 25 515 −185◦ 185◦

q5 θ5 90◦ 0 0 −120◦ 120◦

q6 θ6 + 180◦ −90◦ 0 90 −350◦ 350◦
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