

 Automatic segmentation

using the DoubleU-net and

3D visualisation of non-rigid

Da Vinci surgical instruments

Author: Reinier ten Brink, BSc

University of Twente
Technical Medicine - Medical Imaging and Interventions
M2 Clinical Internship 2

Universitair Medisch Centrum Groningen
Surgery department

Medical supervisor: Dr. A.R. Wijsmuller
Technical supervisors: Prof. dr. S. Misra, Dr. J. Sikorski
Process supervisor: Drs. P.A. van Katwijk

Date: August 2021

Abstract
Introduction: Locally advanced primary and recurrent rectal carcinoma have a large risk of not being
radically removed during surgery. Image guided robot assisted surgery might help increase radicality.
However, since these instruments are non-rigid, stereotactic navigation alone can not offer a solution
alone. This study proposes a method of combining computer vision techniques with stereotactic
navigation to achieve image guided robot assisted surgery. As a first step, the study aims to
automatically segment a Da Vinci instrument using a machine learning model and visualise this
instrument in 3D from stereotactic endoscope images.
Method: Using the 2015 MICCAI dataset and the DoubleU-net algorithm, a model is trained to
semantically segment a Da Vinci needle driver from ex-vivo 2D image sequences.
Stereo images of a Da Vinci needle driver in front of a printed surgical scene area taken using an
endoscope. Rectification, disparity maps and triangulation were used for 3D instrument
reconstruction.
Results: Several performance scores are reported for the DoubleU-Net on the dataset.
Rectification of stereo images is done successfully. The needle driver is not visible when stereo
images are turned into disparity maps. Therefore 3D visualisation of the instrument could not be
done.
Discussion: Automatic segmentation of Da Vinci surgical instruments can be done accurately.
However, many hurdles need to be overcome before it can be used in a live setting.
The setup of the experiment needs to be improved and/or other algorithms need to be used in order
to successfully visualise a surgical instrument in a 3D space.

Introduction
Last year, about 3300 people in the Netherlands got the diagnosis for rectal carcinoma. Around 95%
of those diagnosed with stadium I-III will need surgery as curative treatment.[1] However, 15-20% of
locally advanced primary rectal carcinomas are also not removed radically.[2] Despite surgery, the
recurrence of locally recurrent rectal cancer is 5-10%. Since local recurrent carcinomas are often not
limited to one surgical compartment, one of the major challenges in removing local recurrence is
achieving clear resection margins and removing the tumor radically. Despite the best of intentions,
over 50% of resections of locally recurrent rectal carcinomas are not removed radically.[3]

More and more locally advanced primary and recurrent rectal tumours are treated surgically in a
minimally-invasive approach, often assisted by the Da Vinci Surgical robot (Intuitive Surgical,
Sunnyvale, California).[4] By making anatomical planes and landmarks more easy to detect, radicality
could be increased. One method for this has been the use of surgical navigation based on
preoperative imaging, such as MRI or CT. It has been established that surgical navigation increases
precision and minimizes invasiveness. A condition for the use of this technique is that the target
organ does not move too much. This would alter the position compared to the preoperative scan,
which would decrease accuracy significantly. For the rectum it has been proven that the organ does
not move very much because of its attachment to the bony pelvis.[4] Therefore image guided
surgical navigation is feasible.

Unfortunately, robot joint encoder data can not be used to determine the position of the surgical
instruments. This is because it uses a cable driven system and therefore calibration is very difficult,
time consuming and errors accumulate over time.[5] At the University Medical Center Groningen
(UMCG), a proposed method for surgical navigation is stereotactic navigation, which is currently used
often for neurosurgery. In the UMCG, the navigation system of Brainlab® is used. This form of
navigation is based on a stereotactic camera that tracks infrared (IR) markers that are mounted on a
surgical tool. After calibration, the position of the tool with respect to the patient can be calculated.
When using this method in combination with the Da Vinci Robot, there are two major problems. The
first problem is that the IR markers have to be in the line of sight of the camera at all times. This is
however not always the case due to e.g. sterile draping or movement of the robotic arm. The second
problem is the localisation of the tip of the surgical instrument. The tip of the arm consists of
endowrists that move relative to the IR markers during surgery, while the calibration is based on rigid
instruments.[6]

Therefore, this study suggests placing the IR markers of the Brainlab® system on the Da Vinci stereo
camera, so after calibration the position of the camera can be known relative to the patient. Then
using a machine learning model to automatically segment the surgical instrument in both video
feeds. Next, using computer vision techniques, the position of the instrument relative to the camera
can be known. By combining this info, the position of the instrument relative to the patient can be
known. A visual representation of this design is presented in figure 1. This study focuses on
investigating whether a machine learning model can accurately segment a Da Vinci surgical
instrument automatically. Besides that, the study aims to show that it is possible to visualise a
surgical instrument from stereo images taken by the Da Vinci stereo endoscope.

Figure 1: A visual representation of the proposed design. Left: the conventional Brainlab navigation
system registers the IR markers on the Da Vinci stereo camera (right). Below: a computer runs an
application that combines information from Brainlab and the video feed from the camera.

Method
This study has of two objectives: 1) segmenting a non-rigid Da Vinci instrument using a machine
learning algorithm and 2) visualising a Da Vinci instrument in a 3D space from stereo images using
computer vision. This section describes the methods used to achieve those objectives.

Machine Learning
For segmenting a Da Vinci instrument using machine learning, there are two things necessary: an
algorithm architecture and a training dataset. Many different algorithms for segmenting medical
images. One of the most used algorithms is the U-Net. It labels each pixel of an image with its
corresponding class in a process named semantic image segmentation.[7] While this algorithm
produces accurate results, new algorithms such as the DoubleU-Net have produced even more
accurate results on several datasets, such as the CVC-ClinicDB dataset of colonoscopy images for
polyp detection (Sørensen–Dice coefficient (SDC) = 0.9239). The basic architecture of this algorithm
consists of two U-Net stacked on top of each other. A more detailed description will be given in the
next paragraph.[8] Because of these encouraging results, this study will use the DoubleU-Net as a
segmentation algorithm.

The DoubleU-net algorithm
The DoubleU-net uses semantic segmentation where it labels each pixel in an image with a class.
There are already many medical applications that use semantic segmentation such as: detection and
segmentation of lesions, improving administration of radiation and improving medical images. [9] In
order to describe the architecture of the DoubleU-Net, the architecture of its predecessor, the U-Net
will be described.

The U-Net was created by Ronneberger et al. [7] in 2015 and is built on the architecture of the Fully
Convolutional Network (FCN). This means it only performs convolution and is able to classify each
pixel in the input instead of generating a discrete label from an output image, which was the case
with previous Convolutional Neural Networks (CNN).
Figure 2 shows the shape of the U-Net, where it is visible where the network gets its name. In the left
leg of the U-Net, called the encoder, the input image gets downsampled and a lot is learned about
what is in the image. FCNs are great at understanding the features in an image, but unfortunately
have trouble with understanding where these features come from.

This is because in downsampling the image, a lot of spatial information is lost. In the right leg of the
U-Net, called the decoder, the image is upsampled to localize the detected features and create a
mask with the same size as the input image.
Next, is where the big advantage of the U-Net comes in. Between the two legs of the U-Net, grey
arrows are visible, which are called skip connections. These skip connections connect the feature
map of the encoder to the corresponding layer in the decoder. This gives the network extra
information about the location of the features, which greatly increases segmentation accuracy.[10]
While this U-Net improved semantic segmentation, a lot of researchers still tried to make
improvements. This is where the DoubleU-Net comes in.

Figure 2: The structure of the U-Net [7]

The main goal of creating the DoubleU-Net was to improve the performance of the U-Net. In order to
achieve this, Jha et al. [8] proposed an architecture which put two U-net architectures in sequence,
where the encoder of the first U-net is a pre-trained VGG-19. A model trained on the ImageNet
dataset. A block diagram of the DoubleU-Net is presented in figure 3. As visible, both the first and
second U-net produce an output image.
Since the second network increases the number of layers, more features can be learned, which
should improve the output segmentation of the second output compared to the first.
Furthermore, squeeze and excite blocks are added to reduce redundant information and Atrous
Spatial Pyramid Pooling are added to improve the resolution of the output mask.
Python code for generating the DoubleU-Net architecture can be found in Appendix A.

Figure 3: Block diagram of the DoubleU-net architecture [8]

Dataset
To check whether the DoubleU-Net algorithm can accurately segment Da Vinci instruments, a dataset
is needed. Having a good dataset that is large enough, is often a challenge in machine learning. In
2015, a medical image computing and computer assisted intervention challenge (MICCAI), released a
dataset consisting of three 45 second 2D images sequences of one Large Needle Driver instrument in
an ex-vivo setup and a ground truth where this instrument is segmented manually.[11] In order to be
able to put this data into the DoubleU-Net, all the frames had to be extracted from the videos and
saved as jpg files. This was done using the code in Appendix B. For 3D visualisation of the instrument,
the entire instrument needs to be segmented. Since the ground truth is divided into the different
parts of the instrument, all the ground truth frames had to be altered to make the entire instrument
white. This was done using a simple threshold. The code for this can be found in Appendix C.

Training the model
The model is trained using a GPU from Google Collab. The training code can be found in Appendix D.
Dependencies for this code can be found in Appendix E. The data is randomly split into 80% training,
10% validation and 10% testing (Appendix F) and uploaded to Google Drive. A batch size of 4 is used
with a learning rate of 1e-4. The model is trained for 8 epochs. To prevent overfitting, the model uses
the callback: EarlyStopping. Multiple consecutive decreases in loss function are a sign of overfitting.
Therefore, if the loss function of the validation set is dropping for 3 epochs in a row, the model stops
training and restores the weights from the model with the smallest loss function so far. There are
four metrics used to evaluate the performance of the model:

● Sørensen Dice Coefficient (DSC), which is a measurement of the similarity between two
samples. The closer this score is to 1, the better the performance.

● Loss function, which can be calculated by 1- DSC. This is often shown separately in research.
The closer this score is to 0, the better the performance.

● Interjection over union (IOU), which calculates the overlap between the predicted output
and the ground truth. The closer this score is to 1, the better the performance.

● Recall or sensitivity, which measures the number of true positives divided by all positive
pixels. The closer this score is to 1, the better the performance.

● Precision, which measures the number of true positives divided by all true pixels. The closer
this score is to 1, the better the performance.

These performance scores will be calculated for the train, validation and test set individually.
Lastly, the code from Appendix G is used to make a prediction and segmentation on a 2D image
sequence which was used to judge participants of the challenge. This prediction segmented the Da
Vinci instrument from each frame and saved it. From all these frames, a video was generated using
the code from Appendix H.

Stereo 3D visualisation
Stereo images were taken of a Da Vinci needle driver in front of a printed surgical scene using the Da
Vinci stereo endoscope. This setup is displayed in figure 4). This resulted in images as seen in figure 5.
Due to time constraints, the instrument was segmented manually from the scene using Microsoft
Paint.
To visualise the Da Vinci surgical instrument, it needs to be reconstructed. Stereo reconstruction
follows three basic steps: rectification, disparity calculation and triangulation. But before these steps
can be taken, the stereo camera needs to be calibrated to estimate the camera parameters.[12] To
do this, several images need to be taken of a rectangle shaped checkerboard. These images need to
be taken at different angles and distances from the camera. For this study, 16 image pairs of a 7 x 9
checkerboard with 16 mm checkers were taken using the Da Vinci stereo endoscope. In this study,
the Matlab Camera Calibration Toolbox was then used to estimate the camera parameters.[13] These
parameters were then exported to the Matlab workspace.

The first step in stereo reconstruction is rectifying the stereo images. Rectification uses the camera
calibration parameters to align the left and right image. This way, when looking for matching points
between the left and right image, only a 1D space needs to be considered. [12] The function
rectifyStereoImages is used.
Next, the disparity between the images is calculated. This means that the distance between matching
points is calculated. There are several methods of calculating disparity, but this study tried using the
functions disparityBM [14], which uses block matching, and disparitySGM [15], which uses semi
global matching from Matlab
The last step is to use triangulation to project the pixel points in a 3D space. Because only
visualisation of the instrument is desired, this step is applied to a segmented image of the target.

The steps described are applied to the described stereo images. The results of this will be described
in the next chapter.

Figure 4: The experimental setup.

Figure 5: Example of a pair of images of the needle driver in front of a surgery frame.

Results
This section gives an overview of the results obtained from training the machine learning model and
the results from the 3D visualisation.

Machine learning model
The performance scores and qualitative results of the DoubleU-Net on the 2015 MICCAI dataset are
presented below, as well as two frames from the video from the test dataset. The full video can be
found in this link: https://drive.google.com/drive/folders/1qsf-
8YKOZqE0mbyaxRzUn964LWXTLVyu?usp=sharing

Train Dice Train Loss Train IOU Train Recall Train Precision

0.9687 0.0313 0.9399 0.9399 0.9783

Table [1] Performance scores of the model on the training dataset

Validation Dice Validation Loss Validation IOU Validation Recall Validation
Precision

0.8726 0.1274 0.7789 0.8530 0.9000

Table [2] Performance scores of the model on the validation dataset

Test Dice Test Loss Test IOU Test Recall Validation
Precision

0.9066 0.0934 0.8306 0.8868 0.9338

Table [3] Performance scores of the model on the test dataset

Figure 6: Results of the model on two frames. From left to right: the original frames, the ground truth
masks, the output masks from network 1, the output masks from network 2, the instrument
segmented from the original image using output mask 2.

https://drive.google.com/drive/folders/1qsf-8YKOZqE0mbyaxRzUn964LWXTLVyu?usp=sharing
https://drive.google.com/drive/folders/1qsf-8YKOZqE0mbyaxRzUn964LWXTLVyu?usp=sharing

3D Visualisation
To calibrate the Da Vinci stereo endoscope, 16 image pairs of a 7 x 9 checkerboard with 16 mm
checkers were taken. An example of these image pairs are displayed in figure 7. For calibrating, 5
image pairs were removed to reduce the mean calibration error. The final mean error was 1.08 pixels
(figure 8). A visualisation of the camera parameters is displayed in figure 9. After exporting the
camera parameters were exported into the Matlab workspace the image pairs of the Da Vinci needle
driver in front of a printed surgery frame were loaded. These images were then rectified, as visible in
figure 10.
After rectifying, a disparity map was created using block matching and semi global matching, as
visible in figure 11. Unfortunately, the instrument could not be visualised in 3D space, because the
disparity maps are noisy and no structures are recognizable. Several attempts to improve the
disparity map, such as filtering the images to reduce noise, different disparity algorithms, altering
disparity range and uniqueness threshold all made did not make the needle driver structure visible.

Figure 7: Example of a pair of calibration images

Figure 8: Plot of the reprojection errors of all image pairs

Figure 9: A visualisation of the camera parameters. Left displays the position of the checkerboard in
all the calibration images. Right displays the position of the cameras within the endoscope.

Figure 10: Overlay of the rectified images of the needle driver in front of a surgery frame. The blue
and red dots display matching points between both images and the distance and direction between
them.

Figure 11: Disparity maps of the instrument in front of a surgery frame using semi global matching
(left) and block matching (right). The colors display the distance of each pixel from the camera. Red is
near the camera, while blue is far away from the camera.

Discussion
The DoubleU-Net can accurately segment a Da Vinci surgical instrument from a set of 2D monocular
images. There are however several steps that need to be taken before clinical use, since there are
several limitations in this study. This section describes these limitations, and what could be improved
in future research to improve results.

There are several limitations with regards to the dataset. First of which is the fact that all data was
gathered ex vivo. Therefore it is not yet known how the DoubleU-Net would perform in vivo. During
real surgery, it may be harder to detect and segment the instrument due to occlusion, smoke and
bleeding. Besides this, this study decided to train the model on segmenting just one instrument. A
needle driver was used because this was the instrument used in the dataset. However, in the surgery
phase where navigation would be needed, the diathermic hook is the preferred instrument. A future
model should be trained on a dataset containing this instrument. Also, during real surgery, multiple
instruments are used. Perhaps the model could even be trained to recognize these instruments. But
since this would require instance segmentation, another algorithm should be used.
To improve the dataset, footage of a real surgery would make the model more useful in a clinical
setting. Unfortunately, such a dataset was not found. So data would need to be gathered and ground
truth masks would need to be made. But this is a very time-consuming task.
Also, the dataset consisted of mono-images, while the end goal is to apply the model to stereo
images. But since stereo-images are basically two mono-images, this would probably not influence
the performance of the model. It could however influence the speed of the model in a live setting,
because twice as many calculations are needed.
This brings us to the next limitation, which is the fact that the model was not tested on live footage.
In order to be used clinically, the model needs to be able to segment the surgical instrument in live
footage from two inputs with a reasonable number of frames per second. In order to do this, a GPU
is probably needed. A future study could try to segment instruments from live footage from the Da
Vinci stereo endoscope. It might also be interesting to look at other algorithms that do not aim to
segment every pixel to save computing power, or the use of temporal CNNs.
As is visible in the segmented video, the model has trouble segmenting the instrument while the jaws
are open. This could be due to the fact that the model was not trained for many epochs.
Unfortunately, running more epochs might not improve performance. As is clear from the difference
in performance scores between the training and validation set, there is already slight overfitting. So
more and better data might have more effect on the performance of the model. It could also be
useful to try different settings for e.g. batch size and learning rate.

The end goal is to create a system where the position of surgical instruments in the patient is known
based on preoperative scans. However, the requirements, such as the accuracy, frames/second and
latency of such a system have not been established yet. Future studies should set these
requirements.
This system should combine segmented footage from the Da Vinci stereo camera with positional
information of the camera from the Brainlab® system. Combining this information could be a
challenge in future studies. This software should probably be written in C++ because of speed issues.
There is already open-source software available that is able to extract information from Brainlab®
called IGTLink. Using an ethernet cable, Brainlab can be linked to a computer with modified IGTLink
software. In the UMCG there is already expertise on how to work with IGTLink. Glas et al. linked
information of the Brainlab® system to the Microsoft HoloLens.[16] It would be useful to use this
expertise in further developing this system. Calibration of the Brainlab® system could perhaps be
done on the sacrum.
All of this should be finalized in a user-friendly interface, which uses one programming language that
can be used in the operating room.

Anatomy including tumor are generally segmented to facilitate peroperative stereotactic navigation.
On MRI images this is usually performed manually. Preferably, this segmentation is performed
automatically to the extent possible. Deep learning for automated segmentation of pelvic anatomy
by 3D U-net training on MRI scans seems feasible. [17]. It might also be possible to use other
algorithms. A ground truth standard for segmentations of pelvic anatomy already exists [18]. A
preliminary test has already been initiated to investigate whether a machine learning model can be
trained on MRI scans with manually segmented pelvic visceral and neural anatomy as ground truth.

This study has not yet been able to successfully reconstruct a surgical instrument in 3D from the Da
Vinci stereo endoscope. There are multiple reasons why this might be.
First, it might be that not the right algorithm for detecting disparity has been used, due to time
constraints. A future study could try more algorithms or methods to determine the location of the
surgical instrument. Lu et al. have deployed several methods to reconstruct a scene from Da Vinci
stereotactic video.[19] Parachami et al. also proved that it is feasible to construct a scene from
stereotactic Da Vinci images.[12]
Other reasons might be more data related. For example, as is visible in figure 8, the rectification is
not the same everywhere and not as straight as perhaps is necessary.
This could be because there is slight distortion in the images. Using the function undistortImage,
attempts have been made to remove this distortion.[20] Unfortunately without success.
It might also be that noise in the images make it more difficult for the algorithm to detect disparity
between the images. An attempt has been made to remove noise using a gaussian filter, but more
methods could be investigated.
As visible in figure 9, there is a difference in colour between the left and right image. How this is
possible is unknown, but perhaps the room should have been darkened, with the endoscope as the
only lightsource. This difference in colour could prevent the algorithm from detecting disparity.
Perhaps histogram matching could equalize the colours. But this has not been tried.
It might also be that the colour of the arm of the surgical instrument is too uniform. Therefore it
might be difficult to find matching points.
This study used a flat printed surface as a background. This background suggests depth, which might
confuse the algorithm. This also means the algorithm has only two surfaces it can compare. Perhaps
a setup with a more irregular surface might help the algorithm.
If a setup is found which is capable of reconstructing a surgical instrument, the accuracy of this
method needs to be determined and, if necessary, improved.

Using surgical navigation with instruments containing wrists remains a challenge. The method
described in this report needs a lot of development before it can be used clinically. But it has a lot of
potential to improve navigation, make it easier for surgeons to determine the anatomical plane and
hopefully increase radical removal of locally advanced and recurrent rectal carcinomas. It might also
be useful in other fields where Robot Assisted surgery is used and the target organ does not move
much relative to the preoperative scan or where intraoperative imaging is used to navigate.

References
[1] Integraal kankercentrum Nederland. (2020). Behandeling van darmkanker. Last visited at 09-06-
2021 from https://iknl.nl/kankersoorten/darmkanker/registratie/behandeling
[2] Mariathasan, A.B., et al., Beyond total mesorectal excision in locally advanced rectal cancer with
organ or pelvic side-wall involvement. Eur J Surg Oncol, 2018. 44(8): p. 1226-1232.
[3] van Zoggel, D. M. G. I., Bosman, S. J., Kusters, M., Nieuwenhuijzen, G. A. P., Cnossen, J. S.,
Creemers, G. J., van Lijnschoten, G., & Rutten, H. J. T. (2017). Preliminary results of a cohort study of
induction chemotherapy-based treatment for locally recurrent rectal cancer. British Journal of
Surgery, 105(4), 447–452. https://doi.org/10.1002/bjs.10694
[4] Kwak, J.-M., Romagnolo, L., Wijsmuller, A., Gonzalez, C., Agnus, V., Lucchesi, F. R., Melani, A.,
Marescaux, J., & Dallemagne, B. (2019). Stereotactic Pelvic Navigation With Augmented Reality for
Transanal Total Mesorectal Excision. Diseases of the Colon & Rectum, 62(1), 123–129.
https://doi.org/10.1097/dcr.0000000000001259
[5] Du, X., Kurmann, T., Chang, P.-L., Allan, M., Ourselin, S., Sznitman, R., Kelly, J. D., & Stoyanov, D.
(2018). Articulated Multi-Instrument 2-D Pose Estimation Using Fully Convolutional Networks. IEEE
Transactions on Medical Imaging, 37(5), 1276–1287. https://doi.org/10.1109/tmi.2017.2787672
[6] Atallah, S., Parra-Davila, E., Melani, A. G. F., Romagnolo, L. G., Larach, S. W., & Marescaux, J.
(2019). Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for
rectal cancer surgery. Techniques in Coloproctology, 23(1), 53–63. https://doi.org/10.1007/s10151-
018-1914-y
[7] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Lecture Notes in Computer Science (pp. 234–241). Springer International
Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
[8] Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., & Johansen, H. D. (2020). DoubleU-Net: A Deep
Convolutional Neural Network for Medical Image Segmentation. 2020 IEEE 33rd International
Symposium on Computer-Based Medical Systems
(CBMS).https://doi.org/10.1109/cbms49503.2020.00111
[9] Asgari Taghanaki, S., Abhishek, K., Cohen, J. P., Cohen-Adad, J., & Hamarneh, G. (2020). Deep
semantic segmentation of natural and medical images: a review. Artificial Intelligence Review, 54(1),
137–178. https://doi.org/10.1007/s10462-020-09854-1
[10] Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep Learning Techniques for Medical
Image Segmentation: Achievements and Challenges. Journal of Digital Imaging, 32(4), 582–596.
https://doi.org/10.1007/s10278-019-00227-x
[11] MICCAI (2015). Instrument segmentation and tracking. Retrieved June 7 2021 from
https://endovissub-instrument.grand-challenge.org/Data/
[12] Parchami, M., Cadeddu, J. A., & Mariottini, G.-L. (2014). Endoscopic stereo reconstruction: A
comparative study. 2014 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. 2014 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). https://doi.org/10.1109/embc.2014.6944115
[13] J.Y. Bouguet.(2015) Camera Calibration Toolbox for MATLAB.
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
[14] MathWorks, (2021). Compute disparity map using block matching (2014a). Retrieved august 11,
2021 from https://nl.mathworks.com/help/vision/ref/disparitybm.html
[15] MathWorks, (2021). Compute disparity map through semi-global matching (2019a). Retrieved
august 11, 2021 from https://nl.mathworks.com/help/vision/ref/disparitysgm.html
[16] Glas, H. H., Kraeima, J., van Ooijen, P. M. A., Spijkervet, F. K. L., Yu, L., & Witjes, M. J. H. (2021).
Augmented Reality Visualization for Image-Guided Surgery: A Validation Study Using a Three-
Dimensional Printed Phantom. Journal of Oral and Maxillofacial Surgery.
https://doi.org/10.1016/j.joms.2021.04.001

https://iknl.nl/kankersoorten/darmkanker/registratie/behandeling
https://doi.org/10.1002/bjs.10694
https://doi.org/10.1002/bjs.10694
https://doi.org/10.1097/dcr.0000000000001259
https://doi.org/10.1097/dcr.0000000000001259
https://doi.org/10.1097/dcr.000000000000125
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s10278-019-00227-x
https://endovissub-instrument.grand-challenge.org/Data/
https://doi.org/10.1109/embc.2014.6944115
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
https://nl.mathworks.com/help/vision/ref/disparitybm.html
https://nl.mathworks.com/help/vision/ref/disparitysgm.html

[17] Zhu, H., Zhang, X., Shi, Y., Li, X., & Sun, Y. (2021). Automatic segmentation of rectal tumor on
diffusion‐weighted images by deep learning with U‐Net. Journal of Applied Clinical Medical Physics.
https://doi.org/10.1002/acm2.13381
[18] Wijsmuller, A. R., Giraudeau, C., Leroy, J., Kleinrensink, G. J., Rociu, E., Romagnolo, L. G., Melani,
A. G. F., Agnus, V., Diana, M., Soler, L., Dallemagne, B., Marescaux, J., & Mutter, D. (2018). A step
towards stereotactic navigation during pelvic surgery: 3D nerve topography. Surgical Endoscopy,
32(8), 3582–3591. https://doi.org/10.1007/s00464-018-6086-3
[19] Lu, J., Jayakumari, A., Richter, F., Li, Y., & Yip, M.C. (2020). SuPer Deep: A Surgical Perception
Framework for Robotic Tissue Manipulation using Deep Learning for Feature Extraction. ArXiv,
abs/2003.03472.
[20] MathWorks, (2021). Correct image for lens distortion (2014a). Retrieved august 11, 2021 from
https://nl.mathworks.com/help/vision/ref/undistortimage.html

https://nl.mathworks.com/help/vision/ref/undistortimage.html

Appendix A: DoubleU-Net model
import tensorflow as tf

from tensorflow.keras.layers import *

from tensorflow.keras.models import Model

from tensorflow.keras.applications import *

from keras.models import Sequential

def squeeze_excite_block(inputs, ratio=8):

 init = inputs

 channel_axis = -1

 filters = init.shape[channel_axis]

 se_shape = (1, 1, filters)

 se = GlobalAveragePooling2D()(init)

 se = Reshape(se_shape)(se)

 se = Dense(filters // ratio, activation='relu',

kernel_initializer='he_normal', use_bias=False)(se)

 se = Dense(filters, activation='sigmoid',

kernel_initializer='he_normal', use_bias=False)(se)

 x = Multiply()([init, se])

 return x

def conv_block(inputs, filters):

 x = inputs

 x = Conv2D(filters, (3, 3), padding="same")(x)

 x = BatchNormalization()(x)

 x = Activation('relu')(x)

 x = Conv2D(filters, (3, 3), padding="same")(x)

 x = BatchNormalization()(x)

 x = Activation('relu')(x)

 x = squeeze_excite_block(x)

 return x

def encoder1(inputs):

 skip_connections = []

 model = VGG19(include_top=False, weights='imagenet',

input_tensor=inputs)

 names = ["block1_conv2", "block2_conv2", "block3_conv4",

"block4_conv4"]

 for name in names:

 skip_connections.append(model.get_layer(name).output)

 output = model.get_layer("block5_conv4").output

 return output, skip_connections

def decoder1(inputs, skip_connections):

 num_filters = [256, 128, 64, 32]

 skip_connections.reverse()

 x = inputs

 for i, f in enumerate(num_filters):

 x = UpSampling2D((2, 2), interpolation='bilinear')(x)

 x = Concatenate()([x, skip_connections[i]])

 x = conv_block(x, f)

 return x

def encoder2(inputs):

skip_connections = []

output = DenseNet121(include_top=False, weights='imagenet')(inputs)

model = tf.keras.models.Model(inputs, output)

names = ["input_2", "conv1/relu", "pool2_conv", "pool3_conv"]

for name in names:

skip_connections.append(model.get_layer(name).output)

output = model.get_layer("pool4_conv").output

return output, skip_connections

def encoder2(inputs):

 num_filters = [32, 64, 128, 256]

 skip_connections = []

 x = inputs

 for i, f in enumerate(num_filters):

 x = conv_block(x, f)

 skip_connections.append(x)

 x = MaxPool2D((2, 2))(x)

 return x, skip_connections

def decoder2(inputs, skip_1, skip_2):

 num_filters = [256, 128, 64, 32]

 skip_2.reverse()

 x = inputs

 for i, f in enumerate(num_filters):

 x = UpSampling2D((2, 2), interpolation='bilinear')(x)

 x = Concatenate()([x, skip_1[i], skip_2[i]])

 x = conv_block(x, f)

 return x

def output_block(inputs):

 x = Conv2D(num_labels, (1, 1), padding="same")(inputs)

 x = Activation('sigmoid')(x)

 return x

def Upsample(tensor, size):

 """Bilinear upsampling"""

 def _upsample(x, size):

 return tf.image.resize(images=x, size=size)

 return Lambda(lambda x: _upsample(x, size), output_shape=size)(tensor)

def ASPP(x, filter):

 shape = x.shape

 y1 = AveragePooling2D(pool_size=(shape[1], shape[2]))(x)

 y1 = Conv2D(filter, 1, padding="same")(y1)

 y1 = BatchNormalization()(y1)

 y1 = Activation("relu")(y1)

 y1 = UpSampling2D((shape[1], shape[2]), interpolation='bilinear')(y1)

 y2 = Conv2D(filter, 1, dilation_rate=1, padding="same",

use_bias=False)(x)

 y2 = BatchNormalization()(y2)

 y2 = Activation("relu")(y2)

 y3 = Conv2D(filter, 3, dilation_rate=6, padding="same",

use_bias=False)(x)

 y3 = BatchNormalization()(y3)

 y3 = Activation("relu")(y3)

 y4 = Conv2D(filter, 3, dilation_rate=12, padding="same",

use_bias=False)(x)

 y4 = BatchNormalization()(y4)

 y4 = Activation("relu")(y4)

 y5 = Conv2D(filter, 3, dilation_rate=18, padding="same",

use_bias=False)(x)

 y5 = BatchNormalization()(y5)

 y5 = Activation("relu")(y5)

 y = Concatenate()([y1, y2, y3, y4, y5])

 y = Conv2D(filter, 1, dilation_rate=1, padding="same",

use_bias=False)(y)

 y = BatchNormalization()(y)

 y = Activation("relu")(y)

 return y

def build_model(shape):

 inputs = Input(shape)

 x, skip_1 = encoder1(inputs)

 x = ASPP(x, 64)

 x = decoder1(x, skip_1)

 outputs1 = output_block(x)

 x = inputs * outputs1

 x, skip_2 = encoder2(x)

 x = ASPP(x, 64)

 x = decoder2(x, skip_1, skip_2)

 outputs2 = output_block(x)

 outputs = Concatenate()([outputs1, outputs2])

 model = Model(inputs, outputs)

 return model

if __name__ == "__main__":

 num_labels=1

 model = build_model((576, 720, 3))

 model.summary()

 #print(model)

Appendix B: Extract frames from video
import cv2

import os

Opens the Video file

cap =

cv2.VideoCapture(r'C:\Users\reini\PycharmProjects\Groningen2\Data\Segmentat

ion_Robotic_Testing_GT\Dataset4\Segmentation.avi')

i = 0

while (cap.isOpened()):

 ret, frame = cap.read()

 if ret == False:

 break

 path = r'C:\Users\reini\PycharmProjects\Groningen2\Data\test\mask'

 cv2.imwrite(os.path.join(path, '3_' + str(i) + '.jpg'), frame)

 i += 1

cap.release()

cv2.destroyAllWindows()

Appendix C: Alter grey values masks
from glob import glob

import cv2

import os

img_mask = r'C:\Users\reini\PycharmProjects\Groningen2\Data\mask*.jpg'

img_names = glob(img_mask)

print(len(img_names))

i=0

for fn in img_names:

 print('processing %s...' % fn,)

 im_gray = cv2.imread(fn, 0)

 (thresh, im_bw) = cv2.threshold(im_gray, 60, 255, cv2.THRESH_BINARY |

cv2.THRESH_OTSU)

 thresh = 60

 im_bw = cv2.threshold(im_gray, thresh, 255, cv2.THRESH_BINARY)[1]

 path = r'C:\Users\reini\PycharmProjects\Groningen2\mask'

 cv2.imwrite(os.path.join(path, '1_' + str(i) + '.jpg'), im_bw)

 i += 1

Appendix D: Model training
import os

import numpy as np

import cv2

import tensorflow as tf

from tensorflow.keras.layers import *

from tensorflow.keras.callbacks import *

from tensorflow.keras.optimizers import Adam, Nadam

from tensorflow.keras.metrics import *

from glob import glob

from sklearn.model_selection import train_test_split

from model import build_model

from utils import *

from metrics import *

from tensorflow.compat.v1 import ConfigProto

from tensorflow.compat.v1 import InteractiveSession

config = ConfigProto()

config.gpu_options.allow_growth = True

session = InteractiveSession(config=config)

def read_image(x):

 x = x.decode()

 image = cv2.imread(x, cv2.IMREAD_COLOR)

 image = np.clip(image - np.median(image) + 127, 0, 255)

 image = image / 255.0

 image = image.astype(np.float32)

 return image

def read_mask(y):

 y = y.decode()

 mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)

 mask = mask / 255.0

 mask = mask.astype(np.float32)

 mask = np.expand_dims(mask, axis=-1)

 return mask

def parse_data(x, y):

 def _parse(x, y):

 x = read_image(x)

 y = read_mask(y)

 y = np.concatenate([y, y], axis=-1)

 return x, y

 x, y = tf.numpy_function(_parse, [x, y], [tf.float32, tf.float32])

 x.set_shape([576, 720, 3]) # Dit aanpassen aan grootte van

afbeeldingen

 y.set_shape([576, 720, 2]) # 6 was eerst 2, even 6 van gemaakt als

test voor multiclass

 return x, y

def tf_dataset(x, y, batch=8):

 dataset = tf.data.Dataset.from_tensor_slices((x, y))

 dataset = dataset.shuffle(buffer_size=32)

 dataset = dataset.map(map_func=parse_data)

 dataset = dataset.repeat()

 dataset = dataset.batch(batch)

 return dataset

if __name__ == "__main__":

 np.random.seed(42)

 tf.random.set_seed(42)

 create_dir("files")

 train_path = "/content/gdrive/MyDrive/Machine_Learning_II/Double_U-

net/Reinier_stage/train"

 valid_path = "/content/gdrive/MyDrive/Machine_Learning_II/Double_U-

net/Reinier_stage/valid"

 ## Training

 train_x = sorted(glob(os.path.join(train_path, "image", "*.jpg")))

 train_y = sorted(glob(os.path.join(train_path, "mask", "*.jpg")))

 print(len(train_x))

 print(len(train_y))

 ## Validation

 valid_x = sorted(glob(os.path.join(valid_path, "image", "*.jpg")))

 valid_y = sorted(glob(os.path.join(valid_path, "mask", "*.jpg")))

 print(len(valid_x))

 print(len(valid_y))

 model_path = "/content/gdrive/MyDrive/Machine_Learning_II/Double_U-

net/files/model.h5"

 batch_size = 4

 epochs = 50

 lr = 1e-4

 shape = (576, 720, 3) # Change this according to size of input image

 model = build_model(shape)

 metrics = [

 dice_coef,

 iou,

 Recall(),

 Precision()

]

 train_dataset = tf_dataset(train_x, train_y, batch=batch_size)

 valid_dataset = tf_dataset(valid_x, valid_y, batch=batch_size)

 # model.compile(loss='binary_crossentropy', optimizer=Adam(lr),

metrics=metrics)

 model.compile(loss=dice_loss, optimizer=Adam(lr), metrics=metrics)

 callbacks = [

 ModelCheckpoint(model_path),

 ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=4),

 CSVLogger("files/data.csv"),

 TensorBoard(),

 EarlyStopping(monitor='val_loss', patience=4,

restore_best_weights=True)

]

 train_steps = (len(train_x) // batch_size)

 valid_steps = (len(valid_x) // batch_size)

 if len(train_x) % batch_size != 0:

 train_steps += 1

 if len(valid_x) % batch_size != 0:

 valid_steps += 1

 model.load_weights(model_path)

 model.fit(train_dataset,

 epochs=epochs,

 validation_data=valid_dataset,

 steps_per_epoch=train_steps,

 validation_steps=valid_steps,

 callbacks=callbacks,

 shuffle=False)

Appendix E: Training dependencies
import os

import numpy as np

import cv2

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.keras.losses import binary_crossentropy

smooth = 1e-15

def dice_coef(y_true, y_pred):

 y_true = tf.keras.layers.Flatten()(y_true)

 y_pred = tf.keras.layers.Flatten()(y_pred)

 intersection = tf.reduce_sum(y_true * y_pred)

 return (2. * intersection + smooth) / (tf.reduce_sum(y_true) +

tf.reduce_sum(y_pred) + smooth)

def dice_loss(y_true, y_pred):

 return 1.0 - dice_coef(y_true, y_pred)

def iou(y_true, y_pred):

 def f(y_true, y_pred):

 intersection = (y_true * y_pred).sum()

 union = y_true.sum() + y_pred.sum() - intersection

 x = (intersection + smooth) / (union + smooth)

 x = x.astype(np.float32)

 return x

 return tf.numpy_function(f, [y_true, y_pred], tf.float32)

def bce_dice_loss(y_true, y_pred):

 return binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)

def focal_loss(y_true, y_pred):

 alpha=0.25

 gamma=2

 def focal_loss_with_logits(logits, targets, alpha, gamma, y_pred):

 weight_a = alpha * (1 - y_pred) ** gamma * targets

 weight_b = (1 - alpha) * y_pred ** gamma * (1 - targets)

 return (tf.math.log1p(tf.exp(-tf.abs(logits))) + tf.nn.relu(-

logits)) * (weight_a + weight_b) + logits * weight_b

 y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(), 1 -

tf.keras.backend.epsilon())

 logits = tf.math.log(y_pred / (1 - y_pred))

 loss = focal_loss_with_logits(logits=logits, targets=y_true,

alpha=alpha, gamma=gamma, y_pred=y_pred)

 # or reduce_sum and/or axis=-1

 return tf.reduce_mean(loss)

import os

import numpy as np

import cv2

import json

from glob import glob

#from metrics import *

from sklearn.utils import shuffle

from tensorflow.keras.utils import CustomObjectScope

from tensorflow.keras.models import load_model

#from model import build_model, Upsample, ASPP

def create_dir(path):

 """ Create a directory. """

 try:

 if not os.path.exists(path):

 os.makedirs(path)

 except OSError:

 print(f"Error: creating directory with name {path}")

def read_data(x, y):

 """ Read the image and mask from the given path. """

 image = cv2.imread(x, cv2.IMREAD_COLOR)

 mask = cv2.imread(y, cv2.IMREAD_COLOR)

 return image, mask

def read_params():

 """ Reading the parameters from the JSON file."""

 with open("params.json", "r") as f:

 data = f.read()

 params = json.loads(data)

 return params

def load_data(path):

 """ Loading the data from the given path. """

 images_path = os.path.join(path, "image/*")

 masks_path = os.path.join(path, "mask/*")

 images = glob(images_path)

 masks = glob(masks_path)

 return images, masks

def shuffling(x, y):

 x, y = shuffle(x, y, random_state=42)

 return x, y

def load_model_weight(path):

 with CustomObjectScope({

 'dice_loss': dice_loss,

 'dice_coef': dice_coef,

 'bce_dice_loss': bce_dice_loss,

 'focal_loss': focal_loss,

 'iou': iou

 }):

 model = load_model(path)

 return model

 # model = build_model(256)

 # model.load_weights(path)

 # return model

Appendix F: Split data
from skimage import io

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import os

import random

import numpy as np

import cv2

from tqdm import tqdm

from glob import glob

import tifffile as tif

from sklearn.model_selection import train_test_split

from utils import *

from albumentations import (

 PadIfNeeded,

 HorizontalFlip,

 VerticalFlip,

 CenterCrop,

 Crop,

 Compose,

 Transpose,

 RandomRotate90,

 ElasticTransform,

 GridDistortion,

 OpticalDistortion,

 RandomSizedCrop,

 OneOf,

 CLAHE,

 RandomBrightnessContrast,

 RandomGamma,

 HueSaturationValue,

 RGBShift,

 RandomBrightness,

 RandomContrast,

 MotionBlur,

 MedianBlur,

 GaussianBlur,

 GaussNoise,

 ChannelShuffle,

 CoarseDropout

)

def create_dir(path):

 """ Create a directory. """

 try:

 if not os.path.exists(path):

 os.makedirs(path)

 except OSError:

 print(f"Error: creating directory with name {path}")

def read_data(x, y):

 """ Read the image and mask from the given path. """

 image = cv2.imread(x, cv2.IMREAD_COLOR)

 mask = cv2.imread(y, cv2.IMREAD_COLOR)

 return image, mask

def augment_data(images, masks, save_path, augment=True):

 """ Performing data augmentation. """

 crop_size = (576 - 32, 720 - 32)

 size = (720, 576)

 for image, mask in tqdm(zip(images, masks), total=len(images)):

 image_name = image.split("/")[-1].split("\\")[0]

 mask_name = mask.split("/")[-1].split("\\")[0]

 folder_name = image.split("\\")[-1].split(".")[0]

 x, y = read_data(image, mask)

 try:

 h, w, c = x.shape

 except Exception as e:

 image = image[:-1]

 x, y = read_data(image, mask)

 h, w, c = x.shape

 if augment == True:

 ## Center Crop

 aug = CenterCrop(p=1, height=crop_size[0], width=crop_size[1])

 augmented = aug(image=x, mask=y)

 x1 = augmented['image']

 y1 = augmented['mask']

 ## Crop

 x_min = 0

 y_min = 0

 x_max = x_min + size[0]

 y_max = y_min + size[1]

 aug = Crop(p=1, x_min=x_min, x_max=x_max, y_min=y_min,

y_max=y_max)

 augmented = aug(image=x, mask=y)

 x2 = augmented['image']

 y2 = augmented['mask']

 ## Random Rotate 90 degree

 aug = RandomRotate90(p=1)

 augmented = aug(image=x, mask=y)

 x3 = augmented['image']

 y3 = augmented['mask']

 ## Transpose

 aug = Transpose(p=1)

 augmented = aug(image=x, mask=y)

 x4 = augmented['image']

 y4 = augmented['mask']

 ## ElasticTransform

 aug = ElasticTransform(p=1, alpha=120, sigma=120 * 0.05,

alpha_affine=120 * 0.03)

 augmented = aug(image=x, mask=y)

 x5 = augmented['image']

 y5 = augmented['mask']

 ## Grid Distortion

 aug = GridDistortion(p=1)

 augmented = aug(image=x, mask=y)

 x6 = augmented['image']

 y6 = augmented['mask']

 ## Optical Distortion

 aug = OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5)

 augmented = aug(image=x, mask=y)

 x7 = augmented['image']

 y7 = augmented['mask']

 ## Vertical Flip

 aug = VerticalFlip(p=1)

 augmented = aug(image=x, mask=y)

 x8 = augmented['image']

 y8 = augmented['mask']

 ## Horizontal Flip

 aug = HorizontalFlip(p=1)

 augmented = aug(image=x, mask=y)

 x9 = augmented['image']

 y9 = augmented['mask']

 ## Grayscale

 x10 = cv2.cvtColor(x, cv2.COLOR_RGB2GRAY)

 y10 = y

 ## Grayscale Vertical Flip

 aug = VerticalFlip(p=1)

 augmented = aug(image=x10, mask=y10)

 x11 = augmented['image']

 y11 = augmented['mask']

 ## Grayscale Horizontal Flip

 aug = HorizontalFlip(p=1)

 augmented = aug(image=x10, mask=y10)

 x12 = augmented['image']

 y12 = augmented['mask']

 ## Grayscale Center Crop

 aug = CenterCrop(p=1, height=crop_size[0], width=crop_size[1])

 augmented = aug(image=x10, mask=y10)

 x13 = augmented['image']

 y13 = augmented['mask']

 ##

 aug = RandomBrightnessContrast(p=1)

 augmented = aug(image=x, mask=y)

 x14 = augmented['image']

 y14 = augmented['mask']

 aug = RandomGamma(p=1)

 augmented = aug(image=x, mask=y)

 x15 = augmented['image']

 y15 = augmented['mask']

 aug = HueSaturationValue(p=1)

 augmented = aug(image=x, mask=y)

 x16 = augmented['image']

 y16 = augmented['mask']

 aug = RGBShift(p=1)

 augmented = aug(image=x, mask=y)

 x17 = augmented['image']

 y17 = augmented['mask']

 aug = RandomBrightness(p=1)

 augmented = aug(image=x, mask=y)

 x18 = augmented['image']

 y18 = augmented['mask']

 aug = RandomContrast(p=1)

 augmented = aug(image=x, mask=y)

 x19 = augmented['image']

 y19 = augmented['mask']

 aug = MotionBlur(p=1, blur_limit=7)

 augmented = aug(image=x, mask=y)

 x20 = augmented['image']

 y20 = augmented['mask']

 aug = MedianBlur(p=1, blur_limit=9)

 augmented = aug(image=x, mask=y)

 x21 = augmented['image']

 y21 = augmented['mask']

 aug = GaussianBlur(p=1, blur_limit=9)

 augmented = aug(image=x, mask=y)

 x22 = augmented['image']

 y22 = augmented['mask']

 aug = GaussNoise(p=1)

 augmented = aug(image=x, mask=y)

 x23 = augmented['image']

 y23 = augmented['mask']

 aug = ChannelShuffle(p=1)

 augmented = aug(image=x, mask=y)

 x24 = augmented['image']

 y24 = augmented['mask']

 aug = CoarseDropout(p=1, max_holes=8, max_height=32,

max_width=32)

 augmented = aug(image=x, mask=y)

 x25 = augmented['image']

 y25 = augmented['mask']

 images = [

 x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

 x11, x12, x13, x14, x15, x16, x17, x18, x19, x20,

 x21, x22, x23, x24, x25

]

 masks = [

 y, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10,

 y11, y12, y13, y14, y15, y16, y17, y18, y19, y20,

 y21, y22, y23, y24, y25

]

 else:

 images = [x]

 masks = [y]

 idx = 0

 for i, m in zip(images, masks):

 i = cv2.resize(i, size)

 m = cv2.resize(m, size)

 tmp_image_name = f"{image_name}_{folder_name}_{idx}.jpg"

 tmp_mask_name = f"{mask_name}_{folder_name}_{idx}.jpg"

 image_path = os.path.join(save_path, "image/",

tmp_image_name).replace("\\", "/")

 mask_path = os.path.join(save_path, "mask/",

tmp_mask_name).replace("\\", "/")

 cv2.imwrite(image_path, i)

 cv2.imwrite(mask_path, m)

 idx += 1

def load_data(path, split=0.1):

 """ Load all the data and then split them into train and valid dataset.

"""

 img_path = glob(os.path.join(path, "Data/image", "*.jpg"))

 print(img_path)

 msk_path = glob(os.path.join(path, "Data/mask", "*.jpg"))

 total_train_x = []

 total_train_y = []

 total_test_x = []

 total_test_y = []

 total_valid_x = []

 total_valid_y = []

 idx = 0

 len_ids = len(img_path)

 train_size = int((80 / 100) * len_ids)

 valid_size = int((10 / 100) * len_ids) ## Here 10 is the percent of

mask used for validation

 test_size = int((10 / 100) * len_ids) ## Here 10 is the percent of

mask used for testing

 train_x, test_x = train_test_split(img_path, test_size=test_size,

random_state=42)

 train_y, test_y = train_test_split(msk_path, test_size=test_size,

random_state=42)

 train_x, valid_x = train_test_split(train_x, test_size=test_size,

random_state=42)

 train_y, valid_y = train_test_split(train_y, test_size=test_size,

random_state=42)

 total_train_x += train_x

 total_train_y += train_y

 total_test_x += test_x

 total_test_y += test_y

 total_valid_x += valid_x

 total_valid_y += valid_y

 return (total_train_x, total_train_y), (total_valid_x, total_valid_y),

(total_test_x, total_test_y)

Skin lesion segmentation

def get_skin_lesion_data(path, split=0.1):

 total_train_x = glob(os.path.join(path, "New_Data/train/image/*"))

 total_train_y = glob(os.path.join(path, "New_Data/train/mask/*"))

 total_valid_x = glob(os.path.join(path, "New_Data/valid/image/*"))

 total_valid_y = glob(os.path.join(path, "New_Data/valid/mask/*"))

 total_test_x = glob(os.path.join(path, "New_Data/test/image/*"))

 total_test_y = glob(os.path.join(path, "New_Data/test/mask/*"))

 return (total_train_x, total_train_y), (total_valid_x, total_valid_y),

(total_test_x, total_test_y)

def main():

 np.random.seed(42)

 path = "/content/gdrive/MyDrive/Machine_Learning_II/Double_U-net"

 (total_train_x, total_train_y), (total_valid_x, total_valid_y),

(total_test_x, total_test_y) = load_data(path,

split=0.1)

 create_dir("New_Data/train/image/")

 create_dir("New_Data/train/mask/")

 create_dir("New_Data/valid/image/")

 create_dir("New_Data/valid/mask/")

 create_dir("New_Data/test/image/")

 create_dir("New_Data/test/mask/")

 augment_data(total_train_x, total_train_y, "new_data/train/",

augment=False)

 augment_data(total_valid_x, total_valid_y, "new_data/valid/",

augment=False)

 augment_data(total_test_x, total_test_y, "new_data/test/",

augment=False)

if __name__ == "__main__":

 main()

Appendix G: Predict and evaluate segmentation
def evaluate_normal(model, x_data, y_data):

 THRESHOLD = 0.5

 total = []

 # i=0

 for i, (x, y) in tqdm(enumerate(zip(x_data, y_data)),

total=len(x_data)):

 x = read_image(x)

 y = read_mask(y)

 print(x.shape)

 _, h, w, _ = x.shape

 y_pred1 = parse(model.predict(x)[0][..., -2])

 y_pred2 = parse(model.predict(x)[0][..., -1])

 line = np.ones((h, 10, 3)) * 255.0

 all_images = [

 mask_to_3d(y_pred2) * 255

]

 # x[0] * 255.0, line,

 # mask_to_3d(y) * 255.0, line,

 # mask_to_3d(y_pred1) * 255.0, line

 mask = np.concatenate(all_images, axis=1)

 cv2.imwrite(f"results/{i}.jpg", mask)

def read_image(x):

 image = cv2.imread(x, cv2.IMREAD_COLOR)

 image = np.clip(image - np.median(image) + 127, 0, 255)

 image = image / 255.0

 image = image.astype(np.float32)

 image = np.expand_dims(image, axis=0)

 return image

def read_mask(y):

 mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)

 mask = mask.astype(np.float32)

 mask = mask / 255.0

 mask = np.expand_dims(mask, axis=-1)

 return mask

create_dir("results/")

evaluate_normal(model, test_x, test_y)

from PIL import Image, ImageChops

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

i = 0

create_dir("Concatinated/")

create_dir("Segmented/")

for n in range(0, 1122):

 im1path = "/content/gdrive/MyDrive/Groningen_test/Filmpje/image/"

 im1 = cv2.imread(os.path.join(im1path, '3_' + str(i) + '.jpg')) / 255

 print(os.path.join(im1path, '3_' + str(i) + '.jpg'))

 im2path = "/content/gdrive/MyDrive/Groningen_test/Filmpje/results/"

 im2 = cv2.imread(os.path.join(im2path, str(i) + '.jpg')) / 255

 im3 = im1 * im2

 im3 = im3 * 255

 line = np.ones((576, 10, 3)) * 255.0

 im1 = im1 * 255

 Concatinated_images = [im1, line, im3]

 Concat = np.concatenate(Concatinated_images, axis=1)

 cv2.imwrite(f"Concatinated/{i}.jpg", Concat)

 i += 1

 cv2.waitKey(0)

Appendix H: Generate video from prediction
import cv2

import numpy as np

import glob

i = 0

img_array = []

path = '/content/gdrive/MyDrive/Groningen_test/Filmpje/Concatinated/'

for n in range(0, 1122):

 i += 0

 img = cv2.imread(os.path.join(path, f"{i}.jpg"))

 height, width, layers = img.shape

 size = (width, height)

 img_array.append(img)

 i += 1

out = cv2.VideoWriter('project.mp4', cv2.VideoWriter_fourcc(*'DIVX'), 15,

size)

for i in range(len(img_array)):

 out.write(img_array[i])

out.release()

