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Abstract— Small untethered soft robots have potential for
diverse applications, particularly in constrained spaces where
the use of a tethered device would be infeasible. Examples
include biomedical applications such as brachytherapy, fine-
needle biospy and micro-needle drug delivery. To advance
soft robots towards these applications, there is a need to
establish methods for tracking and control using clinically-
relevant methods. This study demonstrates motion planning and
magnetic control of a soft untethered robot, using ultrasound
images as feedback. The closed-loop control of the Millipede
soft robot is first validated using a camera-based tracker, where
the deviation between the planned path and the trajectory of
the robot is 1.71 mm. Afterwards, two methods for ultrasound-
based tracking capable of estimating the pose of the robot are
proposed, a geometric approach and a convolutional neural
network (CNN), and their performance is compared using a
video camera as ground truth. Following this, the CNN method
replaces the camera tracker to estimate the position and ori-
entation of the robot. The closed-loop system using ultrasound
images guides the robot through the workspace while avoiding
virtual obstacles, and achieves an average tracking error of
1.59 mm and an angle error of 2.24◦.

I. INTRODUCTION

Untethered magnetically-actuated soft robots can provide
potential solutions for applications in constricted environ-
ments. The soft, untethered structure of magnetic soft robots
allows navigation to difficult-to-reach targets without damag-
ing the surroundings. Moreover, magnetic actuation removes
the need for an on-board source of energy in the robot.
Medical applications are a particular area of interest for
these robots because magnetic actuation at low fields are
not harmful for humans [1]. Recent studies have developed
untethered soft robots capable of performing tasks such as
locomotion, grasping and carrying loads [2]–[4]. Despite
developments in the design and actuation of soft robots,
localization and closed-loop control remain challenges to be
solved.

Recent studies have demonstrated closed-loop control of
untethered agents for pick-and-place tasks, using optical
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Fig. 1. Closed-loop control of the Millipede, an untethered magnetically-
actuated soft robot, using ultrasound images as feedback and a magnetic
actuation system. Dimensions are marked in mm.

camera images [5], [6]. However, in many enclosed environ-
ments, such as minimally invasive procedures, localization
using optical cameras may not be a viable option. Other
works have utilized Magnetic Resonance Imaging (MRI)
to track and control magnetic untethered robots [7], [8].
Nevertheless, the use of an MR system for the control
of soft robots introduces some drawbacks, such as a high
image acquisition time, time-delay between actuation and
control systems, and a limited choice of materials for the
fabrication of the robot. By contrast, ultrasound (US) is an
inexpensive and real-time medical imaging modality. Despite
the high signal-to-noise ratio, the high frame acquisition rate
of US scanning allows real-time control of robots in clinical
environments [9], [10].

Previous studies have demonstrated closed-loop control
of magnetic robots on the micro-scale, using ultrasound
imaging feedback [11], [12]. The tracking of microrobots
relies on finding features, such as blobs and contours, to
estimate the position of the robots. The geometric tracking
algorithms employed in these studies are sensitive to noise
and to variations in the intensity of the image pixels. Further-
more, the geometric approaches are susceptible to occlusions
because the methods rely on tracking the same shape of
the robot, which may not be feasible throughout the entire
duration of the experiment.

To increase the robustness of trackers to noise and occlu-
sions, deep learning techniques have been used in computer
vision areas for object detection, and regression and classifi-
cation problems. Recent works have demonstrated the use of
Convolutional Neural Networks (CNN) to estimate the pose
of objects in different environments [13]. However, none of
the approaches have been used for the estimation of the pose
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Fig. 2. Image analysis for estimating the position of the robot from camera images. The original Red-Green-Blue (RGB) image 1⃝ is converted to a
Hue-Saturation-Value (HSV) image 2⃝. 3⃝ Adaptative threshold for obtaining a binary image (black and white), followed by morphological opening, i.e.
dilatation of the erosion, is applied to remove small blobs. 4⃝ Edge detection to find the contours in the image. 5⃝ The contour of the robot is selected
according to the area and shape of the contour. Then the centroid and orientation is estimated using the moments of the contour. The scale bar is 15 mm.

of untethered soft robots during closed-loop control.
In order to facilitate the use of magnetically-actuated

soft robots in medical applications, there is a need to
achieve robust localization and closed-loop control using
clinically-relevant imaging methods. Additionally, compared
to previous works on magnetic microrobots, new designs of
magnetic soft robots also require sensing of robot orientation
to determine the direction of the actuating magnetic field for
functions such as cargo delivery, needle biopsy or maneu-
vering through the workspace [3], [4], [14].

In this study, we demonstrate closed-loop motion control
and path planning for a biomimetic magnetic soft robot using
2D ultrasound images. A framework is set up for tracking
the soft robot and applying the necessary magnetic field for
actuation. Two methods for ultrasound-based tracking capa-
ble of estimating the position and orientation of the robot are
investigated, and their performance compared using a video
camera as ground truth. Both methods are improvements
on trackers in the literature that only estimate the position
of microrobots. The framework suggests the possibility of
using soft robots to autonomously perform tasks in clinically-
relevant scenarios.

The rest of the paper is organized as follows. Section II
introduces the magnetic actuation system and the soft robot.
The methodologies used to detect the robot are described in
Sections III and IV, using camera and ultrasound feedback,
respectively. Section V presents the path planner and the
closed-loop control strategy. Section VI contains the experi-
mental validation. Section VII summarizes the contributions
of this work and proposes possible steps for future research.

II. MATERIALS

A. Magnetic Actuation System

BigMag [15] is a magnetic actuation system with a moving
array of six electromagnetic coils on two symmetric mobile
frames. The two frames rotate around a spherical workspace
with a diameter of 10 cm. It is equipped with 2 Dalsa Genie
Nano-C1940 (Waterloo, Ontario, Canada) cameras, which
provide a top and a side view of the entire workspace.
Moreover, BigMag generates any desired magnetic field up
to 60 mT with a bandwidth of 40 Hz within the workspace.
The magnetic field is used to steer the soft robot through the
workspace.

B. Soft Robot

The soft robot used in this study is a biomimetic Millipede
robot developed in our previous work [14]. Briefly, the
Millipede has two sets of magnetized legs connected by
a silicone rubber body. The Millipede achieves locomotion
in the presence of a rotating magnetic field. The tilting
of the plane of rotation of the magnetic field by an angle
results in a different displacement on the two sets of legs.
Thus, the turning motion is achieved by controlling the
displacement of each set of legs using the tilt angle. An
increase of the magnitude of the magnetic field leads to
greater displacement, increasing the speed of the Millipede.
Details of the design and fabrication process of the soft robot
can be found in [14]. For this study, we added a component
of silicone rubber mixed with aluminium powder to increase
the weight of the robot to achieve underwater motion.

C. Ultrasound Imaging

The ultrasound images are acquired using a wireless
Clarius Scanner L15 HD. The Clarius probe acquires the
ultrasound images of the workspace using a Clarius App on a
smartphone and sends the images to a cast API on a laptop at
a resolution of 960×600 pixels (50 × 70 mm). The detection
algorithms are implemented on the cast API and the pose of
the soft robot is sent to the BigMag system via an Ethernet
cable. The cast API was implemented and developed on a
computer running Linux Ubuntu 20.04, equipped with Intel
i7-8750H CPU, GeForce GTX 1050 GPU and 16 GB of
RAM.

III. CAMERA-BASED DETECTION

In this section, the camera-based detection algorithm for
the estimation of the pose of the soft robot is described,
given by P = [x,y,α]. The frames from the top camera of the
BigMag system are processed in two stages which consists
of a robot detection within the frame, and a position and
orientation estimation, as shown in Fig. 2.

The first stage performs the detection of the contours of
the soft robot from the binary image (black and white).
The input image is a Red-Green-Blue (RGB) colour image
acquired by BigMag at a 50Hz rate, and it is converted to
the Hue-Saturation-Value (HSV) colour space. Then, channel
values are bounded using a user-friendly interface to detect
the colour of the robot. Morphological opening, i.e., erosion
followed by dilatation, is applied to the binary image to
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Fig. 3. Closed-loop system for controlling magnetic soft robots using ultrasound imaging. The ultrasound probe images the Millipede and a tracking
algorithm estimates the pose of the soft robot (Pest). The pose of the robot is sent to the Proportional Integral (PI) controller. Based on the linear and
angular velocity errors(ve and ωe), the control block outputs the estimated magnetic field (Bref) to drive the soft robot along the path generated. Using
inverse kinematics, the magnetic actuation system of BigMag generates the actual magnetic field (B) on the Millipede. The camera tracker defines the
ground truth of the pose of the Millipede, and it is not connected to the control block.

remove noise and small blobs, while preserving the shape of
the robot. Afterwards, using a contour finding algorithm, the
contour of the robot is selected among the others, accordingly
to the shape, area, and size.

The second stage consists of processing the soft robot
contour points to estimate the position and the orientation.
The centroid (x,y) is calculated through the moments of the
contours using the Green’s Theorem by integrating over the
perimeter of the contour. For the orientation estimation, the
contours points are fitted to an ellipse and the angle (α) is
obtained from the major axis of the ellipse.

IV. ULTRASOUND-BASED DETECTION

In this section, we explain the integration of an ultrasound
machine into the BigMag system to localize and control the
magnetically actuated soft robot to a target, as shown in
Fig. 3. Two different approaches are described for the real-
time localization of the robot using an ultrasound image. The
first approach utilizes a geometric algorithm to retrieve the
pose of the robot, while the second approach uses a custom-
made convolutional neural network (CNN).

A. Geometric algorithm
The first approach is a two stage algorithm to first perform

image segmentation and then detect and estimate the position
and orientation of the soft robot, as described in Fig. 4. The
pose estimation relies on finding the perpendicular edges
which define the rectangular shape of the robot. The first
stage is similar to the camera-based algorithm described
previously, but the ultrasound image is in the greyscale
colour space. Also, the ultrasound image is noisier which
requires additional filtering, such as a median filter to remove
salt and pepper noise and a Gaussian filter to remove speckle
noise and smoothen the image.

The edge points of the image are candidates to fit two
perpendicular lines of the rectangular shape of the Millipede.

A general GPU implementation of the RANSAC (RANdom
SAmple Consensus) is modified to find two perpendicular
edges of the Millipede soft robot [16]. The slope of the
principal (longer) edge sets the orientation of the robot.
Then, the longer and smaller edges define the corner of the
rectangle detected, which is used to calculate the position of
the robot.

Fig. 4. Image processing for estimating the position of the robot using
ultrasound images for the geometric algorithm. The first stage consists of
image segmentation (1) - (5) followed by the detection of the robot (6) -
(8). (1) (2) Image preprocessing of the ultrasound (US) image for speckle
noise reduction and for image smoothing. (3) Adaptative threshold to obtain
a binary image (black and white). (4) Morphological opening, i.e. dilatation
of the erosion, is applied to remove small blobs. (5) Using Canny Edges,
detection of the candidate points for estimating the pose of the robot. (6)
First RANSAC iteration to find the principal edge of the soft robot. (7)
Second iteration of RANSAC to find the perpendicular edge of the robot.
(8) Pose estimation by calculating the centroid and the orientation of the
robot.

B. Convolutional neural network

The second approach uses a convolutional neural network
to estimate the position and orientation of the robot in the
ultrasound image. The process of acquiring the ultrasound
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Fig. 5. Architecture of the adapted ResNet 50 convolution neural network (CNN) for pose regression. The proposed CNN uses a ResNet-50 as backbone
for feature extraction. The features image vector is used in three separated branches for regression of the pose (xpred and ypred) and the orientation (αpred)
of the robot. Each branch is composed by three consecutive fully-connected layers with 512, 64 and 1 outputs.

images and the label for the dataset is described. The
architecture of the proposed CNN and the training of the
network is also presented.

1) Architecture: The proposed convolutional neural net-
work (CNN) uses a ResNet-50 [17] as backbone, where the
input is a greyscale image with a fixed size of 200x200
pixels, as described in Fig. 5. The output of the network
is a 3x1 vector with the predicted pose of the robot
(xpred ,ypred ,αpred). The ResNet-50 is a 50-layer deep resid-
ual network which has five convolutional blocks stacked on
top of each other. The output of the last convolutional block
is a 7x7x2048 dimensional array which is flattened to a 2048-
dimensional vector using a max pooling layer. The output
layer to classify the 1000 classes of the ImageNet dataset
is replaced by three regression branches. Each branch is
composed by a set of 3 fully connected layers, with 512,
64 and 1 output neurons to predict each pose value. The
branches for the regression of x and y component utilize a
root mean squared error loss function (RMSE) to compute
the minimum distance between the predicted and labelled
value, v and ṽ, respectively. On the other hand, the regression
of the angle uses a mean squared error between the angles
by representing the angle in the complex plane using z(a) =
(cos(a),sin(a)).

LRMSE =

√
1
N

N

∑
n=1

(vi − ṽi)2 (1)

LMSE =
1
N

N

∑
n=1

∣∣z(ai)− z(ãi)
∣∣2

=
1
N

N

∑
n=1

(cosai − cos ãi)
2 +(sinai − sin ãi)

2

(2)

2) DataSet: The dataset is constructed with ultrasound
images and the pose of the soft robot. To avoid annotating all
the video frames manually, we used the pose estimation from
the camera-based algorithm to label each ultrasound image.
Also, the dataset is augmented by simulating two different
types of noise to the ultrasound image data. Gaussian noise
with different standard deviations and salt and pepper noise

are added to the ultrasound images, while keeping the label
of the pose of the soft robot. The addition of noisy images
increases the size of the dataset and the generalization of
the CNN to ultrasound images with noise. The dataset is
constituted of approximately 95000 ultrasound images and
the respective labels. The dataset is divided into train(80%),
validation(10%) and test(10%).

3) Training Parameters: In the training process, we fol-
lowed the training of the original ResNet-50 and our data
is zero centred by subtracting the mean value. The weights
of the backbone of the network are initialized with the
converged ResNet-50 on the ImageNet dataset. The fully
connected layers of the regression branches are trained from
scratch after random initialization. The Adaptative Moment
Estimation (Adam) [18] is applied with the default values
and a learning rate of 0.01.

V. MOTION PLANNING AND CONTROL

The estimated pose P is provided to a path planner to
compute a collision free trajectory. From the state-of-the-art
motion planners, the A*-WAPP-waypoints path planner is
used to feed the control algorithm with the points along the
trajectory.

A. Path Planning

The A*-WAPP-waypoints algorithm [19] is a modified
version of the A* path planner which reduces the probability
of collision with obstacles, while improving the driving time,
distance and stability. The path generator utilizes the infor-
mation of a fitness cost function ( f (n) = g(n)+h(n)+d(n))
associated with each node n. The goal cost g(n) is the cost
required to move from the start node to the n-node. The
heuristic cost h(n) of the node is the Euclidean distance
from the n-node to the goal node. The distance cost h(n)
is inversely proportional to the distance between the node
and the obstacle, i.e. the algorithm attributes a higher cost
to nodes closer to obstacles. The path search begins in the
starting position of the robot and encompasses finding the
node with the lowest fitness cost among the eight adjacent
nodes of the current searching node. The algorithm creates
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Fig. 6. Experiment demonstrating the closed-loop navigation of the Millipede using camera feedback. The robot follows a path that avoids the obstacles
of the workspace to reach the target site. The scale bar is 20 mm. Please refer to the accompanying video.

the path when the searching node corresponds to the goal
node.

B. Motion Control

The path planner provides the set of waypoints for the
implementation of the closed-loop position controller. The
controller also receives the pose of the soft robot (xr,yr,αr)
from the imaging tracking system. The pose of the robot
and each waypoint coordinate (xp,yp) are used to estimate
the magnetic field needed to steer the soft robot based on
previously recorded motion data for the Millipede robot [14].

We control the linear velocity v(k) of the robot using a
Proportional Integral (PI) controller:

v(k) = kve(k)+ ki

∫
e(k)dt (3)

e(k) =
√
(xp − xr)2 +(yp − yr)2 −d(k) (4)

where e(k) is the Euclidean distance between the current
position of the robot and the waypoint of the trajectory, sub-
tracted by a distance d(k). The velocity is controlled by the
constant gains kv and ki. d(k) is the distance that the robot
keeps from the waypoint, when following the waypoints of
the path. A second controller uses a proportional controller

Fig. 7. Representation of the coordinate frame used for the experiments,
showing x, y and α . Ultrasound images of the Millipede soft robot for
orientations of 145°, 0°, and 90°, respectively, where the silhouette of the
soft robot changes with respect to the orientation α . The ultrasound probe
is located at the top edge of the images.

to turn the robot towards the waypoint:

ω(k) = ks (β (k) ⊥ α(k)), ks > 0 (5)

β (k) = tan−1 yp − yr

xp − xr
(6)

where β (k) is the angle of the waypoint relatively to the
robot. The operator ⊥ represents the angular difference
between the angles. Thus, the angular velocity ω(k) is the
angle to turn the robot to the waypoint multiplied by a
constant gain ks. The PI controller is reset when the value
of the error is below 1 mm for the waypoints of the path.
The distance d(k) is set to half the length of the robot
to allow the turning of the robot and increase the steering
stability. However, when the robot is moving towards the
final waypoint (target node), d(k) is set to 1 mm, so that the
robot accurately reaches the target.

VI. RESULTS

In this section, the motion planning and magnetic control
of the Millipede soft robot are demonstrated using camera
and ultrasound images, including evaluation of the perfor-
mance of the CNN and geometric trackers methods.

A. Camera tracking experiments

The closed-loop control using camera feedback is demon-
strated through an experiment where the soft robot avoids
two obstacles to traverse a zig-zag path, as shown in Fig. 6.
The path planning algorithm generates a set of waypoints
from the start to end node, while the camera images are
used to estimate the pose of the robot in real time. The
average speed of the robot is 1.61 mms−1. The mean error
of the deviation of the soft robot from the path planner
is 1.71 ± 1.07 mm. This experiment validates the motion
control and path planning for the Millipede soft robot.

B. Ultrasound tracking experiments

1) Evaluation of the US methods: The proposed ultra-
sound tracking methods are evaluated with the test dataset
containing more than 9500 ultrasound images, which is 10%
of the entire dataset. The dataset corresponds to a wide range
of positions and orientations of the robot during its motion
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TABLE I
AVERAGE TRACKING ERROR OF THE RANSAC AND CNN METHODS IN

FOUR QUADRANTS OF THE WORKSPACE.

Coordinates No. of data
points

Axis RANSAC
(mm)

CNN
(mm)

x>0 , y>0 2314
x
y

Norm

0.7 ± 1.2
0.9 ± 0.9

1.14 ± 1.5

0.2 ± 0.1
1.0 ± 2.0
1.0 ± 2.0

x>0 , y<0 3155
x
y

Norm

1.0 ± 1.6
1.4 ± 1.8
1.7 ± 2.4

0.2 ± 0.1
0.4 ± 0.3
0.5 ± 0.3

x<0 , y>0 2550
x
y

Norm

0.9 ± 0.9
1.1 ± 0.8
1.4 ± 1.2

0.2 ± 0.2
0.7 ± 1.0
0.7 ± 1

x<0 , y<0 1483
x
y

Norm

1.3 ± 2.1
1.9 ± 4.1
2.3 ± 4.6

0.2 ± 0.2
0.4 ± 0.2
0.5 ± 0.3

through the workspace. We aim to investigate the accuracy
of the US tracking algorithms in detecting the pose of the
Millipede, since its silhouette in the US image changes with
respect to the orientation of the soft robot, as shown in Fig. 7.

The CNN shows a lower error and variance in tracking the
soft robot compared to the geometric (RANSAC) method.
For the RANSAC-based method, the tracking errors for
the x-coordinate, y-coordinate and angle are 0.9 ± 1.4 mm,
1.2 ± 2.1 mm and 3.9 ± 6.7°, respectively. On the same
dataset, the proposed CNN obtains errors of 0.28 ± 0.14 mm,
0.62 ± 0.48 mm and 2.3 ± 3.4° for the x-coordinate, y-
coordinate and angle, respectively.

Table I shows the position tracking error in different
areas of the the workspace, using both methods. The error
using the CNN-based method is better in every quadrant
of the workspace when compared with the RANSAC-based
tracker. Furthermore, for the CNN tracker, the error in the y-
coordinate is 2-3 times bigger when the robot is away from
the US probe (y > 0), compared to the other half of the
workspace.

To compare the accuracy of tracking the orientation of
the robot, the test dataset was divided into intervals of 20°
according to the angle labelled in each ultrasound image. The
absolute error between the ground-truth and the angle esti-
mated by both methodologies was calculated. Fig. 8 shows
the dispersion of the mean angle for each angle interval.

Fig. 8. Comparison of the absolute error between the angle predicted by
the proposed tracking strategies and the ground-truth angle for the two US
tracking methods. The mean error and the respective standard deviation are
calculated for each 20° interval containing the ultrasound images, with the
ground truth in the correspondent interval.

Overall, the dispersion of the error is lower in the CNN
method, except for the intervals near the angle discontinuity
(α = 0°, 180°). The RANSAC-based method presents an
absolute angle error of 8.6 ± 21.0°, when 80°< α <100°,
because only the small edge of the robot is imaged.

Overall, the estimation of the pose of the robot with the
CNN method is better and more reliable, and therefore, the
CNN method is used in the closed-loop experiments with
ultrasound imaging.

2) Closed-loop control using ultrasound: The CNN ar-
chitecture and the weights of the layers are stored and
converted to be used in the C++ Cast API on the laptop.
The pose estimation by the CNN runs at 15 Hz on the laptop
computer. The CNN estimates the position and orientation of
the Millipede for each frame acquired by the Cast API. Then,
the information is sent to the control system implemented in
BigMag and the required magnetic field is applied.

The closed-loop control is performed in two situations,
with an obstacle on one side of the ultrasound image, as
shown in Fig. 9. For the path avoiding the obstacle on the
right, the absolute tracking error is 1.71 ± 0.85 mm, and
the angle error is 2.29 ± 1.64 mm. For the other path, the
absolute tracking error is 1.49 ± 0.83 mm and the angle error
is 2.18 ± 1.33 mm. The mean deviation of the soft robot from
the planned path is 1.87 ± 0.92 mm. In both cases, the robot
is able to navigate the obstacles.

VII. CONCLUSIONS

In this paper, we achieve tracking, magnetic motion con-
trol and path planning of untethered biomimetic soft robot,
using camera and ultrasound images. The motion planning
and magnetic control are validated using camera feedback,
and a deviation error of 1.71 ± 1.07 mm between the tra-
jectory of the soft robot and the planned path is obtained.
Also, the use of an A*-Wall Avoidance Path Planner to
compute the obstacle free paths to control the robot is
shown. The performance of the two proposed ultrasound
tracking methods is compared using a dataset of images. The
RANSAC and the CNN methods achieve an absolute track-
ing error of 1.5 ± 2.5 mm and 0.7 ± 0.5 mm, respectively,
and an absolute angle error of 3.9 ± 6.7 ° and 2.3 ± 3.4 °,
respectively. Despite the high signal-to-noise ratio of the
ultrasound images, the soft robot autonomously reaches a
target following a path at an average position tracking error
of 1.59 ± 0.84 mm and an angle error of 2.24 ± 1.49 °, using
the CNN method.

The current study takes a step forward in the localiza-
tion and control of untethered soft robots using ultrasound
feedback. Moreover, the CNN tracker achieves a lower error
than the geometric method, since the CNN is more robust
in dealing with occlusions of the silhouette of the soft
robot. However, it is worth noting that in these experiments,
the US probe images a stationary 2D workspace. Further-
more, the size of the workspace restricts the experiments to
avoiding only one virtual obstacle on a horizontal surface.
For applications such as the use of soft robots in medical
procedures, the ultrasound imaging will have to consider

3427



Fig. 9. Validation of the closed-loop control of a soft robot using a convolutional neural network (CNN) to detect the pose of the robot in ultrasound
images. The experiment shows the steering of the Millipede robot to a target while avoiding an obstacle on the right (top column) and on the left side
(bottom column). The scale bar is 20 mm. Plots on the right show the comparison of the trajectory obtained using the CNN tracker and the camera tracker
(ground truth). Please refer to the accompanying video.

motion over greater distances and a dynamic 3D environment
with moving obstacles and occlusions. Thus, for future work,
we propose to test the robustness of the CNN tracker in a
more application-relevant environment.
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