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Abstract

Optical microscopy is frequently used to visualize microrobotic agents (i.e., micro-agents)

and physical surroundings with a relatively high spatio-temporal resolution. However, the

limited penetration depth of optical microscopy techniques used in microrobotics (in the

order of 100 μm) reduces the capability of visualizing micro-agents below biological tissue.

Two-photon microscopy is a technique that exploits the principle of two-photon absorption,

permitting live tissue imaging with sub-micron resolution and optical penetration depths

(over 500 μm). The two-photon absorption principle has been widely applied to fabricate

sub-millimeter scale components via direct laser writing (DLW). Yet, its use as an imaging

tool for microrobotics remains unexplored in the state-of-the-art. This study introduces and

reports on two-photon microscopy as an alternative technique for visualizing micro-agents

below biological tissue. In order to validate two-photon image acquisition for microrobotics,

two-type micro-agents are fabricated and employed: (1) electrospun fibers stained with an

exogenous fluorophore and (2) bio-inspired structure printed with autofluorescent resin via

DLW. The experiments are devised and conducted to obtain three-dimensional reconstruc-

tions of both micro-agents, perform a qualitative study of laser-tissue interaction, and visual-

ize micro-agents along with tissue using second-harmonic generation. We experimentally

demonstrate two-photon microscopy of micro-agents below formalin-fixed tissue with a

maximum penetration depth of 800 μm and continuous imaging of magnetic electrospun

fibers with one frame per second acquisition rate (in a field of view of 135 × 135 μm2). Our

results show that two-photon microscopy can be an alternative imaging technique for micro-

robotics by enabling visualization of micro-agents under in vitro and ex ovo conditions. Fur-

thermore, bridging the gap between two-photon microscopy and the microrobotics field has

the potential to facilitate in vivo visualization of micro-agents.
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Introduction

The field of microrobotics has the potential to revolutionize the traditional way of performing

surgery by steering microrobotic agents within confined anatomical structures [1, 2]. Microro-

botic agents (i.e., micro-agents) are the means to achieve tasks such as drug delivery, biopsy,

and micro-assembly of biological samples [3, 4]. Typically, these miniaturized agents are

responsive to external stimuli (e.g., magnetic fields [5], acoustic waves [6], and light [7–9]) and

necessitate sensing/detection strategies for navigation and feedback. The development of novel

techniques for visualization of micro-agents holds importance to translate the microrobotics

field to the clinics and expand the application domains to clinically-relevant scenarios [4, 10,

11]. Visualization or imaging is required in microrobotics because the traditional sensors can-

not be attached to the micro-agents due to size limitations. Thus, imaging modalities are used

as external sensors to validate the functionalities and provide feedback. The literature on imag-

ing techniques for microrobotics identifies three essential components towards visualization

of micro-agents under in vivo and in vitro conditions. (1) Visualize micro-agents and physical

surroundings [12]. (2) Achieve relatively high spatio-temporal resolution and penetration

depth [13]. (3) Reduce the risk of side effects on patients/clinicians [14].

Current imaging techniques for the application domains of microrobotics partially under-

take all three essential components. Ionizing techniques (e.g., X-ray computerized tomography

[15], positron emission tomography [16], fluoroscopy [17], and single-photon emission com-

puterized tomography [18]) have been proved for visualization of micro-agents towards in
vivo applications. Nevertheless, the risk of side effects on patients and clinicians encourages

the development of non-ionizing imaging techniques for microrobotics. Optical imaging [12,

19, 20], ultrasound [21], magnetic resonance imaging [22], photoacoustic imaging [11, 23],

and magnetic particle imaging [24] are non-ionizing techniques used for visualization of

micro-agents and physical surroundings. Optical imaging techniques such as bright field, con-

focal, and fluorescence microscopy offer a relatively high spatio-temporal resolution compared

to other non-ionizing imaging techniques [14]. Yet, the limited optical penetration depth, scat-

tering, and background noise reduce the capability of visualization micro-agents below biolog-

ical tissue [19, 25]. Among non-ionizing techniques, photoacoustic imaging (i.e., microscopy

and tomography) is a hybrid technique applicable to the field of microrobotics, addressing the

limited penetration depth commonly encountered in optical microscopy techniques. For

example, photoacoustic microscopy enables imaging of micro-agents underneath shallow tis-

sue regions (<* 1 mm) with a relatively high spatial resolution (3.2 μm) [8]. Photoacoustic

tomography can overcome the penetration depth of photoacoustic microscopy. However,

there exists a trade-off between spatial resolution and penetration depth. The spatial resolution

achieved by photoacoustic tomography is typically in the order of 100 μm, which can hinder

the detailed visualization of micro-agent morphology and intricacies [10, 11, 14]. Furthermore,

the distortion of wavefronts caused by the non-uniform speed of sound in biological tissues

can significantly impact the imaging performance under in vivo conditions [26].

An appealing remedy to overcome the shortcomings of optical microscopy techniques in

microrobotics is two-photon microscopy [14, 27]. This non-ionizing fluorescence technique

uses a femtosecond pulsed laser to generate two-photon absorption, allowing for visualization

of biological tissue with penetration depths over 500 μm [28, 29]. The phenomenon of two-

photon absorption can also trigger autofluorescence and second-harmonic generation in bio-

logical tissue samples, permitting stain-free imaging [30]. The spatial and temporal resolutions

achieved through two-photon microscopy are in the order of sub-microns and 26.4 frames per

second (in the field of view of 1490 × 128 pixels), respectively [13]. Although two-photon

absorption has found applications for fabricating sub-millimeter size components via direct
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laser writing (DLW) (e.g., micro-agents [31], miniaturized optical lenses [32], and metamater-

ials [33]), its use in microrobotics for visualizing miniaturized agents below biological tissue

remains unexplored in the literature.

This study aims to introduce two-photon microscopy as an alternative imaging tool to visu-

alize micro-agents below biological tissue. Two types of fluorescent micro-agents are fabri-

cated and used for visualization. (1) A bio-inspired structure (called CeFlowBot) printed with

an autofluorescent resin (IP-Dip resin) via DLW [31]. (2) Electrospun fibers (i.e., beaded fibers

and rod-like particles) stained with an exogenous fluorophore (coumarin 6) [12]. The biologi-

cal tissues used throughout the study are prepared from rat organs and White Leghorn chick

embryos according to protocols for bio-products and the Dutch animal care guidelines. The

rat organs are fixed to preserve cells and tissue morphology long-term. The remainder of this

study presents and discusses five experimental protocols. (1) The spectrum analysis of the fluo-

rescent micro-agents. (2) Two-/Three-dimensional visualization of micro-agents. (3) Qualita-

tive study of laser-tissue interaction. (4) Visualization of micro-agents below fixed tissue. (5)

Continuous visualization and magnetic actuation of electrospun fibers.

Materials and methods

Experimental validation platform

We commence this study by describing the two-photon microscope developed to visualize

micro-agents along with biological tissue (Fig 1). This microscope uses a Ytterbium fiber (Yb-

fiber) femtosecond pulsed laser (Y-Fi, KMLabs, USA) as an excitation light source to generate

fluorescence emission light from the samples (Fig 1(a1)). The laser beam is characterized by

ultra-short pulses (> 200 fs) with a repetition rate of 15 MHz and a center wavelength (λ) of

1045 nm. The energy of the laser pulses is modulated using a beam power attenuator (Ultra-

fast, Altechna, Lithuania), which also generates a linear polarized beam. Next, a zero-order

quarter-wave (WPQSM05–1030, Thorlabs, USA) creates a circularly polarized beam for image

contrast enhancement [34]. Three infinity-corrected microscope objectives (M Plan Apo,

Mitutoyo, Japan) with different magnifications (5×, 10×, and 50× magnification) are used to

focus the beam and collect the emission light from three fields of view (900 × 900 μm2,

450 × 450 μm2, and 90 × 90 μm2, respectively). An XY-stage (ALS130–150, Aerotech, USA)

with a positioning resolution of 100 nm holds and moves the sample on the plane. A linear

stage (ATS100, Aerotech, USA) with a positioning resolution of 500 nm is employed to manip-

ulate the microscope objective along the Z-axis and adjust the focal plane. In order to perform

a raster scan, a control card (RTC4, SCANLAB GmbH, Germany) is used to rotate the mirrors

of a Galvano scanner (IntelliScan14, SCANLAB GmbH, Germany) and steer the laser beam.

Next, the laser beam is oriented through the microscope objective and focused on the sample

for excitation. Fig 1(a4) shows the samples used in the experiments, in which micro-agents are

placed below biological tissue. The excitation light (laser beam) delivered by the microscope

objective is dispersed due to the optical components, stretching the pulse length. The pulse

length is measured (* 230 fs) after the excitation light passes through the microscope objec-

tive using an autocorrelator (pulseCheck, APE Angewandte Physik und Elektronik GmbH,

Germany). The emission light generated by the sample passes back through the microscope

objective and is reflected by the dichroic mirror (DMLP805, Thorlabs, USA) in the wavelength

range of 400–785 nm. The reflected emission light passes through a short pass filter

(FESH0750, Thorlabs, USA) (transmission range of 400–740 nm) and a focusing lens

(LA1509-A, Thorlabs, USA) before being collected with a photomultiplier tube (PMT1001/m,

Thorlabs, USA) for image formation (Fig 1(a2) and 1(a3)). For magnetic actuation of magnetic

electrospun fibers, a needle-shaped electromagnetic coil is fabricated and employed [35]. The
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electromagnetic coil can generate 9 mT and 3.5 T/m at 5 mm from the tip axis by powering

the coil at 1 A with a power source (E36313A, Keysight, USA).

Fluorescence data acquisition

The fluorescence data is acquired synchronously while steering the laser beam (50 mm/s scan-

ning speed) with the Galvano scanner (IntelliScan14, SCANLAB GmbH, Germany). The volt-

age signal produced by the photomultiplier tube (PMT1001/m, Thorlabs, USA) in response to

the varying fluorescent light is digitized using a data acquisition card (ATS 9146, Alazartech,

Canada) that allows for the acquisition and transmission of data simultaneously (10 MS/s sam-

pling rate). The data is acquired in dark room conditions to avoid direct light contamination.

The data obtained in each raster scan cycle (Fig 1(a4)) is converted into a gray-scale image for

analysis. Since the two-photon microscope has a single photomultiplier channel, 16-bit gray

images (over 65000 shades) are used for analyzing micro-agents along with the tissue.

Image analysis

The gray-scale images (raw images) acquired from the two-photon microscope are analyzed

offline through a MATLAB (version R2022b, MathWorks, USA) custom script. Since the two-

Fig 1. Schematic showing the optical layout of the two-photon microscope developed for visualization of micro-agents along with biological

tissue. (a1) The microscope utilizes a femtosecond laser for excitation light generation while the emission light is delivered to a photomultiplier. The

following micro-agents are visualized below biological tissue: (a2) a bio-inspired structure called CeFlowBot, and (a3) electrospun fibers. The colored

arrows indicate structural morphologies of the micro-agents that are visible below biological tissue. (a4) Illustration of the samples used to visualize

micro-agents below biological tissue. (b1)-(b2) Schematic representation of the fabricated fluorescent micro-agents.

https://doi.org/10.1371/journal.pone.0289725.g001
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photon microscope has a single photomultiplier channel, the analysis of micro-agents along

with biological tissue relies on the difference in fluorescence intensities. We implement a con-

trast analysis based on contour, gradient, and intensity maps normalized to the corresponding

maximum values. Although the microscope has a single photomultiplier channel, the three

maps provide information about the micro-agents and surroundings. For continuous visuali-

zation of magnetic electrospun fibers, we acquired and stored the images using an acquisition

rate of 1 frame per second in a field of view of 135 × 135 μm2. Thereon, the motion analysis is

carried out offline using the Lucas-Kanade optical flow method [36]. The results of motion

analysis are expressed as vector fields, which provide information on the motion of magnetic

electrospun fibers [12, 37].

Fabrication of micro-agents

The CeFlowBot is fabricated from an autofluorescent photoresist (IP-Dip, Nanoscribe GmbH,

Germany) via dip-in laser lithography (DiLL) using a 25× microscope objective (0.8 numerical

aperture) (Fig 1(b1)) [31]. The CeFlowBot samples are micro-printed on a glass substrate

coated with Indium-tin oxide using a laser lithography system (Photonic Professional GT2,

Nanoscribe GmbH, Germany) in Galvano scanning mode with a laser power of 25 mW, a

scanning speed of 4 × 104 μm/s, and slicing/hatching distances equal to 1 μm. The 3D printed

structure is developed in cleaning solvent (RER 600) for 25 min and rinsed in isopropyl alcohol

for 5 min. Thereon, the substrate containing CeFlowBot samples is baked in a hot plate

(150˚C) for 15 min to remove the photoresist residues.

Electrospun fibers (i.e., beaded fibers and rod-like particles) are fabricated using the electro-

spinning technique (Fig 1(b2)) [12]. The polymer solution for electrospinning consists of poly-

styrene pellets (430102–1KG, Sigma-Aldrich, USA) as a carrier polymer, coumarin 6 (442631–

1G, Sigma-Aldrich, USA) as a hydrophobic fluorophore, iron oxide (Fe3O4) nanoparticles

(637106–25G, Sigma-Aldrich, USA) as a magnetic material, and anhydrous N, N-Dimethylfor-

mamide (DMF) as a solvent (227056–1L, Sigma-Aldrich, USA). For beaded fibers (fluorescent

micro-agents), a polymer solution is prepared using 30.0% (29.8% polystyrene and 0.2% cou-

marin 6) weight-to-volume ratio in DMF. For rod-like particles (fluorescent and magnetic

micro-agents), the polymer solution is prepared using 45.0% (29.8% polystyrene, 15% Fe3O4,

and 0.2% coumarin 6) weight-to-volume ratio in DMF. Each polymer solution is homogenized

by stirring for 12 hours using a vertical roller (LLG-uniRoller 6, LLG-Labware, Germany).

Each solution (0.04 mL) is electrospun at once using an accelerating voltage of 14 kV, a feed

rate of 2.5 mL/h, and a needle tip-to-collector distance of 16 cm. Randomly oriented fiber

meshes are collected on a grounded aluminum foil at 24˚C and 22% humidity and dried at

room temperature for 12 hours to remove the solvent residue. Fluorescent and magnetic elec-

trospun fibers are obtained by grinding the fibers using a sonicator (model 2510, Branson,

USA) for 2 hours. Magnetic electrospun fibers are prepared for continuous image acquisition

using 1% (volume/volume) Tween 80 (P4780–100ML, Sigma-Aldrich, USA) in Milli-Q water.

Scanning electron microscopy of micro-agents

A scanning electron microscope (JSM-7200F, JEOL, Japan) is utilized to obtain micrographs,

which provide visual information about the morphology of the micro-agents. The microscopy

parameters for imaging micro-agents (i.e., beaded fiber and CeFlowBot) include magnifica-

tion, working distance, and acceleration voltage. The micrograph of beaded fiber is acquired

using 6000× magnification, 9.2 mm working distance, and 5 kV acceleration voltage (Fig 3

(a3)). For the micrograph of CeFlowBot, we use 150× magnification, 4 mm working distance,

and 15 kV acceleration voltage (Fig 3(b3)).
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Spectrum analysis of fluorophores

The spectrum analysis of the fluorophores utilized in the micro-agents is performed using a

spectrofluorometer (FP-8300, Jasco, Japan). The exogenous fluorophore is prepared for analy-

sis using a solution of 4 μg of coumarin 6 (442631–1G, Sigma-Aldrich, USA) in 700 μL

dimethylformamide (227056–1L, Sigma-Aldrich, USA) [12]. The autofluorescent resin is pre-

pared for analysis using a solution of 0.14 μL of IP-Dip resin (IP-Dip, Nanoscribe GmbH, Ger-

many) and 700 μL of Isopropyl alcohol (20842.312, VWR International, USA). Both solutions

are transferred into separate quartz cuvettes (CV10Q700F, Thorlabs, USA) for spectrofluo-

rometry using wavelength intervals of 1 nm.

Tissue preparation

The rat tissues used in the experiments are taken post-mortem from outbred albino naïve

female rats (RjHan: WI, Janvier Labs, France). Organs and biological samples are prepared

and disposed of according to the Cat.1 directive for animal bio-products. The rat organs are

fixed using a 10% buffered formalin solution (Formalin 10% Qpath Ref: 11699404 from VWR)

overnight. Thereon, the organs are immersed in 100% ethanol for 24h and finally stored dry at

4˚C. The rat tissues are accurately sliced with a scalpel and placed between two glass micro-

scope slides for flattening the surface. For static image acquisition experiments, the tissue

thickness is measured by introducing standard spacers of known thickness between the glass

microscope slides (Fig 1(a4)). For continuous visualization below the rat ileal wall, the tissue

thickness is measured by placing the spacers between a glass microscope slide and the micro-

fluidic channel.

The ex ovo chorioallantoic membranes are obtained from incubating White Leghorn chick

embryos at 38˚C and 65% humidity throughout the culturing process [12]. At the embryonic

day of development (EDD) 10, the egg contents are cracked into 60 mm cell culture Petri

dishes for imaging. According to the Dutch animal care guidelines, Institutional Animal Care

and Use Committee (IACUC) approval for chicken embryo experimentation is not necessary

unless hatching is expected. Moreover, only experiments with chick embryos of development

EDD14 and older need IACUC approval. The embryos used in this study are all in the early

stages of embryo development (EDD10). Fertilized chicken eggs used in this study are pur-

chased from approved poultry egg farms in the Netherlands.

Tissue damage by laser ablation

The laser beam is focused on the fixed tissue (rat liver dissection). Thereon, a Galvano scanner

(IntelliScan 14, SCANLAB GmbH, Germany) steers the laser beam along a straight line of

400 μm length with a speed of 50 mm/s, repeating this process five hundred times. The laser-

affected tissue is imaged using a confocal microscope (Zeiss LSM 880, Carl Zeiss AG, Ger-

many) with a 20× microscope objective (LD Plan-Neofluar, Carl Zeiss AG, Germany). The

average power of the femtosecond pulsed laser is characterized by the laser power percentage

(LPP), which is modulated by a beam attenuator (Ultrafast, Altechna, Lithuania). A photodi-

ode power sensor (S130VC, Thorlabs, USA) measures the average laser power at the focal

plane of a 10× microscope objective (M Plan Apo, Mitutoyo, Japan).

Results

Spectrum analysis of fluorescent micro-agents

The first step in two-photon microscopy of fluorescent micro-agents is the spectrum analysis

of fluorophores used for staining or fabricating micro-agents. The spectrum analysis of
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fluorophores provides the excitation/emission wavelength limits for fluorescence imaging. Fig

2(a1) shows the spectrum analysis of coumarin 6 (exogenous) used to stain electrospun fibers

(i.e., beaded fibers and rod-like particles). Coumarin 6 exhibits normalized fluorescence inten-

sity peaks (excitation/emission) of 461 nm and 505 nm, respectively. For validating the spec-

trum analysis of coumarin 6, electrospun fibers are imaged using a custom-built fluorescence

microscope [25] with excitation light wavelengths (450–490 nm) (Fig 2(a2) and 2(a3)).

The second fluorophore used in this study is a photoresist (IP-Dip) in the form of an auto-

fluorescent resin widely used for fabricating sub-millimeter components for microrobotics via

DLW [38]. Previous studies on excitation/emission spectra of IP-Dip resin provide the emis-

sion spectrum for a limited range of wavelengths [39, 40]. Here, we present the ultraviolet and

visible spectra of IP-Dip resin at varying excitation and emission wavelengths (Fig 2(b1)–2

(b3)). The IP-Dip resin show normalized fluorescence intensity peaks (excitation/emission) of

425 nm and 492 nm, respectively. In order to validate the spectrum analysis of IP-Dip, we per-

form the spectral decomposition of CeFlowBot using a commercial fluorescence microscope

(EVOS FL, Life Technologies, USA). The spectral decomposition permits the identification of

the excitation light wavelengths for fluorescence imaging. Fig 2(b4) shows that excitation light

in the wavelength range (355–551 nm) can generate fluorescence image acquisition with expo-

sure duration of 5 ms and 15 ms.

Fig 2. Spectrum analysis of fluorophores. (a1) Coumarin 6 (exogenous) (442631–1G, Sigma-Aldrich, USA) and (b1) IP-Dip resin (autofluorescence)

(IP-Dip, Nanoscribe GmbH, Germany). Fluorescence microscopy of electrospun fibers with the following types of morphology: (a2) beaded fibers and

(a3) rod-like particles. (b2)-(b3) 3D and contour plots showing the spectrum of IP-Dip resin at varying excitation and emission wavelengths. (b4)

Spectral decomposition of CeFlowBot (made from IP-Dip resin) using a fluorescence microscope (EVOS FL, Life Technologies, USA).

https://doi.org/10.1371/journal.pone.0289725.g002
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Two-photon microscopy of micro-agents

The spectrum analysis and spectral decomposition of fluorescent micro-agents determine the

wavelength limits of excitation/emission light for fluorescence image acquisition. However, it

is often difficult to predict the two-photon excitation spectra from one-photon data because of

the different quantum mechanical backgrounds [41]. In order to experimentally validate two-

photon microscopy of fluorescent micro-agents characterized by one-photon excitation/emis-

sion spectra, we set the photomultiplier at maximum gain. The laser power percentage (LPP)

is gradually increased until obtaining image formation. Our results show that a minimum of

10% LPP (6 mW average power at 15 MHz repetition rate) is required for visualization of the

structural morphologies of micro-agents. Fig 1(a2) and 1(b3) show two-photon image acquisi-

tion of both micro-agents using 20% LPP (35 mW average power).

Two-photon microscopy is frequently applied for three-dimensional visualization of bio-

logical tissue [29]. Here, we test the two-photon microscopy to enable three-dimensional

visualization of micro-agents by conducting Z-stacking experiments (Fig 3(a1) and 3(b1)).

The beaded fiber and a scaled version of CeFlowBot (scale factor of 0.5) are imaged with 50×
and 10× microscope objectives and spacing steps of 1 μm and 5 μm, respectively. The Z-

stacking images, which are obtained using 20% LPP, are analyzed through a 3D slicer soft-

ware for three-dimensional reconstructions (Fig 3(a2) and 3(b2), respectively) [42]. Further-

more, scanning electron microscopy of both micro-agents is included to validate the three-

dimensional reconstructions and provide further morphology details (Fig 3(a3) and 3(b3)).

Two-photon microscopy is experimentally validated for two-/three-dimensional visualiza-

tion of fluorescent micro-agents. Yet, experiments involving biological tissue require further

analysis regarding laser-tissue interaction to reduce the risk of side effects under in vitro and

in vivo conditions.

Laser-tissue interaction

Visualization of micro-agents below biological tissue using a near-infrared femtosecond

pulsed laser holds the risk of tissue damage by laser ablation and cellular necrosis under live

imaging conditions [43]. Here, we present a qualitative study of laser-tissue interaction to

identify the minimum average power to generate tissue damage by laser ablation. Current

studies on two-photon microscopy suggest average laser powers in the order of 100 mW (at 80

MHz and pulse width from 1 fs to 10 ns) to avoid optical breakdown [44]. Here, we analyze

the tissue damage by laser ablation generated by our femtosecond pulsed laser (15 MHz repeti-

tion rate and 230 fs pulse width). Fig 3(c) shows the average power of the femtosecond pulsed

laser by varying the laser power percentage (LPP).

The tissue damage by laser ablation is a photo-thermal effect that depends on the optical

properties of tissue (e.g., absorption and reduced scattering coefficient) [45]. We use a forma-

lin-fixed tissue (rat liver dissection) for laser ablation experiments. Three different LPPs

(LPP = 40%, 50%, 60%) are employed with a spacing of 50 μm between lines to analyze the tis-

sue damage by laser ablation (Fig 3(d1)). The laser-affected tissue is imaged using a confocal

microscope for analysis. A visual inspection shows that 40% of LPP does not generate tissue

damage by laser ablation compared to 50% and 60% LPPs (Fig 3(d2)). Such a result suggests

that experiments along with biological tissue must be carried out using an LPP� 40% (85 mW

average power). Fig 3(d3) shows the Z-stacking (10 μm depth) within a region of interest con-

taining laser-affected tissue corresponding to 50% and 60% LPP. It is worth noting that there

is an increase in the absorption and reduced scattering coefficients of tissue after formalin fixa-

tion [46]. Thus, further experiments on laser-tissue interaction are required to validate our

microscope in clinically-relevant scenarios.
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Fig 3. Z-stacking, 3D reconstruction, and scanning electron microscopy of micro-agents. (a1)-(a3) beaded fiber and (b1)-(b3) a

scaled version of the bio-inspired structure (CeFlowBot), respectively. (c) Average power of femtosecond pulsed laser (pulse width

of* 230 fs and repetition rate of 15 MHz) at the focus of the laser beam. (d1) Illustration of the laser-tissue interaction using three

laser power percentages (LPPs): 40%, 50%, and 60% with the corresponding average powers of 85 mW, 92 mW, and 97 mW,

respectively. (d2) Confocal microscopy of laser-affected tissue (rat liver dissection). (d3) Z-stacking of a region of interest (ROI)

containing laser-affected tissue corresponding to 50% and 60% LPP. (e1) Raw images acquired from stain-free imaging of formalin-

fixed rat tissues and ex ovo chorioallantoic membrane using second-harmonic generation. (e2) Magnified view of the region of

interest within the raw image. The red arrows indicate renal collecting tubules and vasculatures containing erythrocytes in rat kidney

cortex and ex ovo chorioallantoic membrane, respectively.

https://doi.org/10.1371/journal.pone.0289725.g003
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In order to test the microscope under ex vivo and ex ovo conditions, four biological tissues

are visualized using a stain-free approach and 20% LPP (35 mW average power) (Fig 3(e)).

Stain-free imaging of biological tissue includes autofluorescence and second-harmonic genera-

tion according to excitation/emission spectra of proteins or cells in biological tissue [47]. Fig 3

(d) shows the micrographs of fixed tissues and ex ovo chorioallantoic membrane containing

erythrocytes within the vasculatures. Two-photon microscopy of biological tissue is tested

using the maximum gain of the multiplier and gradually decreasing the value of LPP from 40%

to 5%. Our results show that using an LPP� 10% (6 mW average power) does not trigger the

fluorescence intensity required for image formation.

Visualization of micro-agents below fixed tissue

The spectrum analysis of fluorescent micro-agents and the qualitative study of laser-tissue

interaction pave the way for the visualization of micro-agents along with biological tissue. The

two-photon microscope used in this study has a single channel for fluorescence acquisition.

Thus, the visualization of micro-agent and tissue relies upon the difference between the inten-

sity of fluorescence signals. Contrast analysis provides information about the micro-agent and

physical surroundings by extracting contour, gradient, and intensity maps from the acquired

images (Fig 4). The CeFlowBot is initially imaged above of an ex ovo chorioallantoic mem-

brane to illustrate our method (Fig 4(a)). Two microscope objectives (5× and 10×) are utilized

to modify the resolution and analyze the influence of the depth of field on the generation of

fluorescence emission light (Fig 4(a1)). We observe that using the 10× microscope objective

increases the image resolution allowing for detailed visualization of CeFlowBot morphology.

Fig 4(a2) shows the normalized fluorescence intensity of CeFlowBot and ex ovo chorioallantoic

membrane along a longitudinal line. The depth of field of the 10× microscope objective

(3.5 μm) compared to the 5× microscope objective (14 μm) allows for more localized excitation

of CeFlowBot, resulting in increased fluorescence emission light generation (Fig 4(a2)). Con-

trast analysis allows for the identification of CeFlowBot and bifurcated blood vessel (contain-

ing erythrocytes) from the ex ovo chorioallantoic membrane (Fig 4(a3)).

Experiments to visualize CeFlowBot below rat ileal wall (fixed) are carried with a maximum

laser power percentage (LPP) of 40% to reduce the risk of tissue damage and demonstrate the

potential of two-photon microscopy towards ex vivo and in vivo applications. Fig 4(b1) and 4

(b2) show the visualization of CeFlowBot below the rat ileal wall using 5× and 10× microscope

objectives. Our results reveal the structural morphology of CeFlowBot and provide visualiza-

tion of the physical surroundings (e.g., muscularis propria) with penetration depths over

400 μm. For validating two-photon microscopy of both types of micro-agents, electrospun

fibers are also imaged below formalin-fixed tissues with different reduced scattering coeffi-

cients (rat brain tissue and kidney cortex) (Fig 4(c1) and 4(c2)). The rat brain tissue has a

reduced scattering coefficient much higher than other tissue samples throughout spectra (450–

750 nm) [48]. Thus, the fluorescence emission light tends to scatter along the tissue sample,

reducing the output image quality. The sample for visualization of electrospun fibers below rat

brain tissue is prepared for imaging with a maximum penetration depth of 250 μm. Fig 4(c1)

shows a detailed visualization of electrospun fibers (i.e., beaded fibers and rod-like particles)

morphology below rat brain tissue. For imaging experiments of electrospun fibers along with

rat kidney cortex, the samples are prepared with a maximum penetration depth of 800 μm. Fig

4(c2) shows two-photon microscopy and contrast analysis of electrospun fibers below the rat

kidney cortex. Our results show that the optical scattering increases due to the penetration

depth, yet the fundamental morphology of electrospun fibers is visualized via two-photon

microscopy.
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The images acquired from electrospun fibers below fixed tissue do not reveal further infor-

mation about the physical surroundings since the fluorescence intensity of electrospun fibers

is greater than the autofluorescence and second-harmonic generation in biological tissue. An

appealing approach to overcome the challenges of using a single photomultiplier tube is to

incorporate additional dichroic mirrors along with photomultiplier tubes for color-coded visu-

alization [29]. Although our experimental validation platform has a single photomultiplier

channel, our results uphold the visualization of micro-agents along with biological tissue via

Fig 4. Contrast analysis of the two-photon microscopy images containing micro-agents and biological tissue. (a) Two-photon microscopy of

CeFlowBot and a bifurcated vessel containing erythrocytes from ex ovo chorioallantoic membrane. (a1) Raw images acquired with 5× and 10×
microscope objectives. (a2) Normalized fluorescence intensity of micro-agent and a bifurcated blood vessel along a longitudinal line. (a3) Contrast

analysis to identify CeFlowBot and a bifurcated blood vessel. Two-photon microscopy and contrast analysis of CeFlowBot below rat ileal wall (fixed)

using 5× (c1) and 10× (c2) microscope objectives. Two-photon microscopy and contrast analysis of electrospun fibers below rat brain tissue (fixed) (b1)

and rat kidney cortex (fixed) (b2). The colored arrows indicate structural morphologies that are visible below fixed tissue.

https://doi.org/10.1371/journal.pone.0289725.g004
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two-photon microscopy. Furthermore, we show that the micro-agents can still be detected

using two-photon microscopy, displaying fundamental morphology despite changes in pene-

tration depth and optical properties of fixed tissue.

Continuous visualization of magnetic electrospun fibers

Static image acquisition of micro-agents below formalin-fixed tissue is the first step to bridging

the gap between two-photon microscopy and microrobotics. However, the application

domains of microrobotics require continuous imaging tools to localize micro-agents and verify

their functionality. Here, we use two-photon microscopy for image acquisition of magnetic

electrospun fibers at one frame per second in the field of view of 135 × 135 μm2 (Fig 5). A solu-

tion containing magnetic electrospun fibers is perfused into a microfluidic channel with a

height of 187 μm made from polydimethylsiloxane (PDMS) [12]. Thereon, an electromagnetic

coil is utilized for actuating the magnetic fibers (Fig 5(a)). In order to elucidate continuous

imaging of micro-agents, we devise two experiments for motion analysis using Lucas-Kanade

optical flow as vector fields [36, 37]. The first experiment shows two magnetic electrospun

fibers (micro-agent 1 and 2) within a microfluidic channel (Fig 5(b)). The micro-agents are

oriented and pulled according to the magnetic field and gradients. During the experiment, we

show the attachment of both micro-agents due to electrostatic interaction. Electrostatic inter-

actions are caused by residual charges embedded within the surface or volume of the electro-

spun fibers [49]. The micro-agents are detached once the magnetic field turns from a negative

to a positive value, demonstrating the visualization of micro-agent functionalities via two-pho-

ton microscopy.

The second experiment is carried out by placing fixed tissue (rat ileal wall 600 μm thick) on

top of the microfluidic channel and covering it with a glass microscope slide (Fig 5(c)). The

results of this experiment uphold continuous imaging and actuation of two magnetic electro-

spun fibers below formalin-fixed tissue. In particular, fixed tissue is a dispersive media show-

ing increments of reduced scattering coefficient compared to fresh tissue [46]. Therefore,

visualization of electrospun fibers below fixed tissue requires a higher laser power percentage

(LPP = 40%) for image formation compared to the previous experiment without tissue

(LPP = 10%). Despite the increase in scattering, our results permit us to identify the morphol-

ogy of electrospun fibers while providing continuous image acquisition for detection and

visual tracking of micro-agents below biological tissue. The experiments are performed with

an LPP� 40% to reduce the risks of tissue damage by laser ablation.

One of the challenges observed in the experiments is the frame acquisition rate (1 fps),

which imposes a limitation on the analysis of micro-agents with high dynamics. Previous in
vivo studies have demonstrated that micro-agents can move at relatively low velocities

(< 10 μm/s) under magnetic guidance [10, 50]. Drawing upon this comprehension, our two-

photon microscope holds the potential for effective in vivo visualization. Furthermore, the

incorporation of optical and optomechanical technologies, such as polygonal mirrors and res-

onant scanners coupled with optical fibers, can improve the scan rate of our two-photon

microscope and enable real-time imaging [13, 51].

Conclusion

This study introduces two-photon microscopy as an alternative visualization tool in microro-

botics to overcome the penetration depth limitations of optical microscopy techniques fre-

quently used in the application domains of microrobotics (i.e., widefield, brightfield, and

confocal microscopy). This study demonstrates the use of two-photon microscopy for imaging

micro-agents below formalin-fixed tissue. We present a qualitative study of laser-tissue
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Fig 5. Actuation, continuous visualization, and motion analysis of magnetic electrospun fibers. (a) Experimental validation platform for two-

photon image acquisition of micro-agents below biological tissue. (b) Visualization of magnetic electrospun fibers within a microfluidic channel using

10% laser power percentage (LPP) (6 mW average power). (c) Visualization of magnetic electrospun fibers below fixed tissue (rat ileal wall) using 40%

LPP (85 mW average power). The experiments are carried out with a 10× microscope objective, a scanning speed of 50 mm/s, and a sampling rate of 10

MS/s. The vector field colored in red represents the motion analysis. The continuous image acquisition experiments are shown in S1 Video.

https://doi.org/10.1371/journal.pone.0289725.g005
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interaction to provide information about the minimum average power for tissue damage by

laser ablation. Our results display two-photon image acquisition of micro-agents with a spatial

resolution of 1 μm and up to 800 μm penetration depth. Besides, we validate continuous imag-

ing of micro-agents with a penetration depth of 600 μm to showcase the potential use of two-

photon microscopy for visual tracking the micro-agents below biological tissue. Two-photon

microscopy can enable visualization of micro-agents under in vivo and in vitro conditions by

overcoming the limitations of existing optical imaging techniques for microrobotics.

Supporting information

S1 Video. Continuous visualization of magnetic electrospun fibers. Supplementary video

showing the experiments on continuous visualization of magnetic electrospun fibers within a

microfluidic channel and below fixed tissue (rat ileal wall).
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