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Abstract— Micro-surgical robotic systems are gaining promi-
nence in minimally invasive surgery within the medical field.
However, accurately tracking the position of the moving agents
at the micro-scale remains a significant challenge, particularly
for multi-agent systems operating in cluttered and unknown
environments. Traditional image analysis methods can falter
when confronted with issues such as mutual and obstacle
occlusion, especially in dynamic and unstructured scenarios.
In order to address this issue, this study introduces a graph-
based multi-agent 3D tracking algorithm for a micro-agent
control system. This algorithm integrates image information
with the control inputs used to navigate the micro agents.
We combine the power of Convolutional Neural Networks
and Graph Neural Networks to effectively extract features
from image sources, and combine them with historical data
and control inputs. The primary novelty of this algorithm is
its ability to make predictions when the target is occluded
in the 2D detection results. The proposed system achieved a
tracking error of 0.15 mm, outperforming standard model-
based tracking techniques.

I. INTRODUCTION

Untethered micro-agents have showcased significant ef-
fectiveness across various domains, including minimally-
invasive surgery, constructing microstructures, precise han-
dling or positioning of objects, and approaching challeng-
ing locations to accomplish designated tasks [1], [2]. The
accurate control and maneuverability of the micro-agents
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in confined spaces offer advantages in safeguarding sur-
rounding tissues from potential damage. The efficacy of
the micro-agent systems heavily depends on precise track-
ing mechanisms to provide micro-agent positions, enabling
controllers to define appropriate control inputs. The absence
of accurate position feedback poses challenges to closed-
loop controllers, leading to potential errors and complicating
system control. However, achieving real-time and robust
computation of micro-agent locations remains a significant
challenge.

The transition from standard image-based tracking to ma-
chine learning techniques in the field of object tracking has
been driven by the limitations of traditional methods and the
advancements offered by neural network-based techniques.
Traditional image processing dominated the field of object
detection previously. Such approaches relied on distinct
image attributes, like color or shape, to anticipate object
locations in a 2D plane [3], [4]. Wang et al. introduced
methods involving the comparison of consecutive images
to discern moving objects, albeit contingent upon a static
background [5]. Similarly, the work proposed by Cheung and
Kamath recurrently updates a single background model based
on input frames [6]. However, these algorithms struggled
with dynamic backgrounds and changes in lighting and were
limited in handling dynamic scenarios effectively [7].

In recent years, Convolutional Neural Networks (CNNs)
have emerged as a dominant paradigm in object detection
tasks due to their ability to learn features from raw data [8]
automatically. Various CNN architectures such as Faster R-
CNN, YOLO (You Only Look Once), and SSD (Single
Shot MultiBox Detector) have been proposed to address
different aspects of object detection, including accuracy,
speed, and robustness [9], [10], [11]. Object detection serves
as an important precursor to object tracking, providing ini-
tial bounding boxes around objects of interest, where the
association step between different frames during tracking
is needed. Deep Simple Online and Realtime Tracking
(SORT) improves the object tracking performance by adding
a Kalman filter-based motion model [12]. Despite the re-
markable progress achieved by CNN-based methods in object
detection, challenges remain in handling occlusions, scale
variations, and cluttered scenes, prompting ongoing research
into novel network architectures and training strategies. The
emergence of Graph-based Neural Networks (GNNs) has
garnered significant attention, capitalizing on their ability to
discern interrelationships among nodes and edges [13]. Gori
et al. were pioneers in outlining the concept of GNNs in
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Fig. 1: Overview of the proposed pipeline: YOLO Version 5 (YOLOv5) is initially employed to predict 2D detections from
input images. Control inputs (I1, I2, ..., I9) are currents to the electromagnetic system are obtained. We combine detection
results (blue) with the control inputs (yellow) to form a graph. The network architecture of the proposed graph neural network
consists of Graph Attention Neural Networks (GAT), Long Short Term Memory (LSTM), and Multi-Layer Perceptron (MLP).
The output of the GAT, encoded node information, is passed to LSTM which can make the temporal prediction. Afterward, a
multi-layer perception will map the temporal-encoded information to a 3D location. Meanwhile, a Softmax function updates
the attention matrix by using the final outputs.

2005, a concept further developed by Scarselli et al. [14],
[15]. Additionally, Zhang et al. have initiated exploration
into the use of GNNs for object tracking, leveraging their
capacity to discern interactions among targets for precise
predictions [16]. However, current methodologies predom-
inantly focus on spatial-temporal relationships, overlooking
application- and system-specific relationships.

This paper introduces a novel GNN-based real-time object
tracking algorithm, designed specifically for wireless mag-
netic multi-agent systems at the microscale. Our approach
utilizes dual images and control inputs of the micro-agent
system as the inputting data to forecast the 3D locations of
micro-agents. By integrating a CNN with an attention-based
GNN, we establish a novel tracking network proficient in 3D
tracking based on disparate 2D image viewpoints [17]. While
CNN scrutinizes visual features from input images, the GNN
predicts target locations leveraging CNN outcomes, histor-
ical data, and control inputs. This fusion harnesses visual
information alongside physical inputs, augmenting prediction
accuracy. The GNN assumes a pivotal role during occlusion
events and unexpected scenarios, comprehending physics
models and computing frame features to infer reliable pre-
dictions. This paper uses micro-sized particles steered in 3D
space by a set of nine electromagnetic coils. For this reason,
we use the currents driving the electromagnetic coils as the
control input for our tracking algorithm. Our contributions
are as follows:

• We propose a novel integrated framework with CNN
and GNN, to learn 2D to 3D mapping at the micro-
scale.

• We add the micro-agent control input (e.g, the current

input to the robot system) to increase the robustness of
the predictions.

• We prove the effectiveness of the proposed method by
evaluating the 3D error rates concerning the ground
truth. The results are compared against other GNN-
based algorithms.

II. METHODS

Our objective is to predict the 3D location of micro-agents
given a sequence of previous graph snapshots containing 2D
location and control inputs. The data can be characterized as
a dynamic graph (G = (V, E , t)) where V contains the node
features (X ) for each of N nodes at timestamp (t). E ⊆ V×V
is the edge set which demonstrates the connection between
each node. We can assign different weights to the edge to
define the relationship between nodes. The task at timestamp
(t) is, given the most recent timestamps Vt−L, ...,Vt−1 with
length L, to predict the current agent location (Rt ∈ ℜN×3).

In order to track the 3D location of the micro-agents, the
proposed system utilizes a combination of CNN, and GNN
with Long Short Time Memory (LSTM) layers to exploit
spatial-temporal relationships in the data and predict the 3D
coordinates in the world frame as the output. The architecture
of the proposed networks is summarized in Figure 1. Our
approach considers edge features in the Graph Attention
Neural Networks (GAT) layers, passing them to the LSTM
layer to extract temporal information. Finally, a softmax
function updates the weights of the graph edges based on
attention scores.

2D Object Tracking: Two images, taken from the robot
workspace’s top view and side view, serve as input to the 2D
object detector. YOLO version 5 (YOLOv5), an improved
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version of YOLO, is a single-stage object detection model
with CSPDarknet53 as the backbone [18], [10]. In order to
balance accuracy and inferencing speed, we chose the model
YOLOv5n, a smaller version among the YOLOv5 family, to
process the image and locate the bounding box in the 2D
frames. The output from the object detector is given by

Ob = [B0, ...,Bi]T , (1)

Bi = [bix, b
i
y, b

i
w, b

i
h], (2)

where Ob is the set of bounding boxes, and Bi represents
the i-the bounding box with coordinates (bix as center (x)
pixel location, biy as center (y) pixel location, biw as width,
and bih as height).

Graph Structure: Among all the control inputs of the
electromagnetic system, we choose the current input to the
system as it directly drives the micro-agents. We combine
control information from the robot system and image frames
to form the graph, as shown in Figure 1. It consists of 11
nodes with two different node classes: two 2D location nodes
and nine robot control nodes. Blue nodes contain the location
values of the 2D bounding boxes calculated by the object
detector in the top and side view images. The remaining
yellow nodes represent the control input to the microrobot
system, i.e., in our case, there are nine current values used
to actuate the nine coils respectively.

Graph Attention Neural Networks: Graph Attention
Neural Networks (GATs) use self-attention to assign im-
portance to each node’s neighbors and combine their fea-
tures [17], [19]. This allows GATs to handle complex and
large graphs without depending on the graph structure. The
graph convolution operation from layer (l) to layer (l + 1)
is calculated by:

h
(l+1)
i = σ

 ∑
j∈N (i)

1

cij
AtW

lh
(l)
j

 , (3)

ReLU(x) = max(0, x), (4)

where N (i) is the set of its one-hop neighbors, cij =√
|N(i)|

√
|N(j)| is a normalization constant, σ is the

Rectified Linear Unit (ReLU) activation function, At is the
attention score calculated from the final outputs and W l is a
shared weight matrix for node-wise feature transformation.

LSTM: Employing an LSTM layer, a sophisticated variant
of recurrent neural networks, proves instrumental in the over-
arching architecture, seamlessly integrating into the model
to meticulously capture and discern the intricate temporal
relationships inherent in the dynamic input graphs [20].

Model Output: The output of the model is 3D locations
(Rt ∈ ℜN×3) of N agents at time t.

Softmax Function: After obtaining the agent locations
from Multi-layer Perceptrons (MLP), we apply another MLP
layer to convert the Rt ∈ ℜN×3 to At ∈ ℜN×10. Sub-
sequently, attention scores are computed using the softmax
function, which calculates the probability pi for each element

ati ∈ At as follows:

pi =
ea

t
i∑N

j=1 e
at
j

, (5)

where e is the base of the natural logarithm (Euler’s number),
and the denominator is the sum of the exponentiated values
of all elements in the input vector. These attention scores
are then multiplied with the corresponding node features to
emphasize their significance for subsequent calculations.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to test the performance of the proposed method,
we use BatMag, an electromagnetic system to perform the
experiments with two moving agents in Figure 2 [21]. The
BatMag electromagnetic system allows independent 3D con-
trol of pairs of identical and non-identical spherical micro-
agents. The motion of the micro-agents is induced by mag-
netic fields and gradients generated by nine electromagnetic
coils, positioned to satisfy specific workspace accessibility
and force exertion constraints.

The details of the experimental setup are listed below:
• Electromagnetic system: The system comprises nine

Vacoflux-core coils, configured with all coils positioned
30 mm from a shared center — eight at the cube’s
corners and the ninth at the bottom as shown in the
computer-aided design (CAD) drawing in Figure 2.
Third-party servo drives (Elmo Motion Control, Petach-
Tikva, Israel) regulate all electromagnetic coils.

• Imaging system: The imaging configuration consists of
two Grasshopper 3 cameras (Teledyne FLIR LLC, USA)
capturing side and overhead images. Operating at a

Top Camera 

Workspace 6 mm

0.5 mm

Side Camera 

Workspace

Coil

Coil

30 mm

Fig. 2: Electromagnetic system: BatMag consists of nine
coils for actuating the micro-agents. On the left side, there
is an image of BatMag with two cameras installed on the
top and side of the system. In the top-right corner is a 3D
computer-aided design (CAD) drawing of BatMag with the
workspace in the middle. In the bottom-right corner, there
is a drawing showing two micro-agents moving within the
workspace. The currents driving the nine electromagnets and
the 2D images retrieved by the cameras are the inputs of our
3D tracking system.
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resolution of 2048 × 2048 pixels, equivalent to a pixel
size of approximately 10 µm, these cameras record at
a rate of 10 Hz.

• Agents: The magnetic agents employed in the experi-
ments are 0.5 mm diameter AISI 420C stainless steel
spheres.

• Test environment: All experiments were conducted in
M1000 silicon oil with a viscosity of 1 Pas.

To compare with the previous study by Basualdo et al.,
we replicate the experiment outlined in [22]. The current
experiment involves actuating two steel spheres using the
magnetic field within the workspace to predefined targets.
The input data for the 3D tracking algorithm consists of
visual information captured by the imaging system from both
the top and side views, along with the current inputs to the
micro-agent system.

B. Data Collection and Training

The quality of the dataset significantly influences the
efficacy of a neural network model. The data collection
process can be categorized into two main components: the
collection of the image datasets and the currents driving the
electromagnets.

For the image collection, the previously mentioned imag-
ing system is utilized to record three ten-minute videos of the
movement of two spheres within the electromagnetic system.
In order to ensure the randomness of the recorded trajecto-
ries, multiple arbitrary targets located across the workspace
are chosen for the micro-agent to approach during the data
generation phase. These videos are subsequently segmented
into 18000 images because we record the video at 10 frames
per second. Afterward, the images are allocated into training,
validation, and testing datasets at ratios of 0.6, 0.3, and 0.1,
respectively.

The collection of micro-agent-related information is reg-
istered by the BatMag system during the micro-agents’
movement. The current input to the electromagnetic sys-
tem can be extracted upon retrieving the necessary data.
This information is then combined with the visual features
derived from the collected images to construct the graphs.
Concurrently, by using the locations of 2D bounding boxes
labeled manually, we calculate the 3D location using the
triangulation method [23]. This information serves as the
ground truth for training the neural networks.

In order to bolster the system’s robustness, we train under
occlusion or misdetection scenarios. Occlusion occurs when
the two micro-agents overlap within a single view, causing
partial visibility of the micro-agents in the images. Misdetec-
tion arises when the object detector identifies fewer objects
in the image frame than are present. We randomly remove
some existing detections to simulate misdetection scenarios
during experimentation. Additionally, we deliberately induce
occlusion ten times during data collection. This methodology
empowers neural networks to acquire predictive capabilities
when camera views are obscured or detection results are
flawed. The training process is elaborated in Algorithm 1.
During the training, we separate the graph dataset (D)

Algorithm 1 Training Algorithm

Require: dataset D composed by data sequences of length
l of N agents motions
initialize dataset D̂ = {}
for sequence in D do ▷ Preparation steps

initialize batch Tensor b = {}
for i = 0 . . . (l − lw) do

extract window W of length lw < l
Append window to the batch tensor b← b ∪ {W}

end for
Append batch to the dataset D̂ ← D̂ ∪ {b}

end for
for i = 1 . . . epochs do ▷ Training steps

for b in D̂ do
Extract visual features over the images in b
Build the graphs structures gb over the batch and

windows
Initialize attention A = [1]N×N

for W in b and g in gb do
compute features h ← GNN(g,A) for each

element in the window
hw ← LSTM(W,h), hw ∈ RN×F

p̂←MLP (hw), p̂ ∈ RN×3

Update Attention A← Softmax(MLP (p̂))
end for
Compute MSE loss L(p, p̂)
Update model weights based on L

end for
end for

into a continuous sequence of length (l), then we apply a
moving window (W ) with length (lw) to graph sequences to
assign previous graphs together used for prediction. During
each epoch, we first build graphs (gb) using the visual and
control data in the batched dataset. Then, for each window,
we compute the feature using GNN for each graph inside
the window. Then, we stack the outputs from the GNN
to LSTM to get a temporal prediction. Finally, a multi-
layer perception (MLP) layer is applied to compute the 3D
location. Meanwhile, the output is passed through a Softmax
function to get the probability of updating the attention
matrix (A).

C. Experiment and Comparisons

We assess the efficacy of the proposed 3D tracking method
under various circumstances, including occlusion and mis-
detection. Further, we provide an ablation study to validate
our design choice by comparing it with the variations of the
proposed neural network architecture.

1) 3D tracking performances: In our evaluation, we as-
sess the effectiveness of the proposed algorithm across 60
sequences of length 100 featuring two spheres navigat-
ing a workspace without occlusion. As detailed in Fig-
ure 4(a), the resulting tracking error, corresponding to the
Euclidean distance between predicted and ground truth val-
ues, varies in the range [0.04 − 0.28] mm, with an av-
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Fig. 3: 3D plot on the left indicates the 3D trajectory of the two moving micro-agents from t = 0 s to t = 60 s. The black
circles mark the start and end points, and the white circles are four intermittent points along the trajectory. The red dots
indicate the trajectory of agent 1 while S1 and E1 are the starting and ending points, respectively. Blue dots indicate the
trajectory of agent 2 while S2 and E2 are the starting and ending points, respectively. The orange and light blue dots are
the predicted trajectories by the proposed neural network model of agent 1 and agent 2 respectively. On the right side of
the figure, we provide four image frames captured at four different timesteps.
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Fig. 4: 3D tracking performance of proposed method against GCN- and LSTM-only method: (a) 3D tracking error when
there is no misdetection, (b) 3D tracking error when 20% of 2D detection frames are missing (c) 3D tracking error when
we stop providing 2D detection results at t = 0 s and resume at t = 4 s.

erage of 0.15 mm. In Figure 3, we depict a representa-
tive trajectory of two moving agents from t = 0 s to
t = 60 s. The red and blue dots denote the actual mea-
surements and the orange and light blue dots indicate the
predicted values from the proposed neural network model.
The initial coordinates are (−0.54, 2.31,−2.75) mm and
(1.71,−2.99, 2.81) mm for micro-agent 1 and micro-agent
2 respectively, with ending points at (0.82, 4.52,−3.56) mm
and (−3.36,−4.40, 1.59) mm. On the right side of Figure 3,
we provide four image frames captured at t = 10 s, 20 s,
30 s, and 40 s along the trajectory from the top and side
views of the imaging system.

2) 3D Localization with Missing Detection: To further
evaluate the robustness of the proposed GNN model, we
aim to showcase its performance in scenarios where 2D
detections are absent. Various factors such as errors in
the 2D detector’s output, communication failures between
the imaging system and the main computer, or accidental
obstruction of the camera’s view can result in the loss of 2D

detection. During the experiment, we intentionally removed
some of the detection outputs to emulate missing object
detections. As depicted in Figure 4(c), the initial 3D tracking
error is recorded at 0.23 mm. When the detection results
start to diminish at t = 0 s, the error only escalates to
0.65 mm when frames are missing for 4s consecutively.
Subsequently, the error begins to decline upon recovery of
the detection outputs to the neural network at t = 4 s. The
tracking error evolution where the detection is omitted at the
t = 8 s. This experiment highlights the model’s capability
to maintain stable tracking performance even in the absence
of 2D detection, showcasing its resilience and adaptability in
real-world scenarios characterized by intermittent detection
failures.

3) Ablation Study: Meanwhile, we undertake an experi-
mental investigation into variations of the proposed neural
network architecture, including models based exclusively
on GCN or LSTM components. To ensure methodologi-
cal consistency, all models undergo training with identical
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datasets. Subsequently, their performance is evaluated using
the same dataset used in the previous experiment by using 60
sequences. The 3D tracking error, with and without misde-
tection, is illustrated in Figures 4(a) and 4(b) respectively.
Comparing the tracking performance between LSTM and
GCN-only models against our proposed integrated GAT-
LSTM approach unveils a substantial enhancement in accu-
racy and stability for predicting both temporal and spatial
relationships. Through a deliberate omission of 20% of
the 2D detection results, our integrated approach yields a
tracking error of 0.43 mm, outperforming the 0.57 mm
error of the GCN-only model and the 0.54 mm error of
the LSTM-only model. This improvement suggests that the
synergy between LSTM’s ability to capture temporal rela-
tionships and important features in time series effectively and
GAT’s spatial representation in our approach significantly
contributes to strengthening the robustness, surpassing the
individual contributions of each model in isolation.

IV. CONCLUSION

In this paper, we have introduced an innovative 3D track-
ing algorithm that integrates LSTM networks with GNNs to
locate magnetic-actuated micro-agents in real-time scenarios.
Our proposed method offers significant advancements in
providing the control system with precise and robust micro-
agent localization, even in the face of unexpected challenges
such as misdetection and object occlusion. By leveraging the
combined power of CNNs, GNNs, and LSTM networks, our
model adeptly captures intricate spatial-temporal patterns in-
herent in location-control graphs, thus enhancing the overall
tracking performance. The low 3D tracking error achieved
by our model underscores its accuracy in tracing micro-
agents during normal agent movement. Moreover, the ability
of estimate micro-agent locations accurately during occlu-
sion events highlights its robustness in handling unexpected
situations, thereby further validating its utility in dynamic
environments.

Looking forward, we envision extending our algorithm to
handle scenarios involving an increased number of objects,
thereby addressing more complex tracking challenges in
dynamic environments. By scaling our model to accommo-
date multiple objects simultaneously, we aim to enhance its
versatility and applicability across a broader range of real-
world scenarios. Additionally, further research efforts will
focus on testing our algorithm using control inputs, enabling
comprehensive validation of its performance under diverse
operational conditions.
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