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Abstract

Using the principles of origami folding, shape-changing structures and devices can be constructed. To
control the shape-change of these devices magnetic actuation can be used. There are existing methods
for simulating origami structures, but none of them incorporate magnetic actuation. This thesis presents
a method for analyzing magnetically-actuated shape-changing origami devices. The modeling framework
uses novel formulations to decompose a magnetic load to be compatible with a bar-and-hinge model. The
formulations developed work for parallelogram and triangular panels, two panel shapes that are commonly
used in origami structures. This allows for a large variety of origami structures to be simulated. An iteration
algorithm is implemented to find an equilibrium between the magnetic torques of the magnets and the internal
forces of the origami structure. A bar-and-hinge model is used to determine the deformation of a magnetic
origami structure in a uniform magnetic field. The model is validated with multiple two-panel origami test
samples and a six-panel waterbomb pattern sample. The samples are constructed from 3D-printed PLA
panels connected with bendable thin steel hinges and neodymium magnets. The deformation of the test
samples in a uniform magnetic field is compared to the simulations obtained from the magnetically actuated
bar-and-hinge model. For the two-panel samples, the final deformation obtained from the model was within
4% of the experimental results. For the waterbomb pattern the difference was 8.5%. Two examples of origami
patterns with a larger number of panels and hinges have been simulated. One example is a ten-panel Miura
ori pattern made with parallelogram and rectangular panels. The other is a Huffman waterbomb pattern
with seventeen panels that combines square and triangular panels. The model still has limitations, it only
works for triangular and parallelogram panel shapes and in a static uniform magnetic field. Even with the
limitations the modeling framework shows promising results and has opportunities for future expansion.
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1 Introduction

Minimally invasive techniques are being developed to make medical procedures as low-risk and safe as
possible. The goal of minimally invasive surgery (MIS) is the reduction of trauma to the patient’s body.
This can be achieved by minimization or even elimination of surgical incisions [1]. As a result, the tools
used for MIS need to be as small and compact as possible. Smaller surgical devices allow the surgeon to
operate on parts of the body that are hard to reach and without causing significant physical trauma to the
patient. The reduced physical trauma results in additional benefits for the patient: lower incidence of post-
surgery complications, reduction of pain, quicker recovery, shorter length of hospital stay, minimal cosmetic
disfiguration, decreased psychological impact, and overall improved quality of life [1]. A large challenge for
devices and tools used in MIS is that the size of the device needs to be minimized without compromising its
function.

One way to reduce the size of surgical devices is to make them foldable. Foldable devices are constructed
in such a way that separate parts of the device can fold into each other, this can reduce the total space the
device needs. When a device is folded into a smaller space it makes it easier for the device to be used in the
human body without causing trauma to the body. A folded device can be transported to a specific location
in the body and be unfolded to perform some function.

Folded devices like this can be created using techniques from the field of origami engineering, a type
of engineering that uses origami to create engineering solutions. Conventionally origami uses paper that is
folded by hand to create shapes with mainly artistic purposes. In origami engineering however the same
principles that are used in paper folding are used in combination with engineering to create structures
that fold like origami. This creates structures that can transform in ways that might not be possible with
conventional engineering solutions. A reason to use origami in engineering is the shape-changing ability of
origami structures. Similar to when a flat piece of paper is folded to create various different origami shapes,
engineering origami can create structures that have multiple different shapes depending on how it is folded.
Origami techniques have been used in aerospace engineering for deployable solar panels and sunshields [2].
Similar principles have been used to create stiff structures that could be used for deployable buildings or
bridges [3]. Origami engineering also has medical applications such as devices used in tissue sealing [4] or
tissue biopsy [5].

For most engineering solutions paper is not a suitable material so other materials are used, often these
materials are a lot more rigid than paper which makes it hard to fold these materials. As a result, different
solutions need to be used to create the foldability that is desired. This can be achieved by connecting rigid
panels with flexible hinges. The flexibility of the hinge can be achieved by using a low-stiffness material [6,7],
torsional hinges [8], or a mechanism such as a pin hinge. The hinges also need to account for the thickness
of the panels of the structure [9].

A challenge with foldable origami is how to generate the folding movement. For medical applications
this becomes more challenging since the scale is generally much smaller and electronic actuators are not
always possible. One way to generate the folding movement is by magnetic actuation. With magnetic ac-
tuation, magnets are added to a device that can be controlled by applying magnetic fields that steer the
magnets and actuate the device. These ideas have been used to create a soft robotic origami crawler as
seen in Fig. 1b [6]. This Crawler consists of four magnetic hexagons plates that are connected with Kresling
pattern origami tubes. The Kresling pattern is an origami shape that contracts when rotated. When a
magnetic field is applied the plates rotate and the whole structure contracts. Repeating this motion allows
the device to crawl. Magnetically controlled origami can also be used to create soft grippers that can be
controlled wirelessly [7]. Such a device can be seen in Fig. 1a and uses magnetic panels connected by a soft
substrate to construct a gripper. The model used to construct this device is based on the bar-and-hinge
model developed by Liu & Filipov et al. and uses magnetic panels that have an in-plane magnetization [7,10].
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(a) (b)

Figure 1: (a) Soft robotic gripper at multiple stages during its activation [7]. (b) Origami soft robotic crawler
showing the stride length achieved after magnetic activation [6]

For designing origami devices it would be useful to have a method that is capable of simulating magneti-
cally controlled origami structures. The research done by Cui et al. [7] provides such a method by combining
a bar-and-hinge model with magnetic actuation. The method used in this paper has one limitation however,
it only works for in-plane magnetization. This means that the magnetic direction of each panel is always
along the flat plane of each panel. For more complex origami shapes it might be useful to have the magnetic
direction in any possible direction. The goal of this thesis is to expand the work done in previous research
and create a simulation method that overcomes this limitation.

The research presented in this report uses a modified version of the bar-and-hinge model presented by Liu
& Filipov et al. to approximate the mechanical behavior of 3D origami structures under a uniform magnetic
field [10]. This model can simulate the deflection of an origami structure for any given crease pattern with
predefined magnet placements and orientations.

The report is structured into five chapters. First, the theoretical background of origami and magnetic
actuation are introduced. Then the bar-and-hinge model and a novel torque decomposition method needed
for magnetic actuation are introduced. Next, the implementation of the new method in MATLAB is de-
scribed. Multiple examples of origami patterns simulated using the model are shown as well as experiments
to validate these results. Finally, the results are discussed.

2



2 Theoretical Background

2.1 Origami Engineering

Origami is the art of folding paper. In origami a flat piece of paper is transformed into any decorative or
interesting shape, oftentimes representing an object or animal. Origami has primarily been associated with
recreational and artistic uses. However, the materials and the uses of origami extend far beyond just paper
and art [11]. The goal of origami is to transform a flat piece of material by only folding the material along
straight crease lines. Two types of folds can be made: a valley and a mountain fold. Using the flat piece
of material as a reference plane the crease line for a mountain fold moves up from the reference plane when
folded and the valley fold moves down. This can be seen in Fig. 2. These folds can be combined to create a
crease pattern, this crease pattern shows each fold and the type of fold that needs to be made to create the
final shape. An example of the crease pattern of a paper airplane can be seen in Fig. 3. The crease pattern
only shows what folds need to be made and where they are located but not the order in which the folds need
to be made. In the airplane example the paper is rectangular in shape but for other origami patterns the
outer edge of the paper could have any shape as long as the fold lines are straight.

Figure 2: A fold in origami is either a mountain(left) or valley(right) fold. [12]

Figure 3: The crease pattern of a paper airplane [11]

In origami structures and crease patterns two regions can be identified: the folds and the faces. A face is
the region that is bounded by the folds and the edges of the sheet. In Fig. 4 the folds and faces are indicated
for a foldable cube and pyramid. In origami engineering the faces of the structure are generally made of rigid
panels and the folds of a more bendable material, this ensures that the origami structure only folds along
the fold lines and not the faces. For thin and easily foldable materials such as paper the folds occur along
a single creased line with a small width. However for structures that have a larger thickness where directly
creasing the materials is not possible or desired, folding can be obtained by bending a localized region as is
also the case in Fig. 4. In the figure the folds are achieved by creating a thin rectangular strip between the
faces that is made of an easily bendable material, this material is shown with a darker color in the figure.

The folding region can be designed in many different ways depending on the application of the origami
structure. The construction and material of the fold mostly determine how the origami structure will deform
when under load. To ensure the structure only folds along the fold lines the fold region always needs to have
a lower stiffness than the panels. This can be achieved by using a material with lower stiffness for the fold
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region so that the fold region will bend but the faces don’t. One drawback of this fabrication method is
that depending on the materials used the folds behave like springs that restrict the rotation of the faces. So
generally materials with a low stiffness are the most suitable. The lower stiffness can also be achieved by
strategically removing material in the fold region, this is called a strained joint [9]. Strained joints can also
account for the thickness of the rigid panels allowing for the panels to be completely folded onto each other
as can be seen in Fig. 5. Another option to create a fold is by using a mechanical hinge design such as a pin
hinge. One advantage of this method is that these hinges don’t have the spring behaviour that is present in
other methods. A big drawback is that hinges are large then the other options and are thus mostly suitable
for large scale origami mechanisms.

Figure 4: Identification of the faces and folds on a foldable cube(left) and pyramid(left) [11] [13]

Figure 5: Example of the bending of a strained joint in three stages [9]
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2.2 Magnetic Actuation

To control the folding of the origami structures designed for this thesis magnetic actuation is used. An
example of magnetic actuation of two origami panels can be seen in Fig. 6. The figure shows the magnetic
directions of the panels, called the magnetic moment, with arrows inside the panels. An external uniform
magnetic field is depicted as dotted lines. This creates a torque on the panels that makes the magnetic
moment within the panels try to align with the applied magnetic field. This results in the magnetic moment
and applied field pointing in the same direction.

Figure 6: Two magnetic panels connected by a flexible hinge under uniform magnetic field [7]

Applying a magnetic field to a magnetic object results in forces and moments on the magnet. These
forces(Fm) and moments(τm) can be calculated as:

Fm = m · ∇B, (1)

τm = m×B. (2)

In the equation above m denotes the magnetic moment of the magnet and B the magnetic flux density.
These formulas evaluate the magnet as a since point with a constant magnetic moment. The magnetic
moment(m) of a magnet is a result of the size and type of magnet and can be calculated as:

m =
BrV

µo
. (3)

In the equation above V denotes the volume of the magnet, Br denotes the residual flux density and µo

is the vacuum magnetic permeability. µo is constant and has a value of 4π · 10−7N·A−2. Br represents
the magnetic induction remaining in a saturated magnetic material and shows how strong the magnet is.
For neodymium magnets, the magnets used in this thesis, the Br is related to its magnet grade generally
being available between N35 and N55 with a higher value representing a higher strength [14]. These grades
corresponds to Br values of around 1.2 to 1.5 T.

The magnetic flux density density(B) in Eqns. 1 and 2 represents the strength and direction of the
magnetic field that is applied to the permanent magnet. Changing this magnetic field allows for the control
of the torques and forces on the permanent magnet. For the purposes of controlling magnetic origami the
torque is the main factor of interest for this project. Applying a torque to panels allows for the rotation and
alignment the panels in the required direction. Although applying a force on the magnetic panels could help
with positioning the device, the analysis will be limited to only applying torques. For this reason a uniform
magnetic field will be used. In a uniform magnetic field the magnetic flux density(B) is mostly constant over
the volume of the field. This results in the gradient ∇B being zero and the Force being zero. Another result
of using a uniform magnetic field is that all panels within the magnetic field experience the same magnetic
flux density. The torque from Eq. 2 will always be highest when the difference in angle between the magnetic
moment and the applied magnetic field is the largest. As a result the torque will decrease when the angle
between the magnetic moment and field is smaller.
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2.2.1 Helmholtz coils

To generate a uniform magnetic field Helmholtz coils can be used. A Helmholtz coil is a device that can
generate a nearly uniform magnetic field. This device consists of two identical circular electromagnets placed
along a single axis. Both coils have the same eclectic current in the same direction. The experimental area
is then located in between these two magnets and shown with a red dotted outline. An image of a pair of
Helmholtz coils is shown in Fig. 7.

Figure 7: Two electromagnets that form a Helmholtz coil. Part of the magnetic field is indicated with
arrows [14].

To minimize any non-uniformity between the two coils the optimal distance between the coils is the same
as the diameter of both coils. From the centre of the coils along the Z-axis as indicated in Fig. 7 there is a 7%
variation of field strength. The field strength along the Z-axis is shown in Fig. 8. The distance between the
coils is indicated with d and the centre between the coils is at z = 0. For consistent results using Helmholtz
coils the best results will be achieved when the magnetic device is as close to the centre as possible.

Figure 8: The magnetic field induction along the axis crossing the centres of both coils [15].

2.3 Analytical Tools for Origami Mechanics

To simulate the movement of an origami structure that is under some load, multiple approaches can be
used. Generally these approaches can be divided into three categories: rigid-facet, lattice framework and
finite element [16]. A rigid-facet approach assumes that the all the panels of the origami are rigid and the
fold creases behave like hinges. The hinges can be defined as having a torsional stiffness and the origami
is modeled as a planar linkage mechanism. This method is especially useful for modeling large tessellations
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such as the Miura ori pattern since these can be simplified to a one degree of freedom system [17]. The
lattice framework approach also referred to as the bar-and-hinge model uses bar elements to represent the
fold lines and hinges to represent the torsional stiffness of the fold. This approach can also be used to model
the deformation of the panels. This is done by including virtual bars across the panels that each have a
bending hinge with a torsional stiffness [18]. This allows for simulating non-rigid origami as well as rigid
origami. The lattice framework approach has more capabilities and a wider range of applications compared
to the rigid-facet approach but is more complex in its application. The last approach is to model the origami
with a finite element method. With this method a mesh can be created of the origami structure and the
deformation for a specific load will be calculated. Some methods have also been developed where the panels
are represented as shell elements and the fold lines as hinge joints similar to the rigid-facet and the lattice
framework approach [16]. For this project a bar-and-hinge approach has been chosen because of its high
efficiency. To validate the model while it is being adapted for magnetic actuation finite element simulations
are done in COMSOL. The COMSOL simulations allows for a way to validate the bar-and-hinge model
before doing physical testing.
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3 Materials and Methods

In this chapter the mathematical methods used in the deflection simulation of origami is introduced. This
includes the bar-and-hinge model and a torque distribution method that allows for torques to be applied to
this model. The fabrication method and materials of the experimental origami are explained. Two different
origami are simulated and tested in an experiment. Two more origami shapes are simulated as examples of
how the program works.

3.1 Methods

3.1.1 Bar-and-hinge model

Any origami pattern can either be flat foldable or non-flat foldable. Flat foldable refers to whether it is
possible to fold a crease pattern in such a way that when every crease is fully folded the whole folded sheet
of paper lies flat. With non-flat folding this isn’t possible. Any origami structure can also be developable or
non-developable origami. Developable origami is origami that is folded starting from a flat piece of material.
As previously described in section 2.3 a bar-and-hinge model will be used to calculate the deflection of
origami structures under load. Specifically the method developed by Liu and Filipov et al. is used [18]. This
method was chosen because it is able to simulate origami structures of any of the types mentioned above.

The bar-and-hinge model represents each quadrilateral face of the origami with 8 bars connected between
5 nodes. The bar elements can only stretch along its axis. This model is referred to as N5B8 and is shown
in Fig. 9. The model uses material properties of the origami to determine the properties of the bars. These
properties include the elastic modulus (E), the Poisson’s Ratio (ν), the thickness of the panels (t) and the
dimensions of the fold lines (w). Using these properties the stiffness of the bars can be calculated in such
a way that it approximates the stretching of the origami face. For triangular panels only three nodes and
three bars are used.

Figure 9: The N5B8 representation of an origami face.

There are three types of effects the model tries to capture: folding, bending and stretching. Folding
represents the folding between the panels and occurs on the outer bars of the N5B8 model. Bending is the
bending of the panel itself and occurs on the inner bars connected to node 5 in Fig. 9. Stretching of the
panel is modeled by each bar being able to stretch along the length of the bar. The bending and the folding
is modeled with virtual hinges that act as torsional springs. The springs can be seen in Fig. 10. Both hinges
have specific stiffness values that are derived from the material and construction properties of the origami.

3.1.2 Nonlinear elastic formulation of the bar-and-hinge model

The origami structure is considered a nonlinear elastic system. With this method, the entire origami system
will be modeled by using a global stiffness matrix K. This stiffness matrix will relate the displacement of
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Figure 10: The bar-and-hinge model as described in [19].

each node u to the forces in the system f . This is shown in:

Ku = f . (4)

From Filipov and Liu it is obtained that the global stiffness matrix is constructed in the following way [18]:

K =

C
JB

JF

T DS 0 0
0 DB 0
0 0 DF

 C
JB

JF

 . (5)

In the above equation C is the compatibility matrix. This matrix relates the nodal displacements u to
the bar extensions e. JB and JF represent Jacobian matrices of bending and folding respectively. The
Jacobian matrices relate the nodal displacements u to the change in angle dθ which is different for bending
and folding. For folding dθF represents the angle between the panels. For bending dθB represents the angle
between two parts of the panel that are bending around one of the bending hinges. These relations can be
represented as: C

JB

JF

u =

 e
dθB
dθF

 . (6)

The other parameters in Eqn. 5 represent various material stiffness properties. DS incorporates stiffness
parameters for the stretching and shearing of the panels. DB includes the stiffness parameters for the
bending of the panels. DF has the stiffness parameters for the folding of the panels. Since every node has
three degrees of freedom the global stiffness matrix K will have a size of 3N x 3N with N being the number
of nodes. From Eqn. 5 three distinct contributions to the stiffness can be separated and written as:

K(u) = CTDSC + JT
BDBJB + JT

F DFJF = KS(u)+KB(u)+KF (u). (7)

The global stiffness matrix contains contributions from the bars Ks, bending hinges KB and folding hinges
KF . The stiffness values all result from the material and construction properties of the origami structure.
When using rigid panels with flexible hinges KS(u) and KB(u) will be significantly higher then KF (u).
KF (u) is thus the main property used to design the mechanical behavior of origami structures with rigid
panels.

To solve for the nodal displacements when a load is applied a total potential energy(Π) balance can be
used. This energy balance contains contributions from the bar elements(US), the bending hinges(UB) and
the folding hinges(UF ) in a similar relation as the stiffness matrix of Eqn. 7. The total potential energy is
written as:

Π(u) = US(u)+UB(u)+UF (u)− fTu. (8)

In the above equation f is the applied nodal force. Using the principle of Stationary Potential Energy Filipov
et al. [18] used the energy balance to construct the following force equilibrium equation :

T (u) = TS(u)+ TB(u)+ TF (u)− f = 0. (9)
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In the above equation TS(u), TB(u) and TF (u) are internal forces and are nonlinear functions of u.
To solve for the force equilibrium equation an arc-length solution scheme is used called the modified

generalized displacement control method (MGDCM) [10]. This method introduces a new variable λ known
as the load factor. This load factor controls the magnitude of the external loads following an incremental-
iterative process. The following equilibrium equation shows how λ controls the external loads:

R(u, λ) = T (u)− λf (10)

In this equation R is the residual force. The idea of the MGDCM is to increase lambda over a set amount of
increments. This means that for every increment only a part of the external load is applied. This results in
the deflections slowly increasing for every increment. For every increment there also is an iterative process.
With every iteration the residual in Eqn. 10 is minimized to within a specified error. The exact details of
how the MGDCM is implemented can be found in Liu and Paulino [10]

3.1.3 Rotational spring elements

As described in the previous chapter two types of hinges are used in the model, a bending and folding hinge.
In Fig. 10 each spring is placed on a bar that connects two triangular sections with each other. The two
triangular sections are defined with 4 nodes forming two triangles as seen in Fig. 11. In the model the degree
of rotation is the dihedral angle between the two surfaces of the triangles. The undeformed length of the
hinge axis is denoted as L.

Figure 11: The components of a rotation spring element [10].

The rotational spring elements are defined using the global nodal coordinates without an intermediate
step to local coordinates. It is assumed that the constitutive relationship for the rotational spring element
can be described by a stored energy function ψ = ψ(θ), θ being the dihedral angle. The total stored energy
of the rotational spring element is:

Uspr = ψ(θ). (11)

The spring element resists the rotation of the panels and generates a resistance moment defined by a partial
derivative of the stored energy and the angle:

M =
∂ψ(θ)

∂θ
. (12)

The internal force vector that results from this moment is defined as:

Tspr(u) = T̃spr =
dψ

dθ

dθ

dx
=M

dθ

dx
. (13)

In the above equation x denotes the deformed nodal coordinates obtained from x = X+u where X are the
undeformed nodal coordinates. Since X is constant the gradients with respect to u are equal to the gradient
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with respect to x. The tangent stiffness matrix is derived from the derivative of the internal force vector:

Kspr(u) = K̃spr = k
dθ

dx
⊗ dθ

dx
+M

d2θ

d(x)2
. (14)

In the previous equation ⊗ denotes the tensor product. The tangent rotational stiffness is denoted by k and
equal to:

k =
dM

dθ
. (15)

3.1.4 Geometry of the rotational spring element

In the previous section the dihedral angle was used in the formulation of the tangent rotational stiffness.
The angle is obtained from the four nodes (i, j, k, l) that define two triangles as seen in Fig. 12. The angle
can be obtained from the nodes by defining two vectors based on the relations between them. A vector that
connects two nodes is defined as:

rqp = xp − xq, (16)

with p and q being the labels of any pair of nodes. Using the four nodes that define the triangles two vectors
are created:

m = rij × rij , (17)

n = rkj × rkl. (18)

m and n are vectors that are normal to the two intersecting planes. Using these normal vectors the dihedral
angle can be obtained by:

θ = arccos(
m · n
∥m∥∥n∥ ). (19)

This does however not define the full rotation with the correct sign. To complete this definition a sign
indicator η is added:

θ = η arccos(
m · n
∥m∥∥n∥ ) mod 2π, (20)

with η defined as:

η =

{
sgn(m · rkl), m · rkl ̸= 0

1, m · rkl = 0.
(21)

In the above equations, mod refers to the modulo operator which returns the remainder when divided by
2π. For rkl = 0 a value for η of 1 is used, this exception occurs when the angle is either 0 or π meaning that
both panels lie in the same plane.

Figure 12: The geometry of a rotational spring element with the angle between two intersecting planes
denoted with two colours [10].
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3.2 Force distribution

The bar-and-hinge model is capable of calculating deflections as a result of forces applied to nodes in the
structure. The magnetic actuation introduced in section 2.2 is able to generate torques as a result of an
applied magnetic field. Since the bar-and-hinge model uses force as its input a method to change the torque
load into a force load is needed. Methods for this have have been developed before [7], however there are
limitations to how the magnet can be oriented. For this reason a more general method to apply magnetic
actuation using a bar-and-hinge model was developed. The goal of this method is to obtain forces that result
in the same deflection as applying a torque does. Two force decomposition methods were constructed; one
for parallelogram panels and one for triangular panels. With these panel shapes a large variety of origami
patterns can be constructed.

3.2.1 Parallelogram shaped panel

A force distribution method for parallelogram panels was developed, the steps of the decomposition are
shown with a square panel. This is done because the concept is more easily explained with a square panel,
but the resulting formulations also apply to parallelogram panels. A square panel is shown in Fig. 13 with
the applied torque shown in red. The applied torque needs to be decomposed into four equivalent nodal
forces. This is done in two steps. First, the applied torque (τ ) is decomposed into four torques (τ1, τ2, τ3, τ4)
that are applied to each bar of the panel. Second, the decomposed torques are used to obtain the nodal
forces. The four decomposed torques are all normal to one of the bars, this is necessary for the second step
where the nodal forces are constructed.

Figure 13: A square panel with an applied load shown in red and four torques on the bars shown in black.

The torques on the bars should add up to the applied torque, this results in:

τ = τ1 + τ2 + τ3 + τ4. (22)

Using the geometry of the panels the outward normal vector n can be constructed for each of the four bars.
These normal vectors are in the same direction as the decomposed torques. To solve for the values of the four
torques four new variables are introduced: a1, a2, a3 and a4. These new variables are scalars that together
with the normal vector represent the torques. Using these variables the previous equation can be written as:

τ = a1n1 + a2n2 + a3n3 + a4n4. (23)

12



One constraint that can be used to simplify this equation is that the torques should be equally divided over
the four bars. For a rectangular panel shape this results in τ1 = τ3 and τ2 = τ4. This simplification also
works for panels shaped like a parallelogram since the bars opposite from each other are also the same size
and orientation. The previous equation now simplifies to:

τ = 2a1n1 + 2a2n2. (24)

If the panel surface is chosen as the xy-plane the normal vectors only have x and y components nx and ny.
The two equations for the applied torque in x and y directions can be used to solve a1 and a2:

τx = 2a1n1x + 2a2n2x, (25)

τy = 2a1n1y + 2a2n2y. (26)

Using substitution and solving for a1 and a2 results in:

a1 =
τyn2x − n2yτx

2n1yn2x − 2n1xn2y
, (27)

a2 =
τyn1x − n1yτx

2n2yn1x − 2n1yn2x
. (28)

With the solution for a1 and a2 the x and y components of the decomposed torques can be found. The
z component can be found by equally dividing the applied torque along the four bars. For calculating the
forces on the nodes the torques need to be perpendicular to the bars, the reason for this will be shown in the
next step where the nodal forces are derived. By having the z component of the torque be equally divided
the torques are still perpendicular to the bars. The final formulas for the decomposed torques are:

τ1 = τ3 =

a1n1xa1n1y
τz
4

 , (29)

τ2 = τ4 =

a2n2xa2n2y
τz
4

 . (30)

As can be seen in Fig. 13 every bar has a torque applied that is perpendicular to the bar. The free body
diagram of bar element 1 is shown in Fig. 14. Using the decomposed torque, forces can be found at the end
points of the bars that represent the applied torque. The forces shown in the figure are part of the total
force on a node.

Figure 14: Bar element with a torque τ1 that results in two forces F11,F12.

To find the forces on the bars a new parameter is introduced: rik. rik is the length vector that goes
from the center of bar i to the end point in node k. i is the bar index (i = 1, 2, 3, 4) and k the index of the
node (k = 1, 2, 3, 4). A cross product between the torque and the length vectors gives the correct direction
of the forces. This cross product is then divided by the length of rik, which is obtained using a dot product.
Each node is connected to two bars and each bar has a torque on it that creates a nodal force. This means
that each node has force contributions from two bars that are summed together. The nodal forces for each
node are:

Fk =

k∑
i=k−1

1

2

τi × rik
rik · rik

. (31)
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In the above equation index i is cyclic meaning that the index can only be i = 1, 2, 3, 4 and increasing the
index when i = 4 gives i = 1. This is used for node k = 1, the index becomes i = k − 1 = 4. Node 1 is
connected to bars 1 and 4 thus the force has contributions from those bars. The equation uses the node and
bar numbering from Fig. 13.

3.2.2 Triangular panel

For a triangular panel the approach is similar to that of the square panel. The first step is to create three
outward normal torques that should add up to the applied torque. This can be seen in Fig. 15.

Figure 15: A triangular panel with an applied torque shown in red and three decomposed torques shown in
black
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The applied torque is divided into three torques that consist of the parameters a1, a2 and a3 together
with the three normal vectors n1, n2 and n3. The torque decomposition is shown as:

τ = a1n1 + a2n2 + a3n3. (32)

If the panel is chosen as the xy-plane two equations for the x and y components of the torque can be made
in the same way as was done in Eqns. 25 and 26:

τx = a1n1x + a2n2x + a3n3x, (33)

τy = a1n1y + a2n2y + a3n3y. (34)

Without adding more constraints this cannot be solved. However, to obtain nodal forces that approximate
the applied torque only two decomposed torques are necessary with the third one being zero. This is because
for a triangle any selection of two bars is always connected to all three nodes. This allows for three nodal
forces to be obtained that still approximate the applied torque. Since the torques are always normal to
the bars and their direction cannot be altered there is a preference as to which torques are chosen to be
decomposed and which torque is chosen to be zero. To obtain nodal forces that are evenly distributed across
the three nodes it is best to choose the torques without a zero component in x or y direction. For example
in Fig 15 τ2 is in the negative y direction having no x component. τ2 cannot apply any torque in the x
direction leading to an uneven distribution of the forces across the nodes. An edge case is possible where two
bars are at 90deg to each other and in the x and y directions. In this case the torque is simply distributed
between the two perpendicular bars since both can only apply torque in one direction. One bar has the x
component of the applied load and the other bar the y component. For the example triangle given in Fig. 15
the solutions to a1 and a3 are:

a1 =
τxn3y − n3xτy
n1xn3y − n3xn1y

, (35)

a3 =
τxn1y − n1xτy
n3xn1y − n1xn3y

. (36)

For this example τ2 is chosen to be zero and the equations for the other torques are given as:

τ1 =

a1n1xa1n1y
τz
3

 , (37)

τ3 =

a3n3xa3n3y
τz
3

 . (38)

For different orientations and shapes of a triangular panel a different torque might be chosen to be zero
giving similar equations for a1, a2 and a3. Obtaining the nodal forces is done in the same way as in Eqn. 31.

3.2.3 Force distribution validation

The force distribution method described in the previous paragraphs changes an applied torque into multiple
forces that approximate the torque. The distributed forces should result in the same deformation. To
validate if an applied torque is kinematically equivalent to the distributed forces the deformation of a two
panel origami is analysed using FEA. The origami can be seen in Fig. 16 and consists of two panels connected
with a hinge with a specified bending stiffness. The darker panel is fixed with the other panel able to rotate
around the hinge axis. One way to obtain the rotation of the panel under a specified load is by using
τ = Kθ. With τ being the applied torque, K the bending stiffness and θ the angle. This method can be
compared to the bar-and-hinge model described in the previous paragraphs. The bar-and-hinge model uses
the distributed forces according to Eqn. 31 as the input. A finite element simulation is also performed using
COMSOL which can be seen if Fig. 17. With COMSOL both torques and forces can be applied to the two
panel system and compared directly.
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Figure 16: Two panels connected by a hinge with the axis of rotation of the applied torque shown in red
and the resulting distributed forces shown in black.

The two panels used in the simulations are square with a size of 25mm by 25mm. The hinge is made
of a thin steel sheet with dimensions: h=0.05mm, b=25mm and L=2.5mm. These dimensions are similar
to those used in later testing. To calculate the bending stiffness K = EI/L is used with I = bh3/12. The
properties for the simulations are given in table 1.

Table 1: Table containing the inputs needed to calculate the deflection.

Property Value
E 200 · 109 GPa
I 2.6 · 10−4 mm4

K 0.0208 Nm/rad
ν 0.3

The torque and forces are shown in Fig. 16 and are equal to:

τ =

0.0150
0

Nm, (39)

F1 = F2 =

 0
0
0.3

N, (40)

F3 = F4 =

 0
0
−0.3

N. (41)
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The resulting angles for four different methods are shown in table 2. The goal of these tests is to compare
a torque load to a distributed force load. Two COMSOL results are compared against each other and the
hand calculation is compared to the bar-and-hinge model. The hand calculation using τ = Kθ is very close
to the bar-and-hinge model with the distributed forces. The small difference can be caused by the bending
and stretching of the panels since the hand calculation assumes the panels to be rigid and the bar-and-hinge
model doesn’t. In COMSOL two different ways of applying a load were used. One panel is defined as a rigid
connector, this makes the panel itself rigid and allows for a torque to be applied to the surface of the panel.
The other method in COMSOL uses the distributed forces and applies them as point loads in each corner
of the panel the same as in Fig. 16. The point loads are also defined such that they are always normal to
the panel. Both methods in COMSOL gave the same deformation. From these results, it can be concluded
that the force distribution method for square panels can be used to obtain forces that are kinematically
equivalent to the applied torque.

Figure 17: COMSOL deformation results using four point loads.

Table 2: Table containing the results for four different methods for calculating the deflection of the two panel
origami.

Method Input load Angle
Hand calculation Torque 41.25◦

bar-and-hinge Distributed forces 41.33◦

COMSOL rigid connector Torque 37.50◦

COMSOL point loads Distributed forces 37.50◦
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3.3 Implementation of the magnetic actuation

In the previous chapter formulations for magnetic actuation and torque distribution were described. To
implement these formulations the MERLIN program developed by Liu et al. [19] is adapted to include
magnetic actuation. MERLIN is a MATLAB program that uses the bar-and-hinge model described in
section 3.1.1 to calculate the deflection of an origami structure based on an applied load. Similar to how the
deflections are calculated an incremental iterative process is used. An iterative process is implemented to
account for the change in magnetic moment direction as the panels rotate. While the incremental process
applies the magnetic field in smaller increments. In the iterative process the magnetic moment is defined
for the initial configuration and the deflection is calculated using the starting magnetic moment. As the
structure deflects and the panels rotate the magnet orientation changes and as a result the magnetic torque
is different from the initial configuration. For the next iteration the deflection is calculated again using the
new orientation of the magnets. To update the magnetic moment a rotation matrix that relates the initial
magnetic moment to the magnetic moment of the current iteration is created.

Miter = RMM0. (42)

In the above equation RM is the rotation matrix that is used to calculate the new orientation of the
magnets(Miter) by rotating the initial position(M0). Both Miter and M0 are unit vector only containing
the direction of the magnets and are scaled with the strength of the magnet when the torque is calculated
using Eqn. 2. RM is calculated from the nodal positions in the deformed and undeformed state. To construct
this rotation matrix two axis systems are created: one in the initial configuration(R0) and another in the
deformed configuration(Rw). These axis systems can be seen as the local coordinate systems for each panel.
Both axis system are constructed in the following way.

R =
[
r12 n r12 × n

]
. (43)

In the above equation r12 is the length vector that connects the first two nodes of a panel according to
Eqn. 16 and n is the normal vector and points outward from the panel. The third column is the cross
product of r12 and n which creates a three axis system with all axis perpendicular to each other. The
rotation matrix that shows the rotation between both axis systems is constructed as:

RM = RwR
−1
0 . (44)

Since each magnet always point in the same direction in relation to the local coordinate system of the panel
the magnet is located on the rotation of the magnetic moment directions is the same as that of the rotation
of the local coordinate system of each panel.

Using the rotation matrix to update the magnetic moment results in a different torque according to
Eqn. 2. This results in new deflections with a new position of the magnets. This process is then repeated
until the change of magnetic moment between iterations is below a certain tolerance. This results in the
behaviour seen in Fig. 18, where the rotation of three iterations are shown for a two panel system. The
forces on the system are the same as shown in Fig 16. The first iteration will always overshoot the final
position since the torque is highest when the difference between M and Ba is greatest. The second iteration
undershoots while the third iteration is within the tolerance and is the final position.

Figure 18: Undamped behaviour of the iteration process on a two panel origami.
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To limit this over and undershoot the change in magnetic moment is damped. This is done by limiting the
amount the magnetic moment can change from the previous iteration. Damping also improves the amount
of iterations necessary to satisfy the tolerance requirement. Another method used to improve the robustness
and the amount of iterations is by applying the magnetic field in smaller increments. The applied magnetic
field is scaled by an increment value(inc) which increases for each increment, in the example below the field
is scaled in 10 equal steps. This also allows for observations on how the origami moves as the magnetic
field is changing. To speed up the computation a lower tolerance(toli) can be used for the incremental steps
with the final tolerance(tol) being used for the last increment. This does result in the deformation being less
accurate for the incremental steps so both tolerances need to be adjusted depending on what information is
relevant to the specific simulation. An overview of how the incremental iterative process is applied can be
seen in the algorithm below.

Iteration algorithm

define damp,tol and toli ▷ Values are adjusted for different origami patterns

for incr = 0.1 : 0.1 : 1 ▷ Set the amount and size of the increments, final incr is always 1

iter=1,Bai = incr ·Ba ▷ Ba is scaled by the increment value

if incr = 1

toli = tol ▷ A smaller tolerance is used to calculate the final increment

end if

while res > toli ▷ The while loop keeps updating until the residual is smaller than toli

τ = Miter−1 ×Bai or τ = M0 ×Bai ▷ First iteration uses M0

τ → F ▷ The torque is converted to forces using the torque decomposition

F → u→Miter ▷ The MERLIN program finds the deflections which updates Miter

Miter = Miter−1 +
Miter−Miter−1

damp ▷ Damping is applied to Miter

iter = iter+1

res = norm(Miter −Miter−1) ▷ The residual is obtained from the change in Miter

end while

end for
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4 Results

4.1 Test setup

To validate the simulation method a test setup is needed. As described in section 2.2.1 Helmholtz coils are
used to apply a uniform magnetic field. Three coils are combined in order to apply a uniform magnetic field
in any direction. The test setup can be seen in Fig. 19 with the experiment area outlined in red. The coils
have different sizes so they can all apply a field in the same area. The samples are placed in the experiment
area using aluminum t-slot profiles.

Figure 19: Test setup of the three-axis helmholtz coil with the experiment area outlined in red.
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4.2 Two-panel origami

To validate the magnetically actuated bar-and-hinge model the deformation of a two-panel origami is simu-
lated using MATLAB script described in section 3.3 and compared to experimental data.

4.2.1 Two-panel origami problem setup

The pattern that was used for the two-panel origami can be seen in Fig. 20a. Each panel and each node is
numbered with the nodes that define panel 1 being fixed and nodes 1 and 3 free to move.

(a) (b)

Figure 20: (a) Two-panel origami pattern with the node and panel numbers. (b) Two-panel origami with
red arrows to indicate the magnetic moment direction of the initial configuration.

The magnetic moment is defined as a matrix with every column of the magnetic moment matrix being
equal to the magnetic moment of a panel. Since panel 1 is fixed only panel 2 has a nonzero magnetic moment:

M =

0 0
0 0
0 0.112

Am2. (45)

The magnets used are N48 neodymium discs with a diameter of 8mm and a thickness of 1mm. Each magnet
has a magnetic moment of 0.056 Am2 and two are placed on panel 2. The magnetic moment can be seen in
Fig. 20b.

A magnetic field of 40mT is applied in the negative x direction. This results in the following torque for
the initial configuration:

τ =

0 0
0 −4.48
0 0

Nmm. (46)

τ is defined as a matrix with each column equal to the torque of a panel. This torque is obtained in the
undeflected state. As the algorithm iterates and the panel folds, the torque will decrease since the magnet
orientation changes to align with the field.

4.2.2 Two-panel origami MATLAB simulation

The origami pattern can be manually defined however for larger origami patterns this can become time
consuming. The MERLIN program also allows for .obj files to be used as the input for the origami pattern.
This file contains all the dimensions and fold information needed for the simulation. To generate this file
Freeform origami is used [20]. Freeform origami is an origami simulation tool that is used to generate .obj
files from .dxf files. The .dxf file contains a 2D drawing of the origami pattern and is made in CAD software.
The standard settings of Freeform origami are used with the planar facets setting turned on. The planar
facets setting ensures that only the faces defined in the drawing are included in the .obj file.
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The first step in the simulation is to change the applied torque to a force load. The force matrix is
defined with the node numbers in the first column and the other columns containing the XYZ components
of the force on that node. The torque from Eq. 46 is decomposed which results in:

F =


1 0 0 −89.60
2 0 0 89.60
3 0 0 −89.60
4 0 0 0
5 0 0 89.60
6 0 0 0

 · 10
−3N. (47)

A summary of the variables used in the simulation are shown in table 3. The stiffness in the table is the
stiffness per unit length. Multiple sizes of this origami pattern were tested so the total hinge stiffness is Kf

times the width of the hinge. The increment step was set to be 0.0250 so that with every step Ba is increased
with 1 mT. The tolerance on the residual is dependent on the amount of panels. For a small amount of
panels, a small tolerance can be used to obtain good accuracy, with more panels a higher tolerance is used
since the residual is larger.

Table 3: Variables used in the two-panel origami

Ba(mT) Kf (Nm/rad) Damping Increment step Residual tolerance−400
0

 0.1960 2 0.0250 0.005

The final deflected configuration of a 25mm square panel can be seen in Fig 21. The results of these
simulations are used in the next section to compare against experimental data.

Figure 21: The final configuration of a two-panel origami under an applied magnetic field.
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4.2.3 Helmholtz experiment sample

The goal of this experiment is to compare the bend angle obtained from the simulation to the results from
the test setup. A sample was made with the same dimensions used in the simulation of section 4.2.1. The
exact dimensions of the origami sample can be seen in Fig. 22a. The tolerance of the hinge thickness is
included according to the specification of the manufacturer [21]. Three different values for the width (w)
where tested: 20, 22.5 and 25mm. By varying the width, the hinge stiffness for each sample is different. The
round cutout in the center of each panel is where a magnet is placed. One of the samples can be seen in
Fig. 22b. The samples are constructed from cold-rolled C100S carbon steel sandwiched between 3D-printed
PLA. The sandwich is created by applying double-sided tape to the 3D printed panels and placing this in
a mold that holds the panels in the correct position according to the drawing in Fig. 22a. The steel sheet
is cut to the correct dimensions and pressed down onto the tape while the panels are fixed in the mold.
The process is repeated for the other side to create a symmetric structure. Finally, one magnet is placed on
each side of the steel sheet. Both magnets are placed to have their magnetic moment aligned in the same
direction.

(a) (b)

Figure 22: (a) Dimensions of the test samples in mm with the width (w) being varied for each sample. (b)
Test sample with the magnet placed at the center of the top panel.

4.2.4 Helmholtz experiment setup

All three samples were tested in a uniform magnetic field generated with a Helmholtz coil as described in
section 2.2.1. One panel is fixed while the magnetic panel can bend along the hinge. The table below shows
the magnetic moment (M) using Eqn. 3 and the stiffness (K) computed using EI/L for all three samples.
To account for any possible fabrication errors, the stiffness is calculated by measuring the width and panel
gap from the samples. The thickness of the hinge is harder to accurately measure over the width (w) of the
sample. For this reason the tolerance of ±2 · 10−3mm is included since this can have a large effect on the
bending stiffness.
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Table 4: Table containing the properties of test samples

Width(mm) K(Nmm/rad) M(Am2)
20 4.3±0.8 0.112
22.5 4.6±0.9 0.112
25 4.8±0.9 0.112

The samples are placed in the test setup described in section 4.1. One panel is fixed and the sample is
oriented on its side so that gravity does not affect the bending of the hinge. A magnetic field is then applied
in 40 steps of 1mT. An image is taken of each step generating 40 images. The test setup shows the sample
when no field is applied in Fig. 23a. The sample when 40mT is applied can be seen in Fig. 23b. The applied
field and magnetic moment of the magnet are also shown in the figures.

(a) (b)

Figure 23: (a) The test sample from a top view while the applied field is zero. (b) Test sample in a 40mT
uniform magnetic field pointing in the y direction.

Using the white dots on the side of the samples and a motion tracking software called Kinovea the images
are analyzed to find the coordinates of the panels [22]. Using the motion tracking data the bend angle for
each image was calculated.

4.2.5 Helmholtz experiment results

In Fig. 24a the change in angle for increasing magnetic field is shown for all three samples. The dotted lines
show the results obtained from the simulation and the other lines show the experimental results. The figure
shows that the experimental results have larger deflections than the simulation results. For all samples, the
difference between the experiment and the simulation is largest in the middle of the graph around 20mT.
The final angle obtained from the model is on average within 4% of the experimental results.

To show how the stiffness can affect the results Fig. 24b shows the angle plot for the 25mm wide panel
using the upper and lower limit of the stiffness tolerance that results from the thickness tolerance in Fig. 22a.
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The black line shows the angle plot for the nominal stiffness while the grey area shows the possible deviation.
The experimental results are included in blue.

(a) (b)

Figure 24: (a) The applied field vs the angle for all three samples including the simulated angle. (b) The
applied field vs the angle of the 25mm sample including the upper and lower limit that results from the
stiffness tolerance.

The stiffness of the hinge is one of the most important parameters used in the simulation. Using the
angle of the panel the stiffness of the samples can be calculated as the panel is deforming. The change in
stiffness of the experimental results can be seen in Fig. 25. At lower Ba the stiffness has a large variance, this
is likely due to measurement error since the deflection at this field strength is very small making it harder
to measure accurately. The stiffness increases as the field increases, the cause of this increase is not clear.
The stiffness value is calculated from the angle of the panel and the torque of the magnet. The torque of the
magnet is not measured however and is calculated based on the position of the magnet which is assumed to
be the same as that of the panel. This calculation also assumes that the fixed panel is oriented in the same
direction as the applied field. In Fig. 23a the bottom panel should be perfectly vertical in the y-direction,
however, the orientation is done manually and could lead to errors.

Figure 25: The stiffness for increasing field strength of three samples with a different hinge width.
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4.3 Example 1: Waterbomb

To test a more complicated origami pattern a waterbomb origami was designed. This origami pattern folds
similarly to an umbrella and uses a combination of mountain and valley folds. This pattern can fold flat,
meaning that if all fold lines are folded completely the resulting structure would be flat. To test this origami
the pattern is designed and simulated using the adapted MERLIN program. Then, a sample is constructed
and examined in a uniform magnetic field.

4.3.1 MATLAB simulation

As for the previous tests the design is drawn in CAD and exported as a .dxf file. This is then converted to
an .obj file using Freeform origami [20]. The node and panel numbers used in the simulation are shown in
Fig. 26a. The nodes connected to panel 1 are all fixed with all other nodes free.

(a) (b)

Figure 26: (a) Waterbomb origami pattern with the node and panel numbers. (b) Waterbomb origami
pattern with red arrows to indicate the magnetic moment direction of the initial configuration.

The magnetic moment is defined for each panel and can be seen in Fig. 26b where the direction is shown
with red arrows. Since this pattern has six panels the magnetic moment matrix has six columns one for each
panel:

M =

0 0 0 0 0 0
0 0 0 0 0 0
0 −0.112 0.112 −0.112 0.112 0.224

Am2. (48)

Panel 1 is fixed and has no magnets, panels 2 to 5 have 2 magnets and panel 6 has 4 magnets. Each
magnet has a magnetic moment of 0.056 Am2.

A magnetic field of 40 mT is applied in the positive x direction which results in the following torque and
forces matrices:

τ =

0 0 0 0 0 0
0 −4.48 4.48 −4.48 4.48 8.96
0 0 0 0 0 0

Nmm, (49)

F =



1 0 0 0.18
2 0 0 0.18
3 0 0 0
4 0 0 0
5 0 0 −0.36
6 0 0 −0.36
7 0 0 0.36


N. (50)

In the initial flat configuration the only torque generated is around the y axis. The force matrix is defined
with the node numbers in the first column and the other columns containing the xyz components of the force.
The torque for the initial configuration results in only forces in the z direction.
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A summary of the other variables used in the algorithm described in section 3.3 are shown in table 5. The
stiffness in the table is the stiffness per unit length and is multiplied by the length of the hinge to obtain the
bending stiffness of a specific hinge. This value is used since not all hinges are the same length. A damping
value of 4 was used since it resulted in a small number of iterations for this origami pattern. The increment
step was set to be 0.0250 so that with every step Ba is increased with 1mT.

Table 5: Variables used in the waterbomb simulation

Ba(mT) Kf (Nm/rad) Damping increment step residual tolerance400
0

 0.1960 4 0.0250 0.1

The deflection as a result of the applied magnetic field can be seen in Fig. 27a. The side view can be seen
in Fig. 30. Two panel edges are highlighted in red, the angle between these two panels is used for validation
in the next section.

(a)

(b)

Figure 27: (a) The final configuration of the waterbomb origami. (b) Side view of the final configuration
with two panel edges highlighted in red.
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4.3.2 Helmholtz experiment

The same fabrication techniques as described in section 4.2.3 were used to construct the waterbomb pattern.
The only difference is that a hole was created in the center of the origami. This is done to make each hinge a
rectangle of which the stiffness is known. This also ensures that the hinges are connected to only the panels
and not to each other. The waterbomb sample can be seen in Fig. 28. The colors are used to distinguish
the panels from each other.

Figure 28: The waterbomb sample in the experimental setup.

The sample is placed in the test setup on its side to minimize the effect of gravity on the hinges. The
top view can be seen in Fig. 30. The applied magnetic field is applied in positive x direction. The top of the
figure shows the sample at 0mT and the bottom at 40mT. The magnetic moment direction of the blue and
red panels are shown with red arrows.

Figure 29: The waterbomb sample in the experimental setup at 0mT and 40mT.

In Fig. 30 two orange lines are drawn on the edges of the red and blue panels, the angle between these
lines is used to compare the experiment to the simulation data. A plot of the applied field vs the angle is
shown in Fig. 30. The black line is the analytical data and the blue line is the experimental. Similar to
the two-panel tests the experimental data has a larger curvature compared to the more straight line of the
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analytical data. The difference between the final angle of the analytical model and the experimental results
is 8.5%

Figure 30: Plot of the magnetic field vs the angle. The angle between the two highlighted panels in Fig. 30
is shown in blue. The results from the MATLAB simulation are shown in black.
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4.4 Example 2: 10 panel Miura ori

A common origami pattern is the Miura Ori, which is a combination of parallelograms that are mirrored
to create a symmetric shape. The pattern can be repeated to create a tessellation that is flat folding. For
this example, 8 panels of the Miura Ori are tested. The pattern can be seen in Fig. 31a. The pattern also
includes two extra panels labeled 9 and 10 in the figure, panel 9 is used as the fixed panel and panel 10 is
used to make it symmetric. The extra panels are added to allow the other panels to move freely without
having to be fixed since one of the panels needs to be fixed for the simulation.

(a) (b)

Figure 31: (a) Miura Ori origami pattern with the node and panel numbers. (b) Miura Ori origami pattern
with red arrows to indicate the magnetic moment direction of the initial configuration.

A magnetic moment is defined for each panel. The directions of the magnetic moment are placed in
such a way that if the origami is fully folded the magnetic moment would align with the direction of the
magnetic field. For this example all magnetic moments would point towards the positive x direction. Since
this pattern has 10 panels the magnetic moment matrix has 10 columns one for each panel:

M =

 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0.15 −0.15 0.25 −0.25 0.25 −0.25 0.15 −0.15 0 0

Am2. (51)

For this pattern, it was found that panels 3 to 6 needed higher magnetic moments to obtain the desired
deformation. These panels correspond to the middle four panels of the Miura Ori and are connected to other
panels on both sides. This likely makes it require higher moments to actuate compared to the outer panels
which are less restricted in their movement.

A magnetic field of 40 mT is applied in the positive x direction which results in the following torque
matrix in the initial configuration:

τ =

0 0 0 0 0 0 0 0 0 0
6 −6 10 −10 10 −10 6 −6 0 0
0 0 0 0 0 0 0 0 0 0

Nmm. (52)

The example is set up similarly to the waterbomb pattern so in the initial flat configuration the only
torque generated is around the y axis. As a result the forces obtained from the force decomposition are all in
the z direction. A summary of the variables used in the algorithm are shown below in table 6. The stiffness
and damping are the same as for the previous tests. The increment step is 0.25, this divides the applied field
into 4 smaller increments. As a result Ba increases by 10mT for each increment. Since for this example the
deflection does not have to be accurate for each increment but only for the final increment an intermediate
tolerance is used as described in the algorithm of section 3.3. The final increment has a smaller tolerance of
0.1.
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Table 6: Variables used in the Miura Ori simulation

Ba(mT) Kf (Nm/rad) Damping increment step residual tolerance intermediate tolerance400
0

 0.1960 4 0.25 0.1 0.5

The final deflection that is obtained is shown in Fig. 32. The structure has the desired folding behavior
of the Miura ori pattern where lower panels 1,4,5 and 8 have valley folds and upper panels 2,3,6 and 7 have
mountain folds. A rotation of about 35◦ is obtained for the upper panels and a deflection of 14mm at nodes
6 and 14.

Figure 32: The final configuration of a Miura Ori origami under an applied magnetic field.
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4.5 Example 3: Huffman waterbomb

Another example of an origami pattern that can be used as part of a larger tessellation is the Huffman
waterbomb. The design with node and panel numbers is shown in Fig. 33a. This pattern has a square panel
in the center with triangular panels around it. The triangle panels are all shaped so that they combine to
form squares of the same size as the center square. The triangles that combine to form a square fold onto
each other.

(a) (b)

Figure 33: (a) Huffman waterbomb origami pattern with the node and panel numbers. (b) Top view of
the Huffman waterbomb origami pattern with red arrows to indicate the magnetic moment direction of the
initial configuration.

The magnetic moment is defined for each panel the direction of which can be seen in Fig 33b. The
directions of the magnetic moment are placed in such a way that if the origami is fully folded the magnetic
moment would align with the direction of the magnetic field. For this example all magnetic moments would
point towards the positive z direction. Since this pattern has 17 panels the magnetic moment matrix has 17
columns one for each panel:

M = 0.15 ·

−1 −1 0 0 0 0 0 0 0 1 1 1 −1 0 0 −1 1
0 0 −1 1 0 1 −1 −1 1 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Am2. (53)

All panels have the same magnetic moment value of 0.15Am2. A magnetic field of 40 mT is applied in the
negative z direction which results in the following torque matrix:

τ =

 0 0 6 −6 0 −6 6 6 −6 0 0 0 0 6 −6 0 0
−6 −6 0 0 0 0 0 0 0 6 6 6 −6 0 0 −6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nmm. (54)

The torque generated from the magnetic actuation at the initial configuration is around the x and y axis.
The resulting force decomposition consists of forces in the z axis. A summary of the simulation variables used
for this example is shown below in table 7. The stiffness is the same as for the previous tests. The increment
step is 0.25, this divides the applied field into 4 smaller increments. As a result Ba is increases by 10mT for
each increment. Since for this example the deflection does not have to be accurate for each increment but
only for the final increment a higher intermediate tolerance is used as described in the algorithm of section
3.3. The amount of panels is also a lot larger then for the previous tests so a larger final residual tolerance
is used since the residual is larger for a higher amount of panels. For this test the panels also had to be
less rigid for the solver in the MERLIN program to find a solution. This was done by lowering the stiffness
of the bars, this allows the bars to stretch more easily and the panels to slightly deform. This is needed
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since triangular panels unlike square panels aren’t modeled with bending hinges that allow for the panel to
deform.

Table 7: Variables used in the Huffman waterbomb simulation

Ba(mT) Kf (Nm/rad) Damping increment step residual tolerance intermediate tolerance 0
0
−40

 0.1960 2 0.25 1 2

The final deflection that is obtained is shown in Fig. 34a. The model has the desired folding behavior that
is expected for this pattern. The panels achieve a rotation of around 30◦ to 40◦. The maximum deflection
is at nodes 2,4,7 and 11 and is around 15.5mm.

(a)

(b)

Figure 34: (a) The deflection of the Huffman waterbomb as a result of the applied magnetic field. (b) The
side view of the deflected huffman waterbomb pattern.
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5 Discussion

The magnetically actuated bar-and-hinge model had promising results with the samples tested in this paper.
With the current model flat magnetic origami can be simulated in a uniform magnetic field. This could
already be used to develop wireless deployable devices that fold and perform some operation based on an
applied magnetic field.

There are however improvements and additions that can be made to the model. An important limitation
is the application of the magnetic field since it is stationary during the folding of the origami. To achieve
larger deformations the field could rotate as the panels are deforming. With a static magnetic field the panels
rotate to align with the field but as the panels rotate the magnetic torque will decrease. If the magnetic
field could rotate while it is deforming then larger deformation might be possible. This cannot be easily
implemented into the current model since the deformation is always calculated from the unfolded state. If
the applied field is rotated the forces applied on the structure are on the undeformed origami instead of on
the already deformed origami. In order to achieve this an adaptive load needs to be applied to the structure
that can change based on the change in magnetic field.

More additions to the magnetic actuation can be made. The model only considers a uniform field that
generates a torque. However, if the field was not uniform, forces could also be generated and used to move the
panels. The magnetic interaction between the magnets within the origami is also not included in the current
model. Another limitation of the current model is the orientation of the origami in the initial configuration.
The origami needs to start from a flat undeveloped state since that is the state in which the magnetic
moments and the applied load are defined. However, origami structures are not always flat sheets but can
have more complex shapes. To improve this the magnetic moments and load could be defined in the local
coordinate system of each panel making it more general and allowing for many more origami structures to
be tested.

The triangular and parallelogram panel shapes that currently work with the model already allow for a
large variety of origami to be constructed. To have more possible panel shapes a force decomposition method
would need to be found for that specific shape. A more general solution that works with different panel
shapes could also be formulated. There is also a limitation with the parallelogram force decomposition.
Since a parallelogram is skewed compared to a square the corners of the panel either move closer or further
away from the center. The nodal force at the corners is obtained from the torque and the distance from the
center. As a result, the nodes further away from the center have a small force and the point close to the
center has a large force because the lever arm is different. This is not a problem for rigid panels since the
panels do not bend much. However, if panel bending would be a larger factor then this needs to be taken
into account.

When obtaining the simulation results for the examples shown in sections 4.4 and 4.5 some issues about
the use of the MERLIN program occurred. The MERLIN program has settings that are used in the solver
that solves the deformation, mostly related to the load factor in Eqn. 10. The settings are optimized for
a load that is applied. However, since the magnetic load changes with each increment, the settings that
work well for the first increment might not work for the last increment. In the examples, the settings were
optimized for the last increment and inaccuracies of the intermediate steps were ignored. As an improvement
to the model, the increment step size and amount of increments that are used with the load factor could be
automatically adjusted as the magnetic load changes.

Another challenge with the MERLIN program is with triangular panels. The bending hinges used in
parallelogram panels that allow the panels to bend are not present in triangular panels. So the triangular
panels are more rigid with the same settings compared to square panels. In order to solve larger origami
patterns it was found that panels that are fully rigid can have problems solving. A slight amount of panel
bending would help in solving for the deformation, however, triangular panels cannot bend in the model.
To compensate for this the bar stiffness was lowered instead, this allows for the three bars that make up the
triangle to stretch. This will however result in the panels being stretched and deformed. Both issues with
the MERLIN program could be resolved if the settings could be optimized based on the shape of the origami
and the load applied to it. This currently has to be done manually and can affect the results or lead to no
solution being found.

The two examples that were experimentally tested showed good results. The waterbomb pattern also
showed the expected deformation and folding pattern that was simulated. The sample construction can still
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be improved to be easier and more accurate. For the samples thin steel sheet was used that was manually
cut to size, this can lead to errors which can be seen in Fig. 28 where the center hole is uneven. The panels
are 3D printed and attached to the steel in the correct location using a 3D printed mold. When measured
the dimensions have relatively large variance that could lead to less accurate results. Especially since the
stiffness of the hinge is greatly effected by even small changes in the dimensions. Both of these production
methods could be improved with, for instance, laser cutting of the hinges and panels.

One unexpected result obtained from the tests is the stiffness measurement. The stiffness was shown
to be increasing while that is not modeled or expected. There could be a problem with the samples, for
instance, the magnet is assumed to be rigidly attached to the panel while there could be some movement
that is not taken into account. The measurement and calculation of the panel angles could also have issues
that are unaccounted for. The position of the sample needs to be in the same direction as the applied field,
this is also done manually and can lead to errors.
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6 Conclusions and Future Work

The simulation framework developed in this report is able to simulate the deformation of complex mag-
netically actuated origami patterns. The method is able to simulate origami patterns with triangular and
parallelogram panels which allows for a wide range of patterns to be simulated. From the experiments,
it can be concluded that the deformation obtained in testing matches the simulated results. The testing
methodology has some issues that could be improved. The calculated stiffness that is obtained from the
tests showed unexpected results likely caused by some part of the experiment and the data analysis being
inaccurate. For future testing more accurate construction and measurement of the samples would be needed.
This allows for smaller origami to be constructed and tested. With this method, small-scale wireless devices
can be simulated and designed. Such devices have potential applications in minimally invasive surgery.

In future work, the simulation framework can also be expanded. The current model considers only
magnetic torque generated from a uniform magnetic field. If a non-uniform magnetic field is used, forces
are generated on the magnet. If this is included in the model more options for magnetic actuation would be
possible. The applied magnetic field is also assumed to be static. A changing magnetic field could lead to
higher deflections and more complex magnetic control. This adaptation to the model likely requires large
changes to the algorithm or a different method to be used.
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A Appendix

A.1 AI declaration

During the preparation of this work the author used Grammarly in order to correct grammar mistakes and
improve the sentence structure. After using this tool/service, the author reviewed and edited the content
as needed and takes full responsibility for the content of the work. No other artificial intelligence tools were
used during the preparation of this work.

A.2 Short paper submission MARSS2024

A short paper that was submitted and accepted for the annual International Conference on Manipulation,
Automation and Robotics at Small Scales(MARSS). See next page.
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A Modeling Framework using Bar-and-Hinge Model
for Small Scale Magnetic Origami Devices

Sam Tijhuis1, Venkatasubramanian Kalpathy Venkiteswaran1,2

Abstract— This paper presents a method for analyzing
small-scale magnetically-actuated shape-changing devices using
conventional origami kinematics. The primary contributions are
formulations to decompose the magnetic load for analysis, and
implementation of an iterative solver to calculate deformation
under nonlinear force-deflection behaviour. The modeling
framework is demonstrated using two simulations and validated
through experiments on a magnetically-actuated waterbomb
origami.

I. INTRODUCTION

Origami engineering refers to the use of folding techniques
from the art of origami to create foldable devices [1]. This
method creates structures that can transform in ways that
may not be possible with conventional engineering solutions.
A reason to use origami in engineering is the shape changing
ability of origami structures. Similar to when a flat piece of
paper is folded to create various different origami shapes,
engineering origami can create structures that have multiple
resultant shapes depending on the folding process. Origami
techniques have been used in large scales such as in aerospace
engineering for deployable solar panels and sunshields [2]
and for buildings and bridges [3]. At small scales, origami
engineering also has been used in medical applications such
as devices used in tissue sealing [4] or tissue biopsy [5].

A challenge with foldable origami is to actuate the folding
movement. One way this can be achieved is with stimuli
responsive materials like shape memory polymers [6]. Another
way to generate the folding movement is by magnetic
actuation, which allows for wireless control of these devices,
particularly at small scales. With magnetic actuation, magnets
are added to a device that can then be controlled by applying
magnetic fields. The resultant loads steer the magnets and
actuate the device [7]. Magnetically controlled origami have
been used to create soft grippers that can be controlled
wirelessly [8]. Eliminating the need for on-board batteries
and other actuators also allows in making functional origami
devices at small scales [9].

For designing origami devices it would be useful to have a
method that is capable of simulating magnetically controlled
origami structures. The use of magnets in origami allows
for many different configurations of the magnets within the
device to achieve a wide range of actuation responses. When
small magnets are placed on individual panels of the origami
structure, an externally generated magnetic field can be used
to produce magnetic torques on the individual panels [10].

1Surgical Robotics Laboratory, Department of Biomechanical Engineering,
University of Twente, Enschede, The Netherlands.

2E-mail: v.kalpathyvenkiteswaran@utwente.nl.

By optimizing the configuration of the individual magnets, it
is possible to generate a (un)folding origami response to suit
a given application. However, one of the primary challenges
with magnetic origami is that the magnetic torque changes
as the structure (un)folds, thus requiring an iterative solution
for a theoretical model.

The work presented in this short paper uses a modified
version of the bar and hinge model presented by Liu and
Filipov [11] to approximate the mechanical behaviour of 3D
origami structures under a uniform magnetic field . This model
is able to simulate the deflection of an origami structure for
any given crease pattern with predefined magnet placements
and orientations. The study is validated through simulations
of different shapes of magnetic origami. One of the structures
is also experimentally demonstrated to undergo folding in a
magnetic field (Fig. 1).

II. THEORETICAL MODEL

An example of magnetic actuation of an origami structure
can be seen in Fig. 1. Each panel has a magnetic moment
(m), with directions indicated by arrows on each panel. An
external uniform magnetic field (B) creates a torque on the
panels (τ = m×B). The resultant magnetic torque tries
to align each magnetic moment with the direction of the
external field. The stiffness of the origami structure produces
a counteracting effect, primarily caused by the stiffness of
the origami hinges.

In this study, a bar and hinge model is used to calculate the
deflection of origami structures under load [12]. The bar and
hinge model is capable of calculating deflections as a result
of forces applied to nodes in the structure. The magnetic
actuation applies a moment to the center of a panel. For this
reason a method to apply forces to the nodes based on a
specified moment needs to be developed. The goal of this
method is to obtain forces that result in the same deflection as
applying a moment does. Two force decomposition methods
were constructed; one for parallelogram panels and one for
triangular panels. With these panel shapes a large variety of
origami shapes can be constructed.

For a parallelogram panel, the force decomposition is
performed in two steps. First, the applied torque (τ =
[τx, τy, τz]) is decomposed into four torques (τi) that are
applied to each bar (i = 1, 2, 3, 4)of the parallelogram panel.
Second, the decomposed torques are use to obtain the nodal
force. The torque decomposition is shown in Fig. 2 with the
applied torque shown in red and the four decomposed torques
shown in black. For load equivalence,
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Fig. 1: (a) Waterbomb origami pattern with embedded magnets. Scale bar is 5mm. (b) Side view of origami deforming under magnetic
field B, with magnetic moment m indicated by red arrows. (c) Comparison of deflection angle from theoretical model and experiment.

τ1 = τ3 = a1n1 + [0, 0,
τz
4
] (1)

τ2 = τ4 = a2n2 + [0, 0,
τz
4
] (2)

where
a1 =

τyn2x − n2yτx
2n1yn2x − 2n1xn2y

, (3)

a2 =
τyn1x − n1yτx

2n2yn1x − 2n1yn2x
. (4)

and ni are normal vectors for each bar. From this, the nodal
forces (k = 1, 2, 3, 4) can be calculated as

Fk =
1

2

τp × rp
rp · rp

+
1

2

τq × rq
rq · rq

(5)

where ri are length vectors that go from the center of bars p
and q which are adjacent to node k to their end points.

For a triangular panel the approach is similar to that
of the parallelogram panel. The first step is create three
outward normal torques that should add up to the applied
torque. This can be seen in Fig. 2(b). However, in this case,
the decomposition cannot be solved without adding more
constraints. This issue can be overcome by using only two
decomposed torques are necessary with the third one being
zero.

As an example if τ2 is chosen to be zero and the equations
for the others torques are given as

Fig. 2: Magnetic torque decomposition in (a) parallelogram and (b)
triangular panels. a and b represent bars adjacent to node 1.

τ1 = a1n1 + [0, 0,
τz
3
] (6)

τ3 = a3n3 + [0, 0,
τz
3
] (7)

where the solutions to a1 and a3 are:

a1 =
τxn3y − n3xτy
n1xn3y − n3xn1y

, (8)

a3 =
τxn1y − n1xτy
n3xn1y − n1xn3y

. (9)

For different orientations and shapes of a triangular panel a
different torque might be chosen to be zero giving similar
equations for a1, a2 and a3. Obtaining the nodal forces is
done in the same way as for parallelogram panels.

To implement these formulations the MERLIN program
developed by Liu et al. [13] is adapted to include magnetic
actuation. An iterative process is implemented to account for
the change in magnetic moment direction as the panels rotate
(Algorithm 1).

Algorithm 1
Input : Damping and tolerances damp, tol

Initial magnet orientations M0

Output : Final magnet orientations M1

for incr ← 0 to 1 do
iter = 1; Bai = incr ·Ba

while res < tol do
τ = Miter−1 ×Bai ▷ Magnetic torque
τ → F ▷ Nodal forces from torque
F → u ▷ Calculate deflection (MERLIN)
u→Miter ▷ update Miter

Miter = Miter−1+(Miter−Miter−1)/damp
▷ Damping applied

iter = iter + 1
res = norm(Miter −Miter−1)

▷ Residual is change in Miter

end
M1 = Miter

end
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Fig. 3: (a) Waterbomb pattern panels and nodes (b) Magnetic moment directions (c) Deflected origami under X-direction magnetic field.

Fig. 4: (a) Adapted Miura-ori panels and nodes (b) Magnetic moment directions (c) Deflected origami under X-direction magnetic field.

III. RESULTS

The solution process is tested in simulation of two
origami patterns and experimental evaluation of one pattern.
Simulations are carried out on a waterbomb pattern consisting
of triangular panels and a miura-ori pattern consisting of
parallelograms (Figs. 3 and 4).

The waterbomb pattern was also produced using a com-
bination of 3D printing and sheet metal (Fig. 1). Magnets
were added to the panels and the sample was subjected to an
external magnetic field in a setup of electromagnetic coils.
It is observed that the deflection angle matches the results
from the theoretical model.

IV. CONCLUSIONS AND FUTURE WORK

The methodology developed here allows for simulation of
magnetically-actuated origami devices with complex magnetic
orientations and for large deformations. The triangular and
parallelogram panels cover a wide range of origami shapes.
Currently, there are two major assumptions in this method:
(1) the applied magnetic field is uniform and therefore only
results in torques on the panels, and (2) the direction of the
applied magnetic field does not change during actuation. Both
of these can be addressed in future implementations.

This method can be used to design new origami-based
deployable devices at small scales. It is envisioned that this
approach will find use in the development of small-scale
wireless devices, such as shape-morphing robots or therapeutic
patches for minimally invasive surgical devices.
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