


i
i

“output” — 2024/8/18 — 19:35 — page i — #1 i
i

i
i

i
i

CONTROL OF TETHERLESS MAGNETIC HELICAL

DEVICES USING A SYNCHRONIZED ROTATING

MAGNETIC ACTUATION SYSTEM

Zhengya Zhang



i
i

“output” — 2024/8/18 — 19:35 — page ii — #2 i
i

i
i

i
i



i
i

“output” — 2024/8/18 — 19:35 — page iii — #3 i
i

i
i

i
i

Control of Tetherless Magnetic Helical
Devices Using A Synchronized Rotating

Magnetic Actuation System

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. J.M.A. Scherpen
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Monday 9 September 2024 at 12.45 hours

by

Zhengya Zhang

born on 16 November 1988
in Anhui, China



i
i

“output” — 2024/8/18 — 19:35 — page iv — #4 i
i

i
i

i
i

Supervisors

Prof. S. Misra

Dr. I.S.M. Khalil

Assessment Committee

Prof. W. Xue

Prof. M. Hong

Dr. P. K. Sharma



i
i

“output” — 2024/8/18 — 19:35 — page v — #5 i
i

i
i

i
i

This work is part of the research project MAESTRO.

The reported research is supported by the European Research Council
(ERC) under the European Union Horizon 2020 Research, Innovation pro-
gramme under Grant 866494 project MAESTRO, and China Scholarship
Council.



i
i

“output” — 2024/8/18 — 19:35 — page vi — #6 i
i

i
i

i
i

This dissertation has been approved by:

Prof. Dr. Sarthak Misra
Dr. Islam S. M. Khalil

Cover design: Zhengya Zhang
Lay-out: Sumit Mohanty
Printed by: Ipskamp

©2024; Zhengya Zhang, The Netherlands. All rights reserved. No parts
of this thesis may be reproduced, stored in a retrieval system or
transmitted in any form or by any means without permission of the
author. Alle rechten voorbehouden. Niets uit deze uitgave mag worden
vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande
schriftelijke toestemming van de auteur.



i
i

“output” — 2024/8/18 — 19:35 — page vii — #7 i
i

i
i

i
i

In memory of my grandma



i
i

“output” — 2024/8/18 — 19:35 — page viii — #8 i
i

i
i

i
i



i
i

“output” — 2024/8/18 — 19:35 — page i — #9 i
i

i
i

i
i

Samenvatting

Tetherless magnetische helische apparaten (TMHDs), inclusief varianten
in de vorm van een helix, schroef en twist, tonen aanzienlijk potentieel in
biomedische toepassingen, met name vanwege hun vermogen om op afstand
te worden aangestuurd om diep in weefsels binnen het menselijk lichaam
te navigeren. Het primaire doel van dit proefschrift is om stabiele en ef-
fectieve navigatie van TMHDs te bereiken in fysiologische omgevingenen
en daarmee het fundament te leggen voor hun integratie in biomedische
toepassingen zoals gerichte geneesmiddelafgifte en materiaalverwijdering.
Hoofdstuk 1 biedt een uitgebreid overzicht van verschillende aspecten met
betrekking tot TMHDs, waaronder hun diverse varianten, magnetische aan-
drijfsystemen, lokalisatiesensortechnologieën, en hun uitgebreide toepassin-
gen in het biomedische veld. Dit overzicht dient als waardevolle referentie
voor de ontwikkeling van op permanente magneten gebaseerde robotische
systemen in Hoofdstuk 2, en het ontwerp en de controle van TMHDs in
Hoofdstukken 3 en 4.

Het magnetische veld dat wordt geproduceerd door robotsystemen op
basis van elektromagneten en permanente magneten is een haalbare op-
tie als externe stimulus om de beweging van een TMHD in fysiologis-
che omgevingen mogelijk te maken. Hoofdstuk 2 presenteert een op
permanente magneten gebaseerd robotisch systeem met een open config-
uratie, waarbij twee gesynchroniseerde roterende permanente magneten
worden gebruikt om tijd-variërende roterende magnetische velden te gener-
eren. Deze velden worden gebruikt om een koppel te genereren op een
TMHD in stromingsomgevingen met een laag Reynolds-getal. De configu-
ratie van het systeem is verticaal symmetrisch, waardoor permanente mag-
neten een gradiëntvrije ruimte kunnen uitoefenen binnen het midden van
de werkruimte. De kinematica van configuratie naar positie en de map-
ping van positie naar veld van het systeem zijn afgeleid. Een dergelijke
afleiding vormt de basis voor het realiseren van de bewegingsbesturing van
TMHDs in driedimensionale ruimte. Het kinematische systeem heeft één
translatie-vrijheidsgraad en drie rotatie-vrijheidsgraden, waardoor het de
houding van actuatormagneten met vier vrijheidsgraden kan regelen. Het
niet-lineaire inverse kinematische probleem wordt opgelost met behulp van

i
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een optimalisatie-algoritme. De experimentele resultaten van dit niveau
van controle tonen aan dat de gemiddelde absolute fout en de maximale
volgfout van driedimensionale bewegingsbesturing respectievelijk 1.18 mm
en 2.64 mm zijn.

Om het gewenste zwemgedrag van TMHDs in fysiologische omgevingen
te bereiken, is het van essentieel belang om de factoren te onderzoeken die
hun zwemgedrag bëınvloeden onder die specifieke omstandigheden. Hoofd-
stuk 3 presenteert een variant van TMHD, genaamd tetherless magnetis-
che schroefvormige apparaten (TSMDs), die wordt gekenmerkt door het
gesloten-lusgedrag van een agar gel weefselmodel met behulp van ons op
permanente magneten gebaseerde robotische systeem. De voorgestelde
gesloten-lus besturingsstrategie maakt gebruik van een analytische bereken-
ing van de zwemsnelheid van de TSMD in visco-elastische vloeistoffen en
de magnetische punt-dipool benadering van magnetische velden. De ana-
lytische oplossing is gebaseerd op de Stokes/Oldroyd-B vergelijkingen, en
de voorspellingen worden vergeleken met experimentele resultaten bij ver-
schillende aandrijffrequenties van de TSMD. Onze metingen komen overeen
met de theoretische voorspelling van het analytische model vóór de step-out
frequentie van de schroef, vanwege de lineariteit van het analytische model.
We demonstreren open-lus besturing in tweedimensionale ruimte, en punt-
tot-punt gesloten-lus bewegingsbesturing van de TSMD (lengte en diameter
van respectievelijk 6 mm en 2 mm) met een maximale positioneringsfout
van 1,8 mm.

Hoofdstuk 4 presenteert een variant van TMHD, genaamd tether-
less twist-vormige magnetische apparaten (TTMDs), die wordt onderzocht
met een analyse van invloedrijke factoren zoals TTMD-geometrische pa-
rameters (aantal starts, straal, spoed en amplitude) en aandrijffrequentie
op de TTMD-zwemsnelheid in visco-elastische vloeistoffen. Experimenten
worden uitgevoerd in een agar gel fantoom onder de aandrijving van een
gesynchroniseerd roterend magnetisch veld. De zwemsnelheid van elk type
TTMD verkregen uit experimenten werd vergeleken met die voorspeld door
een bestaand model voor zwemsnelheid onder een specifieke conditie. Door
deze vergelijking ontdekten we het effectieve voorspellingsvermogen van het
model voor de TTMD-zwemsnelheid bij lage aandrijffrequenties (onder de
step-out frequentie), maar merkten we een afname in nauwkeurigheid op
bij hoge aandrijffrequenties (in de buurt van of boven de uitstapfrequentie).
Het zwemsnelheid voorspellingsmodel wordt vervolgens toegepast in de con-
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text van TTMD-bewegingsbesturings-experimenten, waarbij de geschikt-
heid ervan voor TTMD-bewegingsbesturing wordt onthuld, met name bij
het voorspellen van TTMD-zwemsnelheid in visco-elastische vloeistoffen bij
lage aandrijffrequenties (onder de step-out frequentie). Deze mogelijkheid
draagt bij aan tijdsbesparing bij het berekenen van TTMD positie infor-
matie.

Hoofdstuk 5 schetst de belangrijkste bevindingen van dit proefschrift,
samen met toekomstige richtingen. Het huidige werk legt het fundament
voor de volgende stadia in de toepassing van TMHDs in de biomedische
techniek.
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Summary

Tetherless magnetic helical devices (TMHDs), including helix-, screw-, and
twist- shaped variants, exhibit considerable potential in biomedical appli-
cations, particularly for their capacity to be remotely controlled to navi-
gate deep tissues within the human body. The primary aim of the the-
sis is to achieve stable and effective navigation of TMHDs in physiologi-
cal environments, thereby laying the groundwork for their integration into
biomedical applications such as targeted drug delivery and material re-
moval. Chapter 1 provides a comprehensive overview of various aspects
related to TMHDs, encompassing their diverse variants, magnetic actuation
systems, localization sensing technologies, and their extensive applications
in the biomedical field. This overview serves as a valuable reference for the
development of permanent magnet-based robotic systems in Chapter 2,
and the design and control of TMHDs in Chapters 3 and 4.

The magnetic field produced by electromagnet- and permanent magnet-
based robotic systems is a viable option as an external stimulus to enable
the motion of a TMHD in physiological environments. Chapter 2 provides
a permanent magnet-based robotic system with an open configuration using
two synchronized rotating permanent magnets to generate time-varying ro-
tating magnetic fields. These fields are used to apply torque on a TMHD in
low-Reynolds-number flow regimes. The configuration of the system is ver-
tically symmetric, allowing permanent magnets to exert gradient-free space
within the center of the workspace. The configuration-to-pose kinematics
and the pose-to-field mapping of the system are derived. Such derivation is
the basis for realizing the motion control of TMHDs in three-dimensional
space. The kinematic system holds one translational degree of freedom
(DOF) and three rotational DOFs, allowing it to control the pose of actu-
ator magnets with four DOFs. The nonlinear inverse kinematic problem is
solved using an optimization algorithm. The experimental results of this
level of control demonstrate that the mean absolute error and the maxi-
mum tracking error of three-dimensional motion control are 1.18 mm and
2.64 mm, respectively.

To attain the desired swimming behaviors of TMHDs in physiologi-
cal environments, it is imperative to investigate the factors that impact

v



i
i

“output” — 2024/8/18 — 19:35 — page vi — #14 i
i

i
i

i
i

their swimming behaviors in those specific conditions. Chapter 3 presents
one variant of TMHD, called tetherless screw-shaped magnetic devices
(TSMDs), which is characterized by the closed-loop behavior of an agar gel
tissue phantom using our permanent magnet-based robotic system. The
proposed closed-loop control strategy capitalizes on an analytical calcula-
tion of the swimming speed of the TSMD in viscoelastic fluids and the
magnetic point-dipole approximation of magnetic fields. The analytical
solution is based on the Stokes/Oldroyd-B equations, and its predictions
are compared to experimental results at different actuation frequencies of
the TSMD. Our measurements match the theoretical prediction of the an-
alytical model before the step-out frequency of the screw, owing to the
linearity of the analytical model. We demonstrate open-loop control in
two-dimensional space and point-to-point closed-loop motion control of the
TSMD (length and diameter of 6 mm and 2 mm, respectively) with a max-
imum positioning error of 1.8 mm.

Chapter 4 presents one variant of TMHD, called tetherless twist-
shaped magnetic devices (TTMDs), which is examined with an analysis of
influential factors such as TTMD geometry parameters (Number of Starts,
Radius, Pitch, and Amplitude) and actuation frequency on TTMD swim-
ming speed in viscoelastic fluids. Experiments are performed in an agar
gel phantom under the actuation of a synchronized rotating magnetic field.
The swimming speed of each type of TTMD obtained from experiments was
compared with that predicted by an existing swimming speed prediction
model under a specific condition. Through this comparison, we discover the
model’s effective prediction capability for TTMD swimming speed at low
actuation frequencies (below the step-out frequency), yet note a decrease
in accuracy at high actuation frequencies (near or above the step-out fre-
quency). The swimming speed prediction model is then applied in the
context of TTMD motion control experiments, revealing its suitability for
TTMD motion control, particularly in predicting TTMD swimming speed
in viscoelastic fluids at low actuation frequencies (below the step-out fre-
quency). This capability contributes to time savings in computing TTMD
position information.

Chapter 5 outlines the primary findings of this thesis, along with future
directions. The present work establishes the groundwork for the subsequent
stages in the application of TMHDs in biomedical engineering.
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1
Introduction

Miniature devices, varying in size from micrometers to millimeters, with the
ability to perform specific tasks, hold significant applications in the field
of biomedicine [1]–[3], environmental protection [4]–[6], aerospace [7]–[9].
Based on the energy sources that actuate the miniature devices, they can
be classified into acoustic devices [10]–[12], optical devices [13]–[15], mag-
netic devices [16]–[18]. Among these devices, magnetic devices attract the
most attention because of their exceptional precision in control, versatility,
and low power consumption. In particular, tetherless magnetic devices, as
a subclass of magnetic device, are distinguished with their wireless actu-
ation capabilities. Tetherless magnetic devices achieve wireless actuation
through their responsiveness to the stimuli of the external magnetic field.
Thereon, the motion control of tetherless magnetic devices becomes attain-
able by manipulating the characteristics of an external magnetic field, such
as intensity, direction, and spatial distribution. Such wireless controllabil-
ity opens up the possibility of remotely using miniature tetherless magnetic
devices as tools in environments where larger instruments are impractical.
As a result, it enables them a competitive advantage, notably in minimiz-
ing patient trauma during surgical interventions, exemplified in procedures
like minimally invasive surgery [19]–[23].

Categorized by the flexibility of materials composing their structure,
tetherless magnetic devices fall into two primary divisions: tetherless mag-
netic rigid devices and tetherless magnetic soft devices. Tetherless mag-
netic rigid devices are fashioned from rigid or hard materials, ensuring sta-
ble, robust frameworks ideal for precise control and stability-centric tasks.

1

1



i
i

“output” — 2024/8/18 — 19:35 — page 2 — #20 i
i

i
i

i
i

1. Introduction

Figure 1.1: Design, actuation, localization, and application of tetherless mag-
netic helical devices (TMHDs): (A) The basic types of TMHDs, (B) The vari-
ants of TMHDs, (C) Stationary electromagnetic actuation system, (D) Mobile
electromagnetic actuation system, (E) Single permanent magnet-based actuation
system, (F) Dual permanent magnet-based actuation system, (G) Multiple perma-
nent magnet-based actuation system, (H) Hall sensor-based position sensing, (I)
Utrasound-based position sensing, (J) Camera-based position sensing, (K) Medi-
cal Diagnosis, (L) Targeted Delivery, (M) Blood clots removal.

Conversely, tetherless magnetic soft devices are fashioned using flexible or
extensible materials, granting them flexibility and deformability [24]–[28],
making them better suited for adaptive environments or applications ne-
cessitating suppleness. The body of tetherless magnetic rigid devices can

2

1
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1.1 Design principles of tetherless magnetic helical devices

be designed into various shapes such as spherical shape [29], helical shape
[30], or burr-like porous spherical structure [31], to enhance their maneu-
verability in complex environments. Tetherless magnetic rigid devices with
a helical shape, called tetherless magnetic helical devices (TMHDs), un-
dergo rotational motion when subjected to a rotating magnetic field. Such
rotation creates a twisting motion in the surrounding fluid, generating a
reactive force that propels the TMHDs forward.

To encapsulate the evolution of TMHDs, several pertinent examples will
be presented, highlighting the design principles, actuation systems, position
sensing, and applications within the biomedical sphere (Fig. 1.1). Section
1.1 delves into the design principles. TMHDs are divided into basic types
(Fig. 1.1A) and variants derived from these basic types (Fig. 1.1B). Sec-
tion 1.2 introduces magnetic actuation systems categorized into two groups:
those utilizing electromagnetic coils and those relying on permanent mag-
nets. Further subdivision reveals that electromagnetic coils-based actua-
tion systems can be classified into stationary and mobile types (Figs. 1.1C
and 1.1D), while permanent magnet-based actuation systems can be cat-
egorized as single permanent magnet-based type (Fig. 1.1E), dual perma-
nent magnet-based type (Fig. 1.1F), and multiple permanent magnet-based
type (Fig. 1.1G). Section 1.3 explores position sensing technology utilized
by TMHDs, involving camera vision-based sensing (Fig. 1.1H), ultrasound-
based sensing (Fig. 1.1I), and hall sensor-based sensing (Fig. 1J). Section
1.4 introduces the biomedical uses of TMHDs, encompassing three areas:
medical diagnosis (Fig. 1.1K), targeted delivery (Fig. 1.1L), and blood clots
removal (Fig. 1.1M). The final section offers our perspectives and highlights
the challenges encountered within the domain of TMHDs.

1.1 Design principles of tetherless magnetic heli-
cal devices

TMHDs can navigate in a low-Reynolds-number environment due to their
miniature dimensions. Under low-Reynolds-number environments, viscous
forces are relatively pronounced, while inertial effects are comparatively
weak. This results in fluid behavior being primarily governed by viscous
effects. Researchers have created diverse shapes by modifying the elements
that make up a TMHD, catering to task requirements in low-Reynolds-
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1. Introduction

number environments. The elements making up the structure of a TMHD
include basic types, head tip types, and geometric parameters, as depicted
in Fig. 1.2(a). The three fundamental types of TMHDs are those that are
helix-shaped, screw-shaped, and twist-shaped. The ends of a TMHD can be
designed as either flat or tapered, depending on the specific requirements for
drilling. The geometrical parameters, such as the pitch, diameter, length,
taper, frame thickness, and cross-section shape, can be fine-tuned to achieve
optimal propulsion efficiency. Achieving such optimization demands a thor-
ough understanding of the swimming characteristics of TMHDs. The op-
timal design of TMHDs is predominantly undertaken through theoretical
studies, experimental methodologies, or simulation techniques facilitated
by specialized software.

Tetherless helix-shaped magnetic devices (THMDs), as a subclass of
TMHD, have been extensively studied to improve their swimming perfor-
mance. In theoretical research, Purcell introduced a comprehensive propul-
sion model [44], [45], facilitating the computation of non-fluidic applied
torque and force on a THMD using translational and angular speeds en-
capsulated in a propulsion matrix. Each element of this matrix is a func-
tion of THMD geometrical parameters and fluid viscosity, employing the
resistive force theory [46]. This model provides a quantifiable means for
exploring the impact of THMD geometry and fluid viscosity on swimming
speed within a low-Reynolds-number environment. It establishes a foun-
dation for optimizing THMD design to improve its fluidic performance.
Building upon this model, Wang et al. investigated the influence of geo-
metric parameters, such as pitch, radius, and frame thickness of a THMD
(Fig. 1.2(b)-i), on its swimming performance [32]. This performance was
characterized by parameters such as relative velocity, relative maximum
velocity, relative step-out frequency, and the relative slope of v/ω (where v
and ω represent the translational velocity and angular velocity of a THMD,
respectively). These investigations were conducted theoretically to estab-
lish a foundation for the geometric design of THMDs. Xin et al. introduced
a new type of conical hollow THMDs (Fig. 1.2(b)-ii), showcasing a 50%
enhancement in forward swimming capability and a 70% reduction in lat-
eral drift compared to straight THMDs through experimental approaches
[33]. In addition, employing numerical simulation using the finite element
method through commercial software presents a viable approach for opti-
mizing THMD geometric features. Quispe et al. explored the optimization
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1.1 Design principles of tetherless magnetic helical devices

Figure 1.2: Optimal design of tetherless magnetic helical devices (TMHDs). (a) A
table shows the elements that make up the structure of a TMHD: three basic types
(helix- screw- and twist-type), three tip types (single-ended drill, single-ended drill,
and no drill), and geometric parameters (such as pitch, diameter, length, taper,
frame thickness, and cross-section shape). (b) Tetherless helix-shaped magnetic
devices (THMDs). i, A-III-1,2,5 [32]. ii, A-III-1,4 [33]. iii, A-III-6 [34]. (c)
Tetherless screw-shaped magnetic devices (TSMDs). i, B-III [35]. ii, B-III, [36].
iii, B-III-1,3 [37]. iv, B-I-1, [38]. v, B-II-1 [39]. (d) Tetherless twist-shape magnetic
devices (TTMDs). i, C-III-6 [40]. ii, C-II [41]. iii, C-II [42]. iv, C-III-1 [43].
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1. Introduction

of two geometric characteristics linked to the helical shape and cross-section
shape (Fig. 1.2(b)-iii) to attain optimal performance in both swimming and
pumping [34]. In this context, fluid and structural dynamics are handled
using the finite element method with the support of commercial software,
COMSOL Multiphysics.

Tetherless screw-shaped magnetic devices (TSMDs), as a subclass of
TMHD, have primarily been designed as magnetic capsules. Such designs
require researchers to consider not only their swimming capability but also
their proficiency to perform particular tasks in the optimal design of the
devices’ structure. Kusuda et al. reported a TSMD designed in the shape
of a capsule with an integrated permanent magnet (Fig. 1.2(c)-i). In this
instance, the capsule undergoes rotation propelled by a rotating magnetic
field. This process generates thrust through the spiral structure on the
outer surface of the capsule, allowing for either forward or reverse move-
ment based on the direction of rotation. Guo et al. proposed a novel TSMD
featuring a symmetrical structure (Fig. 1.2(c)-ii) and gravity compensa-
tion, showcasing optimal dynamic traits for forward-backward, upward-
downward motion, and inclined plane motion [36]. Leclerc et al. devised
TSMDs with different pitches and lengths (Fig. 1.2(c)-iii), determining the
optimal design for swimming performance through assessment based on
average vertical velocity and maximum recorded speed [37]. Lee et al. fab-
ricated the TSMDs with varying pitches (Fig. 1.2(c)-iv) to analyze their im-
pact on thrust force and ascertain the optimal pitch for improved propulsion
and drilling performance within a three-dimensional (3-D) phantom vascu-
lar network [38]. Furthermore, the structure of TSMDs is demonstrated
to be not only associated with their locomotion performance but also con-
nected to the interactions between the TSMDs and immune cells. Yasa et
al. found that macrophages and splenocytes from mice can differentiate
and trigger diverse immune responses depending on the helical turn num-
bers of the TSMDs (Fig. 1.2(c)-v). This phenomenon occurs even when
these TSMDs share identical sizes, bulk physical properties, and surface
chemistries. Interestingly, the two-turn TSMDs, which demonstrated supe-
rior locomotion performance, also turned out to be the most immunogenic
[39]. Therefore, optimizing the structure of TSMMs is a viable approach
for achieving high locomotion performance and low immunogenicity simul-
taneously.

Tetherless twist-shaped magnetic devices (TTMDs), as a subclass of
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TMHD, have predominantly been developed as magnetic drillers or drug-
delivery carriers. Li et al. proposed a swimming speed prediction model
for TTMDs (Fig. 1.2(d)-i) in viscoelastic fluids, providing guidance for the
structural optimization of TTMDs [40]. Li et al. revealed that employing
a distinctive twisted helical structure, in conjunction with a high aspect
ratio in cross-section (Fig. 1.2(d)-ii), facilitates effective navigation of a
TTMD with a diameter in the hundreds of micrometers within mouse liver
tissue [41]. This provides a reference for the geometric design of TTMDs
to move within dense biological tissue. Jia et al. reported a TTMD fea-
turing a double-curved conical ribbon structure (Fig. 1.2(d)-iii), with the
objective of attaining enhanced stability and eliminating swinging during
low-frequency spiral propulsion [42]. In certain scenarios, such as drug de-
livery, besides pursuing the devices’ swimming performance, there is also
a need to pursue their load-carrying capacity. Peters et al. found that
single twist-type TTMDs (Fig. 1.2(d)-iv) exhibit a surface area increase
exceeding 150% compared to the THMD with similar feature size without
sacrificing the forward speed of more than one body length per second [43].
This results in a micro-robotic platform for swimming with improved load
capacity, making it suitable for potential biomedical applications in the
future.

1.2 Magnetic actuation systems

Magnetic actuation systems can be categorized into electromagnetic coil-
based actuation systems and permanent magnet-based actuation systems.
Each system type comes with its own set of strengths and weaknesses. The
selection of the most suitable actuation system depends on the particular
application scenarios. For instance, in situations requiring a complete shut-
down of the magnetic field, the preferred choice would be an electromagnetic
coil-based actuation system. Conversely, in scenarios where avoiding the
use of an external power source to generate a magnetic field is crucial, a
permanent magnet-based actuation system might be the optimal selection.

1.2.1 Electromagnetic coil-based actuation systems

Electromagnet-based actuation systems can generate a relatively uniform
magnetic field, which is crucial for specific experiments and tests, especially
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1. Introduction

when a stable and consistent magnetic field is necessary. Moreover, mod-
ulating the coil size and electrical current enables exact adjustment of the
magnetic field’s strength and orientation, ensuring heightened precision in
experimental settings.

The electromagnet-based actuation system can be broadly classified into
two main types: stationary, in which electromagnetic coils remain immo-
bile; and mobile, in which either a portion or all of the electromagnetic coils
are designed to be movable. One simple and reliable method for construct-
ing a stationary electromagnetic actuation system is to involve the use of
orthogonal pairs of coils [47]–[50]. Typically, an electromagnetic actuation
system is structured with three sets of orthogonal Helmholtz coils, where
each set comprises two identical coils strategically positioned at a specified
separation distance (Fig. 1.3(a)). Such an electromagnetic actuation system
allows for the accurate and uniform generation of a magnetic field within
the central region under controlled conditions. Numerous applications have
utilized it for the manipulation of magnetic devices [51]–[56]. To enhance
flexibility and exert greater control over the resulting magnetic field, re-
searchers have proposed electromagnetic actuation systems comprising an
increased number of coils, exhibiting a more complex configuration. Khalil
et al. employed an eight-coils-based actuation system (Fig. 1.3(b)). The
eight coils are divided into two sets, namely the lower set and upper set,
with each set consisting of four coils. The lower set includes four coils posi-
tioned at a 45-degree angle to the horizontal plane, and the upper set also
contains four coils with a comparable orientation. These sets are mounted
orthogonally to each other. This system can produce a maximum magnetic
field of 85 mT, and field gradients of 1.62 T/m [57].

Unlike stationary systems that boost their flexibility by augmenting the
number of coils, mobile electromagnetic actuation systems improve their
flexibility and control capability by enabling controlled movement of the
coils. Sikorski et al. introduced an electromagnetic actuation system named
BigMag (Fig. 1.3(c)), comprising six coils positioned on two symmetrical
mobile frames, with each frame accommodating three coils [58]. The sys-
tem produces magnetic fields of at least 40 mT in all directions within its
operational area and delivers gradients of up to 1 T/m. Utilizing the Big-
Mag, Venkiteswaran et al. executed the manipulation of a magnetic soft
robot employing torque-based actuation [59], or gradient-based actuation
[62]. Oliveira et al. performed closed-loop motion control on an unteth-
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1.2 Magnetic actuation systems

Figure 1.3: Electromagnet-based actuation systems. Stationary electromagnet
based actuation systems: (a) Helmholtz coils-based actuation system [56]. (b)
Eight electromagnetic coils-based actuation system [57]. Mobile electromagnet-
based actuation systems: (c) Six electromagnetic coils-based actuation system
(BigMag) [58] [59], (d) Three parallel mobile coils-based electromagnetic actuation
system (DeltaMag) [60], (e) Industrial robot-assisted electromagnetic actuation
system [61].

ered magnetically-actuated soft robot using ultrasound images for feedback
[63]. Despite superior performance in steering magnetic devices, BigMag’s
workspace size is limited. To pursue extensive workspace, Yang et al. pre-
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sented an electromagnetic actuation system named DeltaMag (Fig. 1.3(d)),
employing parallel mobile coils [64]. The workspace diameter of DeltaMag
is 70% of the overall prototype diameter. In a subsequent phase, the study
delved into the optimal parameter design of a DeltaMag, which comprises
three mobile coils [65]. Utilizing DeltaMag, Yang et al. conducted path-
following experiments with a magnetic microrobot in a stomach-like model
[60]. Additionally, they introduced a navigation framework, representing
the initial stride towards achieving autonomous control of a magnetic mi-
crorobot in a large workspace [66]. To increase flexibility in the positioning
of the coils in a DeltaMag, one improved approach is to replace all the link-
ages with robotic arms. This approach may address potential constraints
within the workspace of the DeltaMag. Following this line of thought, Du
et al. developed an electromagnetic actuation system named RoboMag,
comprising three 4-axis robotic arms capable of independently adjusting
the relative positions of three mobile coils [67]. The RoboMag prototype
has the capability to program a magnetic field at a specified point within a
hemispherical space with a diameter of 152 mm. Utilizing RoboMag, they
navigated a magnetic device with the assistance of ultrasound imaging in
phantoms mimicking tissue with branching and tortuous structures [68].
An alternative approach for coils with mobility is to mount the coils at the
end effector of an industrial robotic manipulator. Alasli et al. showcased
an electromagnetic actuation system integrating a 6-degree-of-freedom in-
dustrial robotic manipulator with electromagnets that can move coaxially
(Fig. 1.3(e)) [61].

Nevertheless, electromagnet-based actuation systems require a substan-
tial amount of electrical power to generate a magnetic field, leading to
heightened energy consumption. Consequently, achieving a magnetic field
of sufficient intensity or stability might not be feasible in certain situa-
tions. An alternative solution to tackle this issue could be a permanent
magnet-based actuation system.

1.2.2 Permanent magnet-based actuation systems

Permanent magnet-based actuation systems can produce a continuous mag-
netic field without requiring external power supply maintenance. Typically,
these actuation systems can be classified into single permanent magnet-
based actuation systems, dual permanent magnet-based actuation systems,
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1.2 Magnetic actuation systems

and multi permanent magnet-based actuation systems.

Single permanent magnet-based actuation systems often require simpli-
fied system complexity because handling a single permanent magnet is gen-
erally less intricate than controlling multiple magnets. A popular method
for constructing such a system involves utilizing an industrial robot to ma-
nipulate an actuator permanent magnet (Fig. 1.4(a)), thereby regulating
the magnetic field and field gradient at the magnet’s location on magnetic
devices [69], [70]. Despite the rapid and convenient setup of the actuation
system with this approach, singularities may still be present in the system
[71]. To address this issue, Wright et al. reported an actuation system
(Fig. 1.4(b)), incorporating three omniwheels to achieve holonomic control
over the orientation of its magnet’s dipole, enabling continuous rotation of
its magnet around any axis [72].

In contrast to single permanent magnet-based actuation systems, dual
permanent magnet-based actuation systems allow for better adjustment
and manipulation of the magnetic gradient, providing increased versatility
in magnetic field shaping. Valdastri et al. reported an actuation system
(Fig. 1.4(c)) comprising two industrial robots with permanent magnets at
the end-effectors [73]. This configuration provides heightened flexibility and
adaptability for collaborative tasks, where the two industrial robots collab-
orate to efficiently execute complex operations. Consequently, the system
becomes well-suited for a broader range of applications. However, the in-
tegration of two industrial robots can result in a more complex system,
requiring sophisticated control algorithms and coordination mechanisms.
Hosney et al. presented an actuation system consisting of two distinct mod-
ules, each integrated with a permanent magnet and attached to a robotic
platform (Fig. 4(d)). The noteworthy feature of this system lies in the
synchronized rotation of the two permanent magnets [74]. Systems of this
nature possess the ability to diminish or weaken the magnetic gradient force
acting on the magnetic devices, consequently stabilizing their motion.

Multi-permanent magnet-based actuation systems employ a set of per-
manent magnets to achieve comparable control precision for magnetic de-
vices, offering the possibility of enhanced field and gradient strength with
minimal heat generation. Son et al. proposed an actuation system utiliz-
ing an array of approximately 100 permanent magnets (Fig. 1.4(e)). This
configuration establishes a robust magnetic force trap with magnetic gradi-
ents of around 7 T/m within soft tissue [75]. The magnetic robot exhibits
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(a) (b)

1

2

(f)(e)

Magnet array

Timing belt

Linear stage

Stepper motor

Medium & robot

(c) (d)

Untethered Robot

Actuating Magnetic Source

Magnet

Figure 1.4: Permanent magnet-based actuation systems. Single permanent
magnet-based actuation systems: (a) An industrial robot is attached with a
cylindrical magnet [69], (b) An industrial robot is attached with a spherical
magnet [72]. Dual permanent magnet-based actuation systems: (c) Two
industrial robots are equipped with magnets at their end-effectors [73], (d)
Two robotic platforms are equipped with magnets at their end-effectors.
[74]. Multi-permanent magnet-based actuation systems: (e) An array of
approximately 100 magnets is combined with linear and rotational motion
stages to navigate magnetic devices [75], (f) Eight magnets are configured
without any translational movement [76].

12

1



i
i

“output” — 2024/8/18 — 19:35 — page 13 — #31 i
i

i
i

i
i
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a natural tendency to move toward the center of the array, even without
active control. Ryan et al. introduced an actuation system equipped with
eight permanent magnets (Fig. 1.4(f)), eliminating the necessity for any
potentially translational motion of the control magnets. This design re-
sults in a secure and cost-effective system [76]. The system showcases the
capability to generate fields and field gradients in various directions with
variable strengths ranging from zero to 30 mT and 0.83 T/m, respectively.

Moreover, the integration of electromagnetic coils and permanent mag-
nets in an actuation system is also regarded as a feasible solution [77], [78].
The selection between electromagnetic coil-based, permanent magnet-based
actuation systems, or integration systems involving both electromagnetic
coils and permanent magnets relies on specific application needs while con-
sidering factors such as flexibility, adaptability, and system complexity.

1.3 Position sensing

Position sensing technology is essential for the precise navigation of mag-
netic devices, especially in intricate biological environments. Numerous
position sensing technologies, including both image-based and magnetic
sensor-based approaches, have been developed for localizing magnetic de-
vices. Image-based approach captures visual information regarding the
position of the magnetic robot and its surroundings, utilizing techniques
such as camera vision imaging (Fig. 1.5(a)) [79], UltraSound (US) imag-
ing (Fig. 1.5(b)) [80]–[83], Photoacoustic Imaging (PAI) [84]–[86], Magnetic
Particle Imaging (MPI) [87]–[89], Magnetic Resonance Imaging (MRI) [90]–
[92], X-ray imaging [93]–[95], and Optical Coherence Tomography (OCT)
[96]. Such an approach can provide real-time images to guide and monitor
the movement of magnetic devices.

The magnetic sensor-based approach determines the position of a mag-
netic device by measuring the strength and direction of the magnetic field
using magnetic sensors such as Hall-effect sensors or magnetoresistive sen-
sors. For example, Géron et al. investigated a 2D measurement system
specifically designed for micro-robotic applications (Fig. 1.5(c)), employing
a Hall-effect sensor array [97]. They also assessed how different physical
parameters, such as sensor density and the number of measurements, influ-
ence localization errors. Son et al. devised a magnetic localization system
comprising a 2-D array (8 × 8) of mono-axial Hall-effect sensors, measur-
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ing perpendicular magnetic fields at their designated positions [101]. This
system successfully achieved 5-D localization for an untethered mesoscale
magnetic robot. Vergne et al. created a localization system comprising a
2-D array of 3-D magnetoresistive sensors, called a magnetic field camera,
enabling the tracking of a millimeter-sized robot at a refresh frequency of 2
Hz [102]. In addition, researchers have developed sensor fusion technologies
to enhance the localization accuracy of magnetic devices. Using Inertial-
Magnetic fusion technology, Li et al. facilitated a comprehensive estima-
tion of the 6-DOF pose for a magnetic capsule (Fig. 1.5(d)) [98]. Vedaei
et al. devised a fusion algorithm that integrates all data to deduce the
traveled path and visualize the trajectory of a magnetic capsule [103]. Us-
ing Optical-Magnetic fusion technology, Shi et al. presented an innovative
framework for optical-magnetic fusion tracking (Fig. 1.5(e)), specifically
designed for real-time monitoring of a magnetically actuated capsule robot
[99]. Turan et al. utilized deep learning methodologies to tackle the issue
of sensor fusion in managing asynchronous and asymmetric sensor data for
endoscopic capsule robots, thereby obviating the need for sensor calibration
[104]. Utilizing Ultrasound-PAI fusion technology, Gao et al. demonstrated
a notable enhancement in image contrast on a vessel-mimicking phantom
through the amalgamation of ultrasound reflection and optical absorption
contrasts (Fig. 1.5(f)) [100]. This advancement could potentially be applied
for non-invasive tracking of a magnetic device in non-transparent environ-
ments [105]. In addition to these, various other sensor fusion techniques
exist, such as Optical-RF (Radio Frequency) fusion technology [106] and
Optical-Ultrasound fusion technology [107]. Sensor fusion technology pro-
vides powerful tools and methods for positioning magnetic devices, enabling
precise localization and navigation in complex and uncertain environments.

1.4 Biomedical applications

As advancements in the design, fabrication, actuation principles, and lo-
calization of TMHDs continue to evolve, numerous biomedical applications
have emerged to serve their intended purposes. These include medical di-
agnosis, targeted drug delivery, and removal of blood clots in both in vivo
and ex vivo environments. Consequently, researchers have been evaluating
their effectiveness in various biomedical scenarios, offering valuable insights
for potential clinical applications.
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In the application of medical diagnostics, TMHDs can carry various sen-
sors for detecting internal lesions within the human body. This capability
aids physicians in precisely diagnosing diseases and formulating effective
treatment strategies. For instance, Qin et al. developed a tumor detection
system employing a TMHD composed of PVA/MA/Fe3O4, which incorpo-
rates the fluorescent probe SYBR Green. This innovative approach exhibits
significant promise for targeted tumor DNA detection, thereby facilitating
early detection of cancer [108]. In the application of targeted drug delivery,
TMHDs not only reduce systemic side effects but also boost the therapeutic
effectiveness of the administered drugs. For example, Lee et al. developed
a biocompatible and hydrolyzable TMHD for drug delivery, equipped with
the capability to separate and retrieve magnetic nanoparticles from the
TMHD using a reducing agent (dithiothreitol) and an external stimulus
(near-infrared) [109]. In the application of blood clot removal, TMHDs
can precisely locate and remove blood clots, reducing damage to surround-
ing tissues and the occurrence of complications compared to traditional
methods such as thrombolytic drugs and surgical thrombectomy. For ex-
ample, Khalil et al reported the mechanical rubbing against blood clots by
a TMHD under ultrasound guidance [110]–[112]. To enhance the efficiency
of mechanical rubbing of blood clots, Yang et al. proposed a strategy to
maximize the contribution of magnetic forces to the forward motion of a
TMHD by optimizing the coil motion [113]. Aside from these, TMHDs hold
considerable promise for a variety of other biomedical applications, such as
targeted gene delivery [114] and targeted therapy [115].

In summary, TMHDs demonstrate extensive potential in the realm of
biomedical engineering. As technology advances and evolves, an array of
new application areas and opportunities will emerge.

1.5 Challenges and prospects

Potential challenges in the clinical utilization of TMHDs encompass: (1)
Resistance to interference. In the complex environment within living organ-
isms, TMHDs may encounter hindrances from diverse obstacles, potentially
resulting in setbacks in biomedical applications, such as targeted transport.
Successfully surmounting these obstacles and improving the adaptability
and stability of TMHDs across different environments present challenging
tasks. (2) Efficiency in Task Execution. For specific applications, such as
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blood clot removal, achieving a higher clearance efficiency is crucial in this
context. (3) Biocompatibility: The biocompatibility of TMHD materials
is a critical issue. Ensuring the TMHDs pose no harm to biological tissues
and does not induce immune reactions is a fundamental requirement for
their clinical application in medical environments. (4) Validation of Ther-
apeutic Effectiveness: In clinical scenarios, it becomes imperative to verify
the therapeutic efficacy of TMHDs. This encompasses ensuring their capa-
bility to proficiently administer medications, conduct surgical procedures,
or carry out various therapeutic tasks.

The future development prospects may include: (1) Enhancing Work
Environment Adaptability: Elevate the adaptability of magnetic helical de-
vices to diverse working conditions, encompassing their ability to adapt to
the intricate environments within living organisms. (2) Advancing Mul-
tifunctionality: Develop TMHDs with extended capabilities, including di-
agnosis, targeted delivery, self-degradation, etc., to broaden their scope of
applications in the medical field. (3) Improvement in Biocompatibility:
Increase research endeavors to improve the biocompatibility of TMHDs
within living organisms, enhancing their suitability for medical and bio-
logical applications. (4) Exploration of Collaborative Operations: Delve
into the collaborative functionalities of multiple TMHDs for the perfor-
mance of complex tasks. This could involve coordinated motion, informa-
tion exchange, and collective behavior. In addition, exploring the nanoscale
development of TMHDs holds significant promise for potential applications
in both nanomedicine and nanomanufacturing. These prospects under-
score the wide array of opportunities for propelling TMHDs forward and
their potential influence across multiple domains, encompassing medicine,
biotechnology, and beyond.

1.6 Research objective of the thesis

The objective of this thesis is to design and establish a permanent magnet-
based robotic system for stable navigation of TMHDs in physiological en-
vironments (such as the vitreous humor of the human eye). Additionally,
the thesis seeks to examine how the geometric parameters of TMHDs im-
pact their swimming behaviors in fluidic environments. Thereon, the explo-
ration of TMHD swimming behaviors is integrated into the implementation
of TMHD motion control. Here, the first research question (RQ.1) is
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1. Introduction

encountered in this doctoral thesis–

RQ.1

How to build a permanent magnet-based robotic system with a large
gradient-free workspace enabling tetherless magnetic helical devices
to move controllably in physiological environments?

Chapter 2 presents a robotic system that incorporates two synchro-
nized rotating permanent magnets, aiming to achieve 3-D motion control
of a TMHD in physiological environments. Agar gel phantoms are selected
to simulate physiological environments. In comparison to the actuation
systems utilizing one single rotating permanent magnet, those utilizing two
synchronized rotating permanent magnets can eliminate or weaken the lat-
eral gradient force subjected to the TMHD. This results in the stabilization
of TMHD motion [74]. A symmetrical configuration is employed to ensure
the symmetric installation of the two permanent magnets through physical
constraints, enabling the stable generation of a gradient-free space between
the two permanent magnets. Such a feature allows us to focus on the
directional control of a TMHD without needing to account for the mag-
netic gradient force acting on the TMHD within the gradient-free space,
thereby optimizing and streamlining TMHD motion control. Furthermore,
the essential tasks for establishing this system encompass the analysis of
forward kinematics (mapping from joint space variables to the orientation
of the field-rotation axis) and inverse kinematics (mapping from the desired
orientation of the field-rotation axis to the desired joint space variables).
To express the synthetic magnetic field at any point precisely, an exact
magnetic field model is employed [116]. The effectiveness of the system is
confirmed through the execution of 3-D closed-loop motion control experi-
ments of a TMHD.

Chapter 3 focuses on the incorporation of a swimming speed prediction
model in the motion control of TMHDs. This prediction model is derived
based on the assumption that a TMHD undergoes force-free rotation. In
Chapter 2, the existence of a gradient space between the two synchronized
rotating permanent magnets has already been demonstrated, confirming
that our permanent magnet-based robotic system can satisfy the conditions
required for the utilization of the prediction model. This confirmation paves
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the way for the potential application of the prediction model in guiding
the motion control of TMHDs within our permanent magnet-based robotic
system. Thus, the second research question (RQ.2) of this doctoral
thesis examines –

RQ.2

How to incorporate a swimming speed prediction model into the mo-
tion control of tetherless magnetic helical devices in our permanent
magnet-based robotic system?

A control strategy to implement TMHD motion control using the pre-
diction model is proposed in Chapter 3. Nonetheless, there is room for
further optimization of the control strategy. In Chapter 4, a novel control
strategy is developed. First, a relationship model is aimed to be built be-
tween the synchronized rotation of two identical permanent magnets (char-
acterized by the dipole-rotation axis) and the corresponding magnetic field
(characterized by the field-rotation axis) based on the point-dipole model.
Then, the correlation between the actuation frequency of synchronized ro-
tating permanent magnets and the swimming speed of TMHDs in an agar
gel phantom is explored. This exploration involves validating the swim-
ming speed prediction model. Finally, the motion direction control for a
TMHD can be translated into the orientation control for the field-rotation
axis, while the motion speed control for a TMHD can be translated into
the angular speed control for the dipole-rotation axis. Considering this, the
(third research question (RQ.3)) of this doctoral thesis explores –

RQ.3

How does the field-rotation axis correlate with the dipole-rotation
axis when the two permanent magnets are rotating synchronously?

InChapter 5, the findings from the preceding sections are summarized,
and future directions for these research studies are delineated. The present
work establishes the foundation for the prospective application of TMHDs
in the realm of biomedical engineering.
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1.7 Scientific output

The research presented in this doctoral thesis has contributed to the fol-
lowing peer-reviewed articles:

1.7.1 Peer-reviewed international conference article

1. Z. Zhang, A. Klingner, S. Misra, and I. S.M.Khalil, Control of mag-
netically driven screws in a viscoelastic medium, in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 2020, pp. 25–29.

1.7.2 Peer-reviewed journal articles

1. Z. Zhang, A. Klingner, S. Misra, and I. S.M.Khalil, Design and
Control of a Permanent Magnet-Based Robotic System for Navigating
Tetherless Magnetic Devices in Viscous Environments, IEEE Trans-
actions on Automation Science and Engineering, 2024. (Under re-
view)

2. Z. Zhang, A. Klingner, S. Misra, and I. S.M.Khalil, Hydrodynamic
Behavior of Twist-Shaped Magnetic Microrobots in Viscoelastic Fluids
Driven by a Synchronized Rotating Magnetic Actuation System, IEEE
Transactions on Medical Robotics and Bionics, 2024. (Under review)

3. M. Kaya, F. Stein, P. Padmanaban, Z. Zhang, J. Rouwkema, I.
S.M.Khalil, and S. Misra, Visualization of micro-agents and sur-
roundings by real-time multicolor fluorescence microscopy, Scientific
reports, vol. 12, no. 1, p. 13375, 2022.

1.7.3 Abstracts

1. Z. Zhang, I. S.M.Khalil, and S. Misra, 3D Control of Magneti-
cally Driven Microrobots in Viscoelastic Medium, Proceedings of the
W.J.Kolff Annual Research days, Groningen, Netherlands, 2021.

2. Z. Zhang, I. S.M.Khalil, and S. Misra, A permanent magnet-based
robotic system for the motion control of tetherless magnetic devices,
Proceedings of theW.J.Kolff Annual Research days, Groningen, Nether-
lands, 2022.

20



i
i

“output” — 2024/8/18 — 19:35 — page 21 — #39 i
i

i
i

i
i

2
Design and Control of a Permanent

Magnet-Based Robotic System for

Navigating Tetherless Magnetic

Devices in Viscous Environments

Note: Following chapter is adapted from the article “Design and Control
of a Permanent Magnet-Based Robotic System for Navigating Tetherless
Magnetic Devices in Viscous Environments” by Z. Zhang, A. Klingner,
S. Misra, and I. S.M.Khalil (2024) submitted to “IEEE Transactions on
Automation Science and Engineering”

Abstract

Small-scale tetherless magnetic devices (TMDs) that are driven using ex-
ternal stimuli have potential applications in minimally invasive surgery.
The magnetic field produced by electromagnet- and permanent magnet-
based robotic systems is a viable option as an external stimulus to enable
the motion of a TMD in viscous and viscoelastic media. In order to real-
ize the navigation of TMDs in fluidic environments, we design a permanent
magnet-based robotic system with an open configuration using two synchro-
nized rotating magnetic dipoles to generate time-varying magnetic fields.
These fields are used to apply torque on a TMD in low-Reynolds-number
flow regimes. The configuration of the system is vertically symmetric, al-
lowing permanent magnets to exert homogeneous magnetic fields within
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the center of the workspace. We derive the configuration-to-pose kinemat-
ics and the pose-to-field mapping of the system. Such derivation is the
basis for realizing the motion control of TMDs in three-dimensional space.
The kinematic system holds one translational degree of freedom (DOF) and
three rotational DOFs, allowing it to control the pose of actuator magnets
with four DOFs. The nonlinear inverse kinematic problem is solved using
an optimization algorithm. The experimental results of this level of control
demonstrate that the mean absolute error and the maximum tracking error
of three-dimensional motion control are 1.18 mm and 2.64 mm, respectively.

2.1 Introduction

Small-scale tetherless magnetic devices (TMDs) have the potential to im-
prove minimally invasive medicine by precision surgery due to their dexter-
ity [117], allowing them to access regions inaccessible by tethered surgical
devices. With these merits, small-scale TMDs have attracted significant at-
tention for being utilized in biomedical applications such as targeted drug
delivery [118], [119], nanotechnology [120], [121], microfluidic [122], [123]
and biomedical [111], [124] applications. One of the challenges in these ap-
plications is the precise TMD motion control along a prescribed trajectory
[125]–[127]. The vast majority of TMD motion control is achieved by using
electromagnet-based robotic systems [128]–[131]. Despite the merit of high
controllability of generated uniform magnetic field (including orientation
and strength control) by changing the coil current and the ability to turn
off the magnetic field completely, these systems have some shortcomings,
such as the difficulty of scaling up to the size of in vivo application due to
the restriction of the projection distance of the field gradient and heat emis-
sion problem due to the low efficiency of electric-to-magnetic conversion
caused by the electromagnetic coils [132]. In contrast to electromagnet-
based robotic systems, permanent magnet-based robotic systems can gen-
erate stronger magnetic fields [133] and have no heat emission problem. In
particular, those with open configurations can be scaled up to the size of
in vivo applications [134]. Consequently, permanent magnet-based robotic
systems become increasingly popular.

Depending on how a TMD is propelled, permanent magnet-based robotic
systems can be classified based on the applied driving mode: (1) Torque-
driven mode, which serves the magnetic torque as the main form of actu-
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2.1 Introduction

Figure 2.1: The magnetic field at a point (p) is characterized by the
configuration-to-pose kinematics (F), and the pose-to-field mapping (B)
under the global frame of reference {W}. Additionally, the ith magnetic
source is arranged in a local frame of reference {Ei}.

ation and propels a TMD (e.g., a helical microrobot) by rotating it. (2)
Force-driven mode which serves magnetic force (i.e., the force due to mag-
netic gradient) as the main form of actuation and propels TMD by pulling
it. (3) Torque-force-driven mode, which serves either one of them (mag-
netic torque and force) or both of them as effective forms of actuation and
to propel a TMD by rotating it or pulling it or both. Furthermore, perma-
nent magnet-based robotic systems in each mode can be generalized into
three categories based on the number of actuator magnets: (1) Using one
actuator magnet. (2) Using two actuator magnets. (3) Using an array of
actuator magnets.

Permanent magnet-based robotic systems in torque-driven mode ro-
tate actuator magnets to generate a rotating magnetic field, resulting in a
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magnetic torque, which is the main source of actuation exerted on TMDs.
With using one actuator magnet, Mahoney et al. have proposed a method
to control the magnetic field at a point in space to be rotated about any
desired axis with a constant frequency, thus the TMD motion is controlled
by aligning the TMD’s dipole moment with the applied magnetic field [135].
Nelson et al. have provided a solution to generate two independent rotating
magnetic fields with any desired field-rotation axes at any two points, al-
lowing it for the independent motion control of two TMDs [136]. Wright et
al. have developed a robotic system by attaching a mechatronic device to
the end of a robotic manipulator such that the mechatronic device houses
a uniformly magnetized spherical magnet, enabling holonomic control of
the heading of the spherical magnet and allowing the rotation axis of the
spherical magnet to be set arbitrarily [72]. Despite the controllability of
the field-rotation axis, such systems may produce unnecessary magnetic
force, which creates a tendency for a TMD to move toward the actuator
magnet. This unnecessary magnetic force can be reduced by increasing
the distance between the TMD and the actuator magnet, yet the applied
magnetic torque on the TMD is inevitably weakened. To overcome this un-
desired behavior, Mahoney et al. have presented a strategy to substantially
reduce the magnetic force while maximizing the magnetic torque by limit-
ing the absolute upper boundary on the magnitude of maximum magnetic
force for any orientation of TMD dipole moment [137]. This strategy can
diminish the magnetic force yet not eliminate it. With using two actuator
magnets, Hosney et al. have designed a robotic system by rotating the two
actuator magnets synchronously for the wireless motion control of a helical
microrobot, which stabilizes the motion of the microrobot by eliminating
the magnetic field gradient within the workspace of the microrobot and de-
velops gravity compensation technology by manipulating the angular speed
and motion direction of the microrobot [74]. Further, this system has been
applied to the biomedical application of removing blood clots by control-
ling the motion of a TMD with the positioning feedback of an ultrasound
system [110]. With using an array of actuator magnets, Zhang et al. have
implemented a method of arranging the rotational actuator magnets cir-
cumferentially to generate a rotating magnetic field in the center area of
the circle and obtain a synchronous reversing magnetic field with constant
strength [138]. Qiu et al. have developed a robotic system incorporating
four rotary actuator magnets, which can generate a rotating magnetic field
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2.1 Introduction

with the orientation of the field-rotation axis being arbitrary in a plane
[139]. Although these systems using an array of actuator magnets can
generate rotating magnetic fields without the translational movement of
actuator magnets, the number of DOFs of these robotic systems to control
the magnetic field is potentially restricted.

Permanent magnet-based robotic systems in force-driven mode generate
a magnetic gradient field, resulting in a magnetic force exerted on TMDs
as the main source of actuation. With using one actuator magnet, Khalil
et al. have demonstrated a robotic system that attaches the actuator mag-
net to the end-effector of a robotic arm, achieving the kinematic control of
paramagnetic microparticles in 3-D space with the manipulation of the ex-
erted field gradient on the dipole of the microparticles [140]. Mahoney et al.
have first demonstrated a 5-DOF manipulation of an untethered magnetic
capsule by a 6-DOF robotic manipulator with the feedback of only 3-DOF
capsule position [141]. Magnetic force and torque are utilized to control the
total force (the sum of magnetic force, gravitational force, and buoyancy
force) applied on the capsule and the capsule’s orientation, respectively.
With using two actuator magnets, Shapiro et al. have demonstrated the
capability of a robotic system consisting of an arrangement of two perma-
nent magnets to create magnetic force and eventually to push therapeutic
nanoparticles [142]. Amokrane et al. have optimized a robotic system to
produce a maximum push-pull force on magnetic microparticles by manip-
ulating magnetic field gradient, enabling the navigation of microparticles
in cortical microvasculature network [143]. With using an array of actuator
magnets, Abbes et al. have reported a robotic system with a magnetic unit
being attached to the end-effector of a robotic arm such that the magnetic
unit consists of four actuator magnets, demonstrating the steerability to
push and pull the magnetic microparticles in viscous fluids [144]. Son et
al. have presented a robotic system that can create a strong magnetic force
trap, enabling a cylindrical millirobot to penetrate continuously into soft
tissue. The penetration motion is assisted by the induced magnetic torque,
which directs the orientation of the millirobot to the center of the array
of actuator magnets [75]. In comparison to the systems in torque-driven
mode, those in force-driven mode at the same level require more energy
consumption in the propulsion of TMDs in fluids, making the systems in
force-driven mode more suitable in use for the scenarios of driving small-
scale TMDs when requiring to limit the size of actuator magnets.
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Permanent magnet-based robotic systems in torque-force-driven mode
generate a rotating magnetic field and gradient field, resulting in a magnetic
torque and force, as the main sources of actuation simultaneously, exerted
on TMDs. These systems can be selectively switched to torque-driven mode
or force-driven mode according to the specific application, giving them
extraordinary versatility. With using one actuator magnet, Mahoney et al.
have proposed a method to convert the magnetic force into a lateral force by
manipulating the actuator magnet to be rotated with a specific trajectory.
Such an operation can make a TMD be simultaneously pushed and rolled
on a surface, inducing potentially enhanced rolling motion (higher rolling
velocity), or it may be used for the scenarios of levitating device [145]. This
method relies on the specific rotation control of the actuator magnet. By
using two actuator magnets, Honey et al. have introduced a strategy of
combining the propulsion force converted from the magnetic torque and
the magnetic force, which is proven to decrease the drilling time of blood
clots [146]. Pittiglio et al. have developed a robotic system using two
independent serial manipulators, which can generate a magnetic field with
a high degree of manipulability by controlling the pose of two actuator
magnets collaboratively, enabling the system to work in torque-force-driven
mode suitably [147]. Using an array of actuator magnets, Ryan et al. have
built a robotic system to create fields and field gradients in any direction in
three-dimensional (3-D) path-following tasks and shown that this system
is able to implement 1-D and 2-D motion control via rolling as well as 3-D
motion control via gradient pulling [76]. The disadvantage of this system is
that the size of the workspace is severely restricted unless extremely large
size actuator magnets are utilized [148].

In this chapter, we focus on permanent magnet-based robotic systems
in torque-driven mode. Our system has an open configuration without
using commercial robotic arms. The system holds one translational DOF
and three rotational DOFs, enabling it to control the pose of two actuator
magnets collaboratively with four DOFs. Further, the system is arranged
with a vertically symmetric configuration to exert homogeneous magnetic
fields within the center of the workspace. This symmetric configuration
is physically constrained through a connecting plate, which simplifies the
yawing motion control of the field-rotation axis within the center region
of the workspace by only driving one robotic joint. As a result, this leads
to an ease of yawing motion control of TMDs. Besides, the forward (from
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2.2 Magnetic-based robotic system

joint space variables to the orientation of field-rotation axis) and inverse
kinematics (from the desired orientation of field-rotation axis to desired
joint space variables) of the system are analyzed, which serves as a basis
for implementing TMD motion control. Our system is verified to have
the ability to achieve TMD motion control in torque-driven mode. The
remainder of the chapter is organized as follows: Section 2.2 provides the
forward and inverse kinematic analysis of the magnet-based robotic system.
Section 2.3 analyzes the possible unreachable zone of the field-rotation axis
at the central point of the workspace. Section 2.4 investigates the magnetic
field and field gradient within the workspace. Section 2.5 validates the
ability of the system to control the motion of TMDs through closed-loop
motion control experiments conducted in an agar gel phantom.

2.2 Magnetic-based robotic system

We consider a time-varying rotating magnetic field produced by the su-
perposition of the contributions of multiple dipole sources. These dipole
sources are fixed in three-dimensional space by a robotic configuration and
exert a controlled magnetic torque on a TMD in low Reynolds (Re) num-
bers.

2.2.1 Magnetic actuation using multiple magnetic source

The magnetic field generated by multiple permanent magnets is character-
ized by the configuration-to-pose kinematics and the pose-to-field mapping.
If a translation and rotation of multiple permanent magnets (with magnetic
moment Mi for i = 1, . . . , k) using a robotic configuration would result in
a superimposed magnetic field (B(p)), then the magnitude and direction of
the magnetic field at position p are completely characterized by the joint
space variables q ∈ Rn. The configuration-to-pose kinematics of such a
robotic configuration is given by

{Ri,xi} = F(q), for i = 1, . . . , k, (2.1)

where Ri and xi characterize the rotation and translation of the ith mag-
netic source using the forward kinematic mapping F : Rn → {R3, SO(3)},
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respectively. We can compute the magnetic field produced by each mag-
netic moment (Mi) in the global frame of reference {W} as follows:

B(p) =
k∑

i=1

(B(xi,Mi) |W) , (2.2)

where B(xi,Mi) |W is the magnetic field due to the ith magnetic source
with respect to the global frame of reference. Further, the magnetic field
vector of B(xi,Mi) |W in Equation (3.2) can be calculated by

[
B(xi,Mi) |W

0

]
= WTEi

[
B(xi,Mi) |Ei

0

]
, (2.3)

where WTEi is the homogeneous transformation between the global frame
of reference and the ith frame of reference of the magnetic source {Ei}, as
shown in Fig 1. Further, B(xi,Mi) |Ei is the magnetic field due to the ith
magnetic source in the local frame {Ei}. The properties of the magnetic field
B(p) are completely characterized by the pose of each magnetic moment
(Mi) and can be manipulated using the joint space variables (q).

Fig. 2.1 shows the magnetic field produced by two identical magnetic
dipole sources. For k = 1 and away from the region between the magnetic
dipole sources, the magnitude of the magnetic field decreases approximately
as the inverse cube of the distance |p − xi|. The magnitude of the field
scales approximately as the sum of the inverse cube of |p − xi| when two
dipole sources are incorporated. Therefore, it is desirable to consider the
enclosed region between the two dipole sources in order to create larger
field strength than any other locations away from this region. For a small
enough workspace (around position p), it is possible to create a relation
between the magnitude of the field and the distance to the dipole sources
by placing a position constraint on the dipole sources. In such a situation,
the orientation of magnetic moment (Mi) can be controlled using a robotic
configuration to manipulate the magnetic field at the position p. At this
point, the relationship between the unit vector of field-rotation axis (ω̂)
and the unit vector of dipole-rotation axis (Ω̂, refer to the rotation axis
of the magnetic moment) can be characterized by the configuration of the
permanent-magnet robotic system, as shown in Fig. 2.2.
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2.2 Magnetic-based robotic system

2.2.2 Robotic configuration

Superimposing the magnetic field of multiple magnetic sources can gener-
ate a greater and more uniform field within the enclosed region between
the permanent magnets. Translating and rotating these magnetic sources
can be used for actuation. Therefore, we need to control the pose of the
magnetic sources by robotically moving a robotic configuration in order
to obtain the desired field-rotation axis for actuation at p. Since we are
considering a rotating magnetic field for actuation, the magnetic dipole of
the ith source can be continuously rotated in synchrony with an angle θs
(θs = Ωt such that Ω is the angular velocity of each rotating dipole) about
the ith dipole-rotation axis Ω. The orientation of these axes of rotation is
completely characterized using the forward kinematics (F).

To control the dipole-rotation axis Ω, a number of joints must be in-
dependently controlled. Here, we consider a translational base frame {A}
supporting four actuated rotational joints. The pure translation of frame
{A} with respect to the global frame of reference is characterized by the
joint space variable q1, which enables the superimposed field to be trans-
lated without affecting its spatial derivatives. The first and second rota-
tional joints are orthogonally arranged to rotate frame {B} and {C} about
the z2- and x3-axes, respectively, as shown in Fig 2.2(a). The rotation of
frame {B} with respect to frame {A} and the rotation of frame {C} with
respect to frame {B} are characterized by the joint space variable q2 and
q3, which enables control of the yawing and pitching motion of the field-
rotation axis at p, respectively. Frame {C} supports two symmetrically
placed actuated rotational joints aligned to rotate frame {D1} and {D2}
about the z4- and z5-axes, respectively. The rotation of frame {Di} with
respect to frame {C} is characterized by the joint space variable q4, which
also enables the control of yawing motion of the field-rotation axis at p.
This allows us to have multiple control options (manipulating q2 or q4 or
both of them) when planning a yawing motion of field-rotation axis at p,
and thus it improves the flexibility of our system. These joints are equally
spaced with respect to the z-axis of the global frame of reference. Frame
{Ti} is defined as the frame of reference of the ith permanent magnet, two
magnetic sources rotate about the oi-axis of frame {Ti} such that their
magnetic moment is orthogonal to these vectors. Further, frame {Ti} is
only rigidly translational with respect to frame {Di}. In addition, the ro-
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tation of ith permanent magnet is characterized in frame {Ei} such that
frame {Ei} is only rotational with respect to frame {Ti}. The origin of {Ti}
and that of frame {Ei} are overlapping and the vi-axis of frame {Ei} and
the oi-axis of frame {Ti} are coincident.

The configuration of the permanent-magnet robotic system is shown
in Fig. 2.2(a), which indicates the links and joints with the corresponding
frames. The vector q ∈ R4×1 is constructed with independent joint space
variables such that q = [q1, q2, q3, q4]

T. Note that q1 in q refers to a trans-
lational motion, and q2, q3 and q4 in q refer to rotational motions. Besides
the links and joints, Fig. 2.2(b) shows the permanent-magnet robotic sys-
tem as well as the workspace. The configuration-to-pose kinematics of our
robotic configuration characterizes the ith dipole-rotation axis in terms of
the joint space variables such that

WTDi =
WTA

ATB
BTC

CTDi , (2.4)

where WTDi is the homogeneous transformation matrix between the frame
{Di} and the global frame of reference. In Equation (2.4), WTA is the
homogeneous transformation matrix between frame {A} and the global
frame of reference, which is given by

WTA =

[
I xW

A
01×3 1

]
. (2.5)

where I is the unit matrix and xW
A is the translation vector of the origin of

frame {A} in the global frame of reference. Further, xW
A is given by

xW
A = [0 q1 0]T. (2.6)

The translation of the origin of frame {A} in the global frame of reference
enables control of the translational motion of the superimposed field in the
y-axis direction. Further, this translation partially determines the reach-
able zone of the field-rotation axis at p. In Equation (2.4), ATB is the
homogeneous transformation matrix between frame {B} and {A}, which is
given by

ATB =

[ ARB xA
B

01×3 1

]
, (2.7)

where ARB is the rotation matrix between frame {B} with respect to {A}
and xA

B = [0 0 d2z]
T is the translation vector of the origin of frame {B}
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in the frame {A}. Further, d2z is a constant determined by the mechanical
dimensions of the system, and d2z = l2. In Equation (2.7), ARB is given by

ARB =

cos(q2) − sin(q2) 0
sin(q2) cos(q2) 0

0 0 1

 . (2.8)

The rotation of frame {B} with respect to frame {A} enables control of
the yawing motion of the field-rotation axis at p. This yawing motion
is important for the steering of TMDs. In Equation (2.4), BTC is the
homogeneous transformation matrix between frame {C} and {B}.

BTC =

[ BRC xB
C

01×3 1

]
, (2.9)

where BRC is the rotation matrix of frame {C} with respect to frame {B}
and xB

C = [0 0 d3z]
T is the translation vector of the origin of frame {C}

in the frame {B}. Further, d3z is a constant determined by the mechanical
dimensions of the system, and d3z = l3. In Equation (2.9), BRC is given by

BRC =

1 0 0
0 cos(q3) − sin(q3)
0 sin(q3) cos(q3)

 . (2.10)

The rotation of frame {C} with respect to frame {B} enables control of
the pitching motion of the field-rotation axis at p. This pitching motion
is important for TMDs to swim upward or downward and follow a 3-D
prescribed trajectory. In Equation (2.4), CTDi is the homogeneous trans-
formation matrix between frame {Di} and {C}, which is given by

CTDi =

[ CRDi xC
Di

01×3 1

]
, (2.11)

where CRDi is the rotation matrix of frame {Di} with respect to frame {C}
and xC

Di
= [d4x d4y d4z]

T is the translation vector of the origin of frame
{Di} in the frame {C}. Further, d4x, d

4
y and d4z are constants determined

by mechanical dimensions of the system. For i = 1, d4x = l5, d
4
y = −l6 and

d4z = l4. For i = 2, d4x = −l5, d4y = l6 and d4z = l4. In Equation (2.11), CRDi

is given by

CRDi =

cos(q4) − sin(q4) 0
sin(q4) cos(q4) 0

0 0 1

 . (2.12)
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2.2 Magnetic-based robotic system

Like the function of rotation matrix ARB, the rotation of frame {Di} with
respect to frame {C} also enables the control of yawing motion of the field-
rotation axis at p. However, this redundancy allows multiple options to
control the yawing motion of the field-rotation axis at p, and it expands
the reachable zone of the field-rotation axis at p. The configuration-to-pose
kinematics of our robotic configuration characterizes the ith dipole-rotation
axis in terms of the joint space variables such that[

Ω̂
0

]
= WTDi

[
oi
Di

0

]
= WTTi

[
oi

0

]
= WTEi

[
vi

0

]
, (2.13)

where oi
Di

characterizes the rotation axis of ith magnetic source in the

frame {Di}. In configuration-to-pose kinematics, WTTi is the homogeneous
transformation matrix between the frame {Ti} and the global frame of
reference, which is given by

WTTi =
WTDi

DiTTi . (2.14)

Further, DiTTi is the homogeneous transformation matrix between the
frame {Ti} and {Di}, which is given by

DiTTi =

[
I xDi

Ti
01×3 1

]
. (2.15)

where xDi
Ti = [0 d5y d5z]

T is the translation vector of the origin of frame

{Ti} in frame {Di}. Further, d5y and d5z are constants determined by me-
chanical dimensions of the system. For i = 1, d5y = l6 and d5z = l7. For
i = 2, d5y = −l6 and d4z = l7. Multiplying the solution for all transformation

matrices results in the overall homogeneous transformation matrix WTTi
which governs the relation between the vector of joint space variables q and
unit vector of dipole-rotation axis Ω̂.

2.2.3 Mapping dipole-rotation axis to field-rotation axis

The unit vector of field-rotation axis ω̂ at p is normal to the plane contain-
ing B(p), such that ω̂TB(p) = 0 for all Mi. Replacing B(p) with Equation
(3.2) in this expression yields[

ω̂
0

]T k∑
i=1

([
B(xi,Mi) |W

0

])
= 0, (2.16)
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Substituting Equation (3.3) into Equation (2.16) yields[
ω̂
0

]T k∑
i=1

(
WTEi

[
B(xi,Mi) |Ei

0

])
= 0, (2.17)

such that,
WTEi =

WTTi
TiTEi , (2.18)

where TiTEi is the homogeneous transformation matrix between frame {Ei}
and {Ti}, which is given by

TiTEi =

[ TiREi 03×1

01×3 1

]
, (2.19)

where TiREi is the rotation matrix of frame {Ei} with respect to frame {Ti}.
Further, TiREi is given by

TiREi =

 cos(θs) 0 sin(θs)
0 1 0

− sin(θs) 0 cos(θs)

 . (2.20)

Note that θs is a time-periodic angle, and its angular velocity controls the
translational speed of a TMD. The generated magnetic field due to ith
magnetic source in the frame {Ei} can be rewritten as

B(xi,Mi) |Ei= (B i
uu

i + B i
vv

i + B i
ww

i), for i = 1, 2, (2.21)

where ui, vi and wi are the unit axis vector of frame {Ei}. Further, Bu,
Bv and Bw are magnitudes of the magnetic field along the direction of ui-,
vi- and wi-axis in frame {Ei}, respectively. Substituting Equation (2.21)
into Equation (2.17) yields[

ω̂
0

]T k∑
i=1

WTEi

[
B i
uu

i + B i
ww

i + B i
vv

i

0

]
= 0. (2.22)

Substituting Equation (2.13) into expanded Equation (2.22) yields[
ω̂
0

]T k∑
i=1

(
WTEi

[
(B i

uu
i + B i

ww
i)

0

]
+ B i

v

[
Ω̂
0

])
= 0. (2.23)

Hence the relationship between the unit vector of field-rotation axis ω̂, the
unit vector of dipole-rotation axis Ω̂ and the vector of joint space variables
q at position p is found.
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2.2 Magnetic-based robotic system

2.2.4 Inverse kinematics

Given the desired unit vector of field-rotation axis ω̂d, then the problem of
solving inverse kinematics is converted to that of solving Equation (2.23)
with the orientation of the dipole moment of each magnetic source (Mi)
varying synchronously and periodically in time. The algorithm flow of solv-
ing inverse solutions based on the desired field-rotation axis is presented in
Table 2.1. The frame parameters required for the algorithm are demon-
strated in Table A.1 (Please refer to Appendix A.2) where the l1 = 0
mm, l2 = 128 mm, l3 = 60.6 mm, l4 = 46 mm, l5 = 175 mm, l6 = 89 mm,
and l7 = 119 mm.

Table 2.1: Pseudocode for Inverse Kinematics

Algorithm: Solving inverse kinematics based on desired unit
vector of field-rotation axis ω̂d at a position p

Input: Position p, unit axis vector ω̂d and threshold δ0
Output: Desired vector of joint variables qd

01: q1 ∈ [-150:150], q2 ∈ [-720◦:720◦],
q3 ∈ [-90◦:90◦], q4 ∈ [-180◦:180◦],

02: Initialize the vector of joint variables q
03: Hj(q) ←− p and ω̂d

04: for j = 1 : N
05: θs = (j/N) ∗ 360◦
06: F(q) ←− q
07: WTDi

←− F(q)
08: WTTi ←− WTDi

DiTTi

09: WTEi
←− WTTi

TiTEi

10: WT−1
Ei
←− WTEi

11: Eip ←− WT−1
Ei

p
12: EiB(p) ←− B(Eip)
13: [B i

u B i
v B i

w] ←− EiB(p)
14: Hj(q) ←− Equation (2.24)
15: if Hj(q) ≤ δ0
16: qd = q
17: break;
18: end
19: end
20: Return qd
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In the algorithm, the increase and decrease of the value of joint space
variable q1 indicates the positive and negative linear motion of the trans-
lational joint, respectively. Similarly, the increase and decrease of the
value of joint space variable q2 (q3 or q4) indicates the counterclockwise
and clockwise rotation of that revolute joint, respectively. In particular,
our permanent-magnet robotic system allows two consecutive clockwise or
counterclockwise rotations of frame {B} with respect to frame {A}, which
is characterized by joint space variable q2 (q2 ∈ [-720◦:720◦]), enabling a
TMD make two continuous clockwise or counterclockwise rotations. To
maintain the synchronous rotation of a TMD with the rotating magnetic
field, the magnetic torque must balance the drag torque on the TMD. We
allow two rotating actuator permanent magnets to be close to each other
to generate a greater magnetic torque than that with a single rotating
actuator permanent magnet. To precisely model the magnetic field in the
workspace between two actuator permanent magnets, we use an exact mag-
netic model (Please refer to Appendix A.1). With this model, the fitness
function Hj(q) in Table 2.1 is designed as

Hj(q) =
180

π
arccos

(ω̂d)T
∑k

i=1 (B(xi,Mi) |W)

|ω̂d|
∣∣∣∑k

i=1 (B(xi,Mi) |W)
∣∣∣
− 90. (2.24)

The fitness function is optimized to approach 0 using the Levenberg-Marquard
(LM) algorithm. In Equation (2.24),

∑k
i=1B(xi,Mi) |W can be calculated

through [∑k
i=1B(xi,Mi) |W

0

]
=

k∑
i=1

WTEi
[
B i
u B i

v B i
w 0
]T

. (2.25)

Referring to Table 2.1, the desired vector of joint variables qd and desired
unit vector of dipole-rotation axis Ω̂d can be calculated based on the desired
unit vector of field-rotation axis ω̂d.

2.2.5 Control of a tetherless magnetic device

TMD motion control consists of two parts. One is TMD motion direction
control, and the other is TMD motion speed control. The motion direction
control of a TMD is implemented by manipulating the TMD rotation axis,
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which is determined by the field-rotation axis at the TMD position. The
motion speed control of a TMD is achieved by managing the actuation
frequency of the applied rotating magnetic field. We assume a TMD is
actuated by an external rotating magnetic field with a constant rotation
frequency, thus the TMD motion speed is expected to be constant. Then,
the motion control of the TMD is simplified to control the motion direction
of the TMD. Given a predefined trajectory (Please refer to Table 2.2),
which is expressed as the parametric equation x = f(t), y = g(t), z = h(t),
we break it down into 17 waypoints. Point Pn is the nth representative
waypoint. The necessary TMD motion direction Û at each waypoint Pn is
found as

Û(Pn) =

[
dx
dt

dy
dt

dz
dt

]T
√

(dxdt )
2 + (dydt )

2 + (dzdt )
2
. (2.26)

Replacing the ω̂d with Û(Pn) in Table 2.1, we can acquire the desired vector
of joint variables (qd) at each waypoint, as shown in Table 2.2.

2.3 Orienting field-rotation axis

The challenge of aligning the field-rotation axis in a desired direction de-
pends on factors such as the design of the robotic system and the constraints
imposed by joint space variables. Since the orientation of the field-rotation
axis, as denoted by the unit vector of the field-rotation axis, governs the
motion direction of a TMD, it’s imperative to analyze the difficulty level
of orienting the field-rotation axis to the desired motion direction of the
TMD. In this section, we’ll presume the TMD is positioned at the central
point of the workspace. The central point is defined as the middle point of
the line segment between two actuator magnets’ centroids when the system
is at its initial state. The initial system state refers to q = 04×1. Subse-
quently, we’ll evaluate the difficulty of aligning the field-rotation axis to a
particular direction at this central point.

2.3.1 Yawing and pitching motion of field-rotation axis

The yawing and pitching motion of the field-rotation axis plays an impor-
tant role in the motion direction control of a TMD.
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(a)
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(b)

Figure 2.3: Characterization of the yawing motion and pitching motion of
the unit vector of field-rotation axis with respect to joint space variables
q2 and q3 at the central point of the workspace in the frame {R} (Oxyz).
The arrows indicate the unit vectors of the field-rotation axis. (a) The unit
vector of the field-rotation axis rotates counterclockwise in the x-y plane as
q2 varies from 0◦ to 360◦. (b) The vector of field-rotation axis first rotates
clockwise as indicated by 1○, then rotates counterclockwise as indicated by
2○, and finally rotates clockwise back as indicated by 3○ in y-z plane as q3
varies from −90◦ to 90◦.

Specifically, at the central point, we associate the yawing motion of the
field-rotation axis with joint space variable q2, and the pitching motion
with joint space variable q3. Fig. 2.3 shows the orientation of field-rotation
axis changes along with q2 and q3. The q2 enables the yawing motion of
the field-rotation axis at the central point, as shown in Fig. 2.3(a). The
unit vector of the field-rotation axis rotates uniformly as q2 varies at equal
intervals over one revolution, which means the rotation of the field-rotation
axis is synchronized with the rotation of q2. Note that the unit vector of the
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field-rotation axis at the case of q2 = 0◦ is overlapped by that at the case of
q2 = 360◦. The q3 enables the pitching motion of the field-rotation axis, as
shown in Fig. 2.3(b). The unit vector of the field-rotation axis rotates non-
uniformly as q3 varies at equal intervals from −90◦ to 90◦, which means the
rotation of the field-rotation axis is not synchronized to the rotation of q3.
Meanwhile, the rotational direction of the unit vector of the field-rotation
axis changes from clockwise 1○ to counterclockwise 2○, and then back to
clockwise 3○.

2.3.2 Motion space of actuator magnets

The robotic joint space determines the motion space of actuator magnets,
while the actuator magnets’ motion space determines the field-rotation
axis’s reachable orientation zone at any point in the workspace. With revo-
lute joints, the motion space of two actuator magnets is a hollow ellipsoid-
like space and can be covered by an 800 mm × 800 mm × 500 mm cuboid,
as shown in Fig. 2.4(a). With all joints (revolute plus translational joints),
the motion space of two actuator magnets is a cylinder-like space and can
be covered by an 800 mm × 1000 mm × 500 mm cuboid, as shown in
Fig. 2.4(b).

2.3.3 Difficulty level of orienting the field-rotation axis

In this part, we will analyze the difficulty level of orienting the field-rotation
axis towards different directions at the central point of the workspace. We
assume that the position of the central point with respect to frame {A}
(Please refer to Fig. 2.2) is unchanged. That is to say, the central point
follows the translational motion of frame {A} along y-axis. Thus, the
translational motion of the frame {A}, which is characterized by the joint
space variable q1, does not affect the positions of actuator magnets (xi) and
the orientation of the dipole-rotation axis (Ω̂) in the frame {A}. Therefore,
the joint space variable q1 does not influence the field-rotation axis at the
central point since the field-rotation axis at any point in the workspace is
purely a function of the actuator permanent magnets’ positions (xi) and
dipole-rotation axis’ orientation (Ω̂). Furthermore, to maximize the size
of the workspace while maintaining a strong magnetic field strength, we
set the joint space variable q4 to 0. Thus, we design a new vector of joint
space variables qn that does not contain the joint space variables q1 and q4
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2.3 Orienting field-rotation axis

such that qn = [q2 q3]
T. Then we investigate the unreachable zone of the

field-rotation axis at the central point by only considering robotic revolute
joints. The matrix JF (qn) ∈ R3×2 is created to approximately map the
small change (δqn) in the robotic joints to the small change (δω̂) in the
orientation of field-rotation axis, which is expressed by

δω̂ ≈ JF (qn)δqn. (2.27)

Equation (2.27) can be inverted to generate the inverse mapping of
the desired change in the orientation of the field-rotation axis to a desired
change in the robotic joints using Moore-Penrose pseudoinverse,

δqn ≈ J†
F (qn)δω̂. (2.28)

where the Moore-Penrose pseudoinverse J†
F (qn) is the inverse mapping that

minimizes |qn| if the robotic system is over-actuated. The largest singular

value of J†
F (qn) serves as a measure of the most extreme scenario where a

change in the unit vector of the field-rotation axis is approximately mapped
to a magnitude change in the robotic joints [71]. If the largest singular value
approaches infinity, the robotic system is close to experiencing a kinematic
singularity.

To assess the system’s capability to make a TMD ascend or descend
at the central point, we measure the difficulty of executing the system
as the field-rotation axis approaches the vertical direction at the central
point. The orientation of the field-rotation axis at the central point is
characterized by angles θ and φ. Specifically, θ refers to the angle between
the projection vector of the field-rotation axis and the positive x-axis, and
the φ refers to the angle between the vector of the field-rotation axis and
positive z-axis, as shown in Fig. 2.4(c). The ranges of angle θ and φ are set
as [0◦ 360◦] and [67.5◦ 112.5◦], respectively. It shows the color map of the

logarithmic largest singular value of J†
F (the abbreviation of J†

F (qn)) in the
θ-φ plane at the central point. The color map reveals how hard it is for the
field-rotation axis toward the orientation indicated by angle θ and ϕ. As
φ decreases from 90◦ to 67.5◦ or increases from 90◦ to 112.5◦, it gradually
becomes harder. Therefore, it indicates that the more vertical the motion
direction of a TMD, the more challenging it becomes for the system to
implement. In our solution, we adopt a method of having the TMD ascend
or descend in a spiral instead of vertically to achieve the TMD’s arrival at
the designated position.
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2.4 Characterization of the magnetic field

Two identical permanent magnets, spaced apart by a distance of Lmag, are
placed symmetrically on the x-axis relative to frame {R} with the unit
vector of dipole-rotation axis (Ω̂) paralleling to the y-axis, as shown in
Fig. 2.5. The two identical permanent magnets are rotating in synchro-
nization around the dipole-rotation axis (Ω) with a synchronous rotation
angle of θs, resulting in a time-varying magnetic field B (magnetic flux den-
sity) and field gradient in the workspace of our permanent magnet-based
robotic system. We study the variations in magnetic field strength and
gradient (|B| and |∇B|) within the spherical space centered at the origin
and with a radius of r.

2.4.1 Magnetic field strength

For a fixed θs and a fixed Lmag, both maximum and minimum magnetic
field strengths (|B|max and |B|min) are present within a specific space.
Similarly, for any θs and a fixed Lmag, both highest and lowest magnetic
field strengths (|B|hig and |B|low) are present within the same space.

Figure 2.5: Two identical permanent magnets are rotated synchronously
around the unit vector of dipole-rotation axis Ω̂, resulting in a time-varying
magnetic field within the center spherical space between the two magnets.
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Variables such as θs, r, Lmag, and joint space variables (q1, q2, q3 and
q4) contribute to a time-varying magnetic field within the workspace of
our permanent magnet-based robotic system. In this section, we delve into
the analysis of the evolving magnetic field and its gradient in the center
spherical space resulting from these variables.

2.4.1.1 Synchronous rotation angle

To examine alterations in both magnetic field strength and gradient with
variations in the synchronous rotation angle, we keep the radius of the
central spherical space at several constant values (20, 30, 40, and 50 mm)
and the distance between two actuator magnets constant such that Lmag =
350 mm. As θs changes, both |B|max and |B|min will vary. This results in
curves showing the changes of |B|max and |B|min, as shown in Fig. 2.6(a, b,
c, d). The red curve (|B|max), green curve (|B|min), and the region between
them form a variation band. The variation band becomes wider at a larger
center spherical space. The changes in |B|max and |B|min with respect to
θs exhibit periodic behavior, with both of them sharing a period of 180◦.
Furthermore, we visualize the distribution of magnetic field strength over
the surface of the central spherical spaces, while maintaining θs at specific
fixed angles (0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦). Obviously, we observe
that the magnetic field strength near the two actuator magnets is greater
than in the central region of the sphere.

2.4.1.2 Radius of the center spherical space

The changes in |B|hig and |B|low with variations in r, while Lmag is fixed
at 350 mm and θs varies from 0◦ to 360◦, are illustrated in Fig. 2.6(e). The
magnitudes of |B|hig and |B|low at different r are demonstrated in Table
A.2 (Please refer to Appendix A.3). As r increases from 0 to 50 mm, the
|B|hig increases from 3.348 to 5.337 mT, whereas the |B|low decreases from
1.704 to 1.167 mT, indicating that the rate at which the |B|hig increases is
faster than the rate at which the |B|low decreases.

2.4.1.3 Distance between two actuator magnets

The changes in |B|hig and |B|low variations in the Lmag, while r is fixed at
several constant values (20, 30, 40, 50 mm) and θs varies from 0◦ to 360◦,
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2.4 Characterization of the magnetic field

Figure 2.6: Time-varying magnetic field strength within the center spherical
space. (a, b, c, d) The maximum and minimum magnetic field strengths (|B|max

and |B|min) vary within the central spherical space at several fixed radii (r =
20, 30, 40, 50 mm), while maintaining a fixed distance (Lmag = 350 mm) between
two actuator magnets, throughout a single rotation period of the actuator mag-
nets. The magnetic field strength distribution over the surface of the spherical
space varies as synchronous rotation angle θs is fixed at several constant degrees
(0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦). (e) The changes of |B|hig and |B|low in
relation to r when Lmag = 350 mm. (f and g) The changes of |B|hig and |B|low
across various r in correlation with Lmag.
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are shown in Fig. 2.6(f) and 2.6(g), respectively. As Lmag increases, |B|hig
decreases at a faster rate compared to |B|low. Further, the |B|hig at a larger
r decreases faster while |B|low at a smaller r decreases faster. Specifically,
as Lmag increases from 350 to 450 mm, the |B|hig at r = 20, 30, 40 and 50
mm decreases from 3.615 to 1.658 mT, 3.973 to 1.757 mT, 4.526 to 1.904
mT and 5.337 to 2.108 mT, respectively. The |B|low at r = 20, 30, 40 and
50 mm decreases from 1.605 to 0.771 mT, 1.489 to 0.737 mT, 1.340 to 0.692
mT and 1.167 to 0.638 mT, respectively.

2.4.2 Magnetic field gradient

Similar to the definition in magnetic field strength, for a fixed θs and a fixed
Lmag, both the maximum and minimum magnetic field gradients (|∇B|max

and |∇B|min) are present within a specific space. Comparatively, for any
θs with a fixed Lmag, both the highest and lowest magnetic field gradients
(|∇B|hig and |∇B|low) are also present within the same space.

2.4.2.1 Synchronous rotation angle

The change of maximum field gradient |∇B|max along with θs, while r
is fixed at several constant values (20, 30, 40, and 50 mm) and Lmag is
fixed at 350 mm, is periodic with a period of 180◦, as shown in Fig. 2.7(a,
b, c, and d). In addition, the magnetic field gradient distribution on the
surface of the center spherical space with the radius of 20, 30, 40, and
50 mm while keeping θs at a set of constant degrees (0◦, 30◦, 60◦, 90◦,
120◦, 150◦, and 180◦) is visualized. It is evident that the magnetic field
gradient is noticeably higher in the vicinity of the actuator magnets within
the spherical space compared to the central portion of the sphere.

2.4.2.2 Radius of the center spherical space

The change in |∇B|hig with variations in r, while Lmag is set at 350 mm, is
shown in Fig. 2.7(e). The magnitudes of |∇B|hig and |∇B|low at different
r are demonstrated in Table A.2 (Please refer to Appendix A.3). Note
that |∇B|low remains to be 0. With an increasing r, |∇B|hig also exhibits a
corresponding increase. As r increases from 0 to 50 mm, |∇B|hig increases
from 0 to 0.097 T/m.
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2.4 Characterization of the magnetic field

Figure 2.7: Time-varying magnetic gradient within the center spherical space. (a,
b, c, and d) The maximum magnetic field gradient (|∇B|max) varies within the
central spherical at several fixed radii (r = 20, 30, 40, 50 mm), while maintaining
a fixed distance between two actuator magnets (Lmag = 350 mm), throughout
a single rotation period of the actuator magnets. The magnetic field gradient
distribution over the surface of the spherical space varies as synchronous rotation
angle θs is at different degrees (0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦). (e) The
change of the |∇B|hig in relation to r when Lmag = 350 mm. (f) The change of
|∇B|hig across various r in correlation with Lmag. (g) The change of the radius
(rg) of gradient-free space in relation to Lmag for a set of given thresholds (ϱ).
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2.4.2.3 Distance between two actuator magnets

The change in |∇B|hig with variations in Lmag, while r is fixed at several
constant values (20, 30, 40, and 50 mm), is shown in Fig. 2.7(f). As Lmag

increases, |∇B|hig at a larger r decreases faster. Specifically, as Lmag in-
creases from 350 mm to 450 mm, |∇B|hig at r = 20, 30, 40 and 50 mm
decreases from 0.028 to 0.008 T/m, 0.045 to 0.012 T/m, 0.067 to 0.017 T/m
and 0.097 to 0.024 T/m, respectively.

2.4.2.4 Gradient-free space

A space is assumed to be gradient-free if the magnitude of magnetic field
gradient within the space below a threshold (ϱ) such that |∇B|hig ≤ ϱ. The
threshold determines the degree of gradient-free space. A smaller threshold
corresponds to a higher degree of gradient-free space. As Lmag increases,
the radius (rg) of the gradient-free space expands for a set of given thresh-
olds, as shown in Fig. 2.7(g). Specifically, as Lmag increases from 350 to
450 mm, the rg at ϱ = 0.005, 0.01, 0.015 and 0.02 increases from 3.86 to
13.23 mm, 7.67 to 25.29 mm, 11.38 to 35.65 mm, and 14.95 to 44.36 mm,
respectively. In contrast, the desired distance (Ld

mag) between two actua-
tor magnets can be calculated for the gradient-free space with a required
size at a specified threshold. An algorithm for obtaining Ld

mag is given
in Appendix A.4. The size of the gradient-free space can be enlarged
by increasing the distance between the two actuator magnets. However,
this comes at the expense of the average magnetic field strength in the
gradient-free space. Hence, there is an optimal distance between the two
synchronized rotating permanent magnets that ensures effective propulsion
of the TMD while maximizing the available gradient-free space for its mo-
tion.

2.4.3 Joint space variables

We examine the influence of each joint space variable on |B|max, |B|min,
and |∇B|max under two different scenarios. The first scenario involves a
fixed r and several fixed θs (Fig. 2.8). The second scenario features a fixed
θs and several fixed r (Fig. 2.9).

In the first scenario, r is set to 50 mm, and θs is set at several fixed
degrees (0◦, 30◦, 60◦, and 90◦). In Fig. 2.8(a), it indicates that the |B|max
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Figure 2.8: The influence of each joint space variable on the magnetic field strength
and gradient within a center 50 mm-radius spherical space, as the synchronous
rotation angle is set at several fixed degrees (0◦, 30◦, 60◦, and 90◦). (a and b) The
changes of maximum and minimum magnetic field strengths. (c) The changes of
maximum magnetic field gradient.

remains constant with variations in q2. A rise is found as q3 transitions
from −90◦ to 0◦, and then a decline as q3 changes from 0◦ to 90◦. Further,
the |B|max is observed initially increase rapidly with the increase in q4,
then experience a slight decrease as q4 continues to increase, followed by a
minor rise, and finally undergoes a rapid decrease as q4 further increases. By
observing Fig. 2.8(a) and 2.8(b), we notice a similar trend in the influence
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Figure 2.9: The influence of each joint space variable on the magnetic field strength
and gradient within the center spherical space at a synchronous rotation angle of
90◦, as the radius of the center spherical space is set at several fixed values (20
mm, 30 mm, 40 mm, 50 mm). (a and b) The changes of maximum and minimum
magnetic field strengths. (c) The change of maximum magnetic field gradient

of q2 as well as q4 on |B|max and |B|min at a given θs. The influence of
q3 on |B|min causes a notable shift when the θs is approximately 90◦. By
observing Fig. 2.8(a) and 2.8(c), a similar pattern emerges regarding the
impact of each single joint variable on |B|max and |∇B|max at a given θs.

In the second scenario, θs is set to 90◦, and r is set at several fixed
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values (20, 30, 40, and 50 mm). In Fig. 2.9(a), the impact of each single
joint variable on |B|max at a specific r exhibits a pattern similar to that in
Fig. 2.8(a). By observing Fig. 2.9(a) and 2.9(b), it is evident that |B|max

gradually increases, while |B|min steadily decreases, as r increments from
20 to 50 mm at intervals of 10 mm. By observing Fig. 2.9(a) and 2.9(c),
a consistent pattern is evident concerning the influence of each single joint
variable on |B|max and |∇B|max when r is equal to 30, 40, or 50 mm. In
Fig. 2.9(c), it reveals that when r is set to 20 mm, an oscillatory pattern
is observed in |∇B|max as q3 changes from −90◦ to 90◦. This oscillatory
behavior is characterized by an initial increase, followed by a slight decrease,
then another slight increase, and finally, a continuous decrease.

In both scenarios, the range of variation for |B|max and |∇B|max, in-
fluenced by q2 or q3, falls within [0 5.5] mT and [0 0.1] T/m, respectively.
Conversely, the range of variation for |B|max and |∇B|max, influenced by
q4, spans [0 28] mT and [0 1.5] T/m, respectively. Furthermore, under both
the first and second scenarios, the range of variation for |B|min, influenced
by q1, q2, or q3, extends to [0 2.7] mT and [0 3.3] mT, respectively. Con-
versely, the range of variation for |B|min, influenced by q4, extends to [0
4.5] mT and [0 7.3] mT, respectively.

2.5 Closed-loop motion control

A TMD is controlled to follow three predefined 2-D trajectories and a 3-D
spiral circular trajectory in an agar gel phantom to verify the capability of
our permanent magnet-robotic system in TMD motion control. The TMD
consists of a twisted body and a cylindrical magnet. The body of the TMD
has a length of 4 mm and a diameter of 1.5 mm, and a weight of 0.0049
grams. The magnet of the TMD is made of Grade-N45 NdFeB and axially
magnetized with the diameter of 1 mm and the height of 1 mm, and it
has a weight of 0.0064 grams. The magnet is positioned at the tail, with
its dipole moment being perpendicular to the helix axis of the TMD. The
two identical actuator magnets are fabricated with cylindrical Grade-N45
NdFeB and axially magnetized. Each of them has a diameter of 45 mm
and a height of 30 mm. Further, the actuator magnets are controlled to
rotate synchronously. Each of them is driven by a Maxon motor (Planetary
Gearhead GP 32 C D32 mm, 1.0-6.0 Nm, Ceramic Version) with a Maxon
controller (EPOS2 50/5, Digital positioning controller, 5 A, 11-50 VDC).
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The field-rotation axis’s translational motion, characterized by joint
space variable q1, is implemented by a linear motion stage (KUA1505-520-
150-A1-N3, X-Axis unit, Japan). Further, the motion stage is driven by an
A1 actuator (MX-106R, Dynamixel Actuator). The yawing motion of the
field-rotation axis, which is characterized by joint space variable q2, is ac-
complished by an A2 actuator (H42P-020-S300-R, Servomoteur Dynamixel
PRO PLUS). The pitching motion of the field-rotation axis, which is char-
acterized by joint space variable q3, is realized by two A1 actuators that are
in synchronous control mode. Another yawing motion of the field-rotation
axis, characterized by joint space variable q4, is fulfilled by two A3 actua-
tors (M42P-010-S260-R, Servomoteur Dynamixel PRO PLUS). To measure
the real-time position and the moving direction of the TMD, two cameras
(Aviator GIGE, avA1000-100gm, Basler AG, Ahrensburg, Germany) are
mounted on orthogonal sides of the container. Besides, the TMD is im-
mersed in an agar gel phantom, which is made of gelatine powder (Ec Nr:
232-554-6, Boom BV, Rabroekenweg, The Netherlands) and demineralized
water with a mass ratio of 0.63 wt.%. To create the agar gel phantom, we
pour the aqueous gelatin solution into a transparent cubic container with
a length of 100 mm. Subsequently, the container is placed in a refrigerator
at 3 degrees Celsius for 12 hours before the experiment.

2.5.1 Two-dimensional motion control

We implement 2-D closed-loop motion control experiments with two pre-
scribed trajectories. To begin with, the prescribed “Triangle” and “Square”
trajectories are broken into 32 and 18 representative waypoints, respec-
tively. Then, the desired inverse solution at each representative point of
prescribed trajectories is solved based on the algorithm presented in Table
2.1. Next, these inverse solutions provide the real-time reference positions
for joint space variables during the implementations of TMD closed-loop
motion control.

The prescribed (red) and actual (blue) trajectories with their tracking
errors are indicated in each case, as shown in Fig. 2.10. It indicates that
the maximum position tracking errors of the “Triangle” and “Square” tra-
jectories are 1.94 mm and 1.20 mm, respectively. The TMD achieves an
average motion speed of 0.27 mm/s during the closed-loop motion control.
The increase in the motion speed of the TMD can be achieved by increas-
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2.5 Closed-loop motion control

Figure 2.10: 2-D closed-loop motion control of a TMD to move along prescribed
2-D trajectories. (a) “Triangle” trajectory with its tracking error. (b) “Square”
trajectory with its tracking error. The prescribed trajectories (red) and the actual
trajectories (blue) are indicated. The TMD swims at an average motion speed of
0.27 mm/s, and a maximum tracking error of 1.94 mm during the 2-D closed-loop
motion control. Please refer to the accompanying video.

ing the actuation frequency. However, increasing the TMD’s motion speed
requires the system to have the capability to respond quickly. Otherwise,
it may lead to an increase in position tracking error Please refer to the
accompanying video.

2.5.2 Three-dimensional motion control

We implement 3-D closed-loop motion control experiments with one pre-
scribed trajectory. To begin with, the prescribed 3-D spiral trajectory is
broken into 17 representative waypoints (Please refer to Table 2.2). These
waypoints are evenly distributed on the predefined trajectory. The desired
field-rotation axis at each representative waypoint is indicated by the red
arrow. Given the representative waypoint Pn and the desired field-rotation
axis ω̂d, the desired dipole-rotation axis Ω̂d, and the desired vector of joint
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2.6 Conclusion

space variables qd at each waypoint is calculated in Table 2.2 by using the
algorithm presented in Table 2.1.

The time-dependent changes of reference (red) and actual (blue) posi-
tions in joint space variables are shown in Fig. 2.11(a). The time-dependent
change of q1 shows a tendency for the linear motion stage to move forth and
back to follow the TMDmotion in the y-axis direction. The time-dependent
change of q2 indicates that the bottom yawing motor approximately rotates
22◦ at two adjacent representative waypoints. The time-dependent change
of q3 indicates that the pitching motor decreases its pitching angle as the
TMD moves upward. The time-dependent change of q4 indicates that the
two top yawing motors make a small rotation. As we look at the time-
dependent changing trend of each joint space variable, the control system
tends to keep the TMD at the center of the workspace throughout the
process of controlling the TMD to move along the predefined trajectories.

Fig. 2.11(b) indicates the real-time position of the TMD at the top and
side views. From the top view, the TMD trajectory forms a circle with a
diameter of 30.6 mm. From the side view, the trajectory forms a spiral
with a pitch of 19.0 mm. Further, Fig. 2.11(c) demonstrates that the mean
absolute error of 3-D motion control, by calculating the average position-
ing error between the synthetic and predefined 3-D trajectory (green and
black), is 1.18 mm, and the maximum tracking error is 2.64 mm. The ex-
perimental results reveal that the TMD can move controllably. Please refer
to the accompanying video.

2.6 Conclusion

We develop a permanent magnet-based robotic system that enables motion
control of TMDs. First, we derive a kinematic model that relates the field-
rotation axis, the dipole-rotation axis, and the joint space variables. Then,
we characterize the yawing and pitching motion of the field-rotation axis
at the central point of the workspace. Next, we analyze the difficulty level
of orienting the field-rotation axis at the central point of the workspace
and observe that the system exhibits a greater degree of singularity as
the field-rotation axis becomes more vertical. Then, we characterize the
magnetic field and field gradient in the workspace and observe that the
center region of the workspace is almost a gradient-free region. Finally, we
demonstrate the capability of our robotic system to control a TMD moving
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2. Design and Control of a Permanent Magnet-Based Robotic System
for Navigating Tetherless Magnetic Devices in Viscous Environments

along prescribed trajectories in 2-D and 3-D space experimentally.
In addition, the inclusion of extra DOFs will allow our system to control

the TMD motion with various strategies. Our system is not only capable
of driving highly magnetized devices, like those containing NdFeB magnets
for magnetization, but also caters to weakly magnetized devices, such as
soft sperm robots that utilize injected magnetic particles for magnetization
[149].
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Chapter Overview

Actuation systems that utilize two synchronized rotating permanent mag-
nets provide a notable advantage compared to those using only a single
rotating permanent magnet. The use of two synchronized rotating mag-
nets allows for the reduction or elimination of the lateral gradient force
acting on a TMHD, resulting in more stable motion of the TMHD.

In Chapter 2, we introduce a permanent magnet-based robotic system
that employs two synchronized rotating permanent magnets to achieve 3-
D motion control of a TMHD in physiological environments. We verify
the existence of a gradient-free space between the two synchronized ro-
tating permanent magnets, confirming that our robotic system meets the
necessary conditions for applying a swimming speed prediction model that
assumes force-free rotation of the TMHD. This validation paves the way
for utilizing the prediction model to guide TMHD motion control within
our robotic system.

Consequently, in Chapter 3, we focus on integrating this prediction
model into TMHD motion control. To achieve this, we characterize the
TMHD swimming speed in relation to the actuation frequency of the rotat-
ing field. This characterization provides the foundation for designing the
closed-loop control scheme for the TMHD based on the prediction model.
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3
Closed-Loop Control of Magnetically-

Driven Screws in a Viscoelastic Medium

Note: Following chapter is adapted from the article “Closed-Loop Control
of Magnetically-Driven Screws in a Viscoelastic Medium” by Z. Zhang,
A. Klingner, S. Misra, and I. S. Khalil published in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 2020, pp. 25–29.

Abstract

Magnetically-driven screws operating in soft tissue environments could be
used to deploy localized therapy or achieve minimally invasive interventions.
In this work, we characterize the closed-loop behavior of magnetic screws in
an agar gel tissue phantom using a permanent magnet-based robotic system
with an open configuration. Our closed-loop control strategy capitalizes on
an analytical calculation of the swimming speed of the screw in viscoelas-
tic fluids and the magnetic point-dipole approximation of magnetic fields.
The analytical solution is based on the Stokes/Oldroyd-B equations, and its
predictions are compared to experimental results at different actuation fre-
quencies of the screw. Our measurements match the theoretical prediction
of the analytical model before the step-out frequency of the screw, owing
to the linearity of the analytical model. We demonstrate open-loop control
in two-dimensional space, and point-to-point closed-loop motion control of
the screw (length and diameter of 6 mm and 2 mm, respectively) with a
maximum positioning error of 1.8 mm.
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Medium

3.1 Introduction

There have been many successful biologically-inspired approaches to pro-
vide locomotion at low Reynolds number (Re) regime. Swimming using
helical propulsion based on the Escherichia coli bacteria has been achieved
by Bell et al. and Ghosh et al. using homogenous magnetic fields [150],
[151]. These magnetic fields exert magnetic torque on the dipole of the
helical microrobots, and hence allow them to rotate and move through
screw-based motion in fluids and tissue [152]. The wireless control in flu-
idic environments, micrometer-level precision, and the small size of these
microrobots make them viable for diverse clinical applications [153]-[154].
With helical propulsion, even so, more than with other actuation tech-
niques, the microrobot has the ability to swim under a wide range of Re
in the range of 0.01 to 1000. In addition, helical propulsion enables mi-
crorobots to swim in viscous fluids and drill through complex viscoelastic
media. Therefore, they could potentially perform tasks in biological fluids
and tissue.

Nelson et al. have developed an empirical model of magnetically-driven
screws to predict the role of magnetic, rheological, and actuation parame-
ters on the turning radius of the screw [155]. Schamel et al. have demon-
strated that nanoscrews move controllably through high viscosity solu-
tions [156]. They have also observed propulsion enhancement that ex-
ceeds the highest measured speeds in Newtonian fluids for heterogenous
gel-like media with a mesh size larger than the swimmer size. Walker et al.
have developed magnetic micropropellers that mimic bacteria in swimming
through mucus by producing the enzyme urease to raise the pH locally and
dissolve the mucus [157]. Wu et al. have also developed intravitreal de-
livery micropropellers that can be actively propelled through the vitreous
humor to reach the retina [158]. Recently, Xu et al. have also demonstrated
image-based visual servoing of helical microswimmers and arbitrary path
following in two dimensions [159], [160]. These microrobots are typically ac-
tuated using uniform magnetic fields produced by orthogonal arrangements
of electromagnetic coils with a relatively limited projection distance.

In contrast to actuation with an orthogonal arrangement of coils, Foun-
tain et al. [161] and Mahoney et al. [162], [163] have demonstrated he-
lical propulsion using non-uniform magnetic fields produced by a single
rotating permanent magnet. The rotating permanent magnet is positioned
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3.1 Introduction

Figure 3.1: A magnetically-driven screw is moved controllably in soft tis-
sue phantom (0.8 wt.% agar gel) at room temperature along a circular
trajectory. The screw is actuated by two rotating dipole fields. The blue
trajectory and the curved red arrows indicate the path and direction of the
screw, respectively.

with a 6-DOF robotic manipulator to enable actuation over relatively large
workspace compared to orthogonal arrangements of electromagnetic coils.
Ryan and Diller have also presented a permanent magnet-based actuation
system consisting of eight permanent magnets [164]. The eight permanent
magnets can create fields and field gradients in any direction with vari-
able magnitudes to achieve feedback control of microagents. It has also
been demonstrated that the attractive forces acting on the microrobot can
be converted into a lateral force using an open-loop trajectory by Ma-
honey et al. [165]. Alshafeei et al. [166] and Hosney et al. [74], [146] have
also shown that the attractive forces along the lateral direction of the mi-
crorobot can be eliminated by using two synchronized rotating dipole fields,
and open-loop control has been demonstrated inside a viscous medium to
clear clogged vessels.
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Medium

In this chapter, we study the closed-loop behavior of magnetically-
driven screws in a viscoelastic medium (agar gel) under the influence of
non-uniform rotating dipole fields (Fig. 3.1). A closed-loop control system
is developed based on an analytical solution of the swimming speed of the
screw and the magnetic point-dipole approximation of the magnetic fields,
and we achieve the following:

1. Implement an analytical solution based on the Stokes/Oldroyd-B
equations to predict the swimming speed of the screw [40], [167];

2. Characterization of the frequency response of magnetically-driven
screws and comparison between measurements and analytical results;

3. Open-loop and point-to-point closed-loop control in agar gel.

The remainder of this paper is organized as follows: In Section 3.2, an
analytical solution of the swimming speed of the magnetically-driven screw
in viscoelastic fluids is used in the development of a closed-loop control
system. Section 3.3 provides descriptions of our permanent magnet-based
robotic system, characterization of the frequency response of the screw,
and comparison with the theoretical predictions of the Stokes/Oldroyd-B
equations, and open- and closed-loop control results. Finally, Section 3.4
concludes and provides directions for our future work.

3.2 Modeling and control of magnetically-driven
screws

Magnetically-driven screws are immersed in low-Re medium and actuated
using a non-uniform magnetic field.

3.2.1 Magnetically-driven screws

We consider a screw with magnetic dipole moment m perpendicular to
its helix axis, consisting of a helical wave superimposed onto a cylinder of
radius A. Its surface is described by [40], [167]

x(θ, ζ) = Aρ(θ)[cos(v∗ζ + θ)x̂+ sin(v∗ζ + θ)ŷ] + ζẑ, (3.1)

where θ and ζ are helical coordinates such that θ ∈ [0, 2π) and ζ ∈
(−∞,∞). Further, the helical pitch is 2π/v∗ and the pitch angle is given by
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3.2 Modeling and control of magnetically-driven screws

Figure 3.2: The profile of the screw influences its swimming speed in a
viscoelastic medium. (a) Three representative screw profiles (ρ) are calcu-
lated using ρ(θ) = 1 + ϵ sin(Nθ), for ϵ = 0.5, N = 1 : 3, and θ ∈ [0, 2π).
N is the number of starts of the screw. (b) The permanent magnet with
magnetization direction orthogonal to the long axis of the screw is fixed
inside the cylinder (with radius A). (c) Swimming speed of the screw is
calculated as function of v for N = 1, 2, 3. (d) The swimming speed (U) of
the screw increases with the number of starts and the actuation frequency
(f). (e) U increases with f and v for N = 2, and ϵ = 0.33. The swimming
velocity is calculated using equation (3.4).
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Medium

γ = tan−1(v∗A). The function ρ(θ) = A[1 + εf(Nθ)] indicates the profile
of the cross-section of the screw, where f(Nθ) is a periodic function and
N is the number of starts of the screw. Fig. 3.2(a) shows different pro-
files for the screw. The screw (Fig. 3.2(b)) is subject to a magnetic torque
τ = m× (B1+B2) exerted by two rotating dipole fields B1 and B2. These
fields are generated by two rotating permanent magnets and modeled with
the following point-dipole approximation [161]-[163]:

Bi(p) =
µ0

4π | p |3

(
3(Mi · p)p

p
−Mi

)
for i = 1, 2, (3.2)

where µ0 is the permeability of free space and p is the position vector of the
screw with respect to the rotating permanent magnet. Further, Mi is the
magnetic dipole moment of the ith permanent magnet. Because M rotates
at a controlled constant angular velocity (results in translating speed as
shown in Fig. 3.3(a)), M is constructed using q as

0T3
i (q) =

(
0R3

i
0p3

i

01×3 1

)
for i = 1, 2, (3.3)

where 0T3
i (q) is the ith homogenous transformation matrix from the frame

of reference of the ith permanent magnet to a reference frame and q =
(ϕ, α, β)T is a vector of the joint space coordinates. Further, 0R3

i and 0p3
i

are the rotation matrix and position vector of the ith permanent magnet
with respect to a frame of reference (Fig. 3.3(b)), respectively. The orienta-
tion of the actuating magnets is described using (3.3) and M is constructed
using q.

3.2.2 Swimming speed in viscoelastic fluid

The magnetic torque rotates the screw at angular speed ω and the following
translating speed U [40], [167]:

U = 2Aωε2
∑
q≥1

(1 + βq2De2) | f̂q |2

1 + q2De2
Jq, (3.4)

where De is the Deborah number and given by

De = λω, (3.5)
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3.2 Modeling and control of magnetically-driven screws

Figure 3.3: A magnetically-driven screw is moved controllably in soft tissue
phantom. (a) The screw is actuated by two rotating permanent magnets
with magnetic moment (M) at angular speed (ω1 = ω2). (b) The pitch
(β) and steering (α) angles of the permanent magnets enable the screw
to rotate and achieve out-of-plane swim. The two permanent magnets are
also rotated with respect to a reference frame of reference with angle ϕ.
M1 and M2 are the magnetization vectors of the permanent magnets and
reside along their long axes. The dashed square indicates the workspace
(105 mm×105 mm×40 mm) of the system.
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Medium

where λ is the fluid relaxation timescale. Further, β is the ratio of the
solvent viscosity to the total viscosity of the solvent and polymer (β =
ηs/η). In (3.4), f̂q is Fourier analysis of the periodic function f(Nθ) and
the function Jq is calculated based on Bessel function Kx at x = qv, where
v is the normalized pitch v = v∗A

Jq =
q2Aq

2

(
2Kq−1 − vKq +

vK2
q−1

Kq

)
, (3.6)

where the constants Aq are calculated using

Aq =
2
(
q +

qvKq−1

Kq

)
qKq + qvKq−1 − 2(q−2)

v Kq−1 −
(3q−2)K2

qi1

Kq
− qvK3

q−1

K2
q

. (3.7)

Equation (3.4) predicts the swimming speed of the helix based on the char-
acteristics of the viscoelastic medium, the parameters of the screw, and
the angular speed of the screw. Fig. 3.2(c) shows the calculated swim-
ming speed of the screw as a function of the helical pitch (2π/v) for three
representative values of number of starts (N). The swimming speed in-
creases with v and N , at an actuation frequency of 5 Hz. The swimming
speed of the screw also depends on the actuation frequency. Figs. 3.2(d)
and 3.2(e) show the calculated swimming speed of the screw at actuation
frequency of f ∈ [5, 25] Hz, and for three representative screw profiles,
f(θ) = 1 + 0.5 sin(Nθ) for N = 1 : 3 and θ ∈ [0, 2π) and three representa-
tive helical pitches. The calculated speed of the screw increases with the
actuation frequency and the number of starts of the screw profile.

3.2.3 Control system design

We assume that the external magnetic field and the magnetic dipole provide
enough torque, and that the helix axis of the screw ultimately aligns with
the magnetic field lines. Therefore, the direction of the screw is calculated
based on the direction of the magnetic field at the position of the screw,
and this assumption yields

∠m = ∠B(p) ⇒ ∠U = ∠m+
π

2
. (3.8)
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3.3 Closed-loop motion control

We also assume that the dipole fields are rotating below a step-out fre-
quency (ωso) of the screw. This step-out frequency limits the frequency
response as the screw does not remain synchronized with the external mag-
netic fields. Therefore, the angular velocity of the rotating dipole fields is
calculated using

ω =

{
k1 | pref − p |, ω < ωso

κωso, ω ≥ ωso
(3.9)

where k1 is a positive gain and 0 < κ < 1. The control input (3.9) provides
zero output for zero position tracking error | pref − p |, thereby decreasing
the linear speed of the screw as it approaches the reference position. The
second control input is the direction of the magnetic fields. This direction is
controlled by the magnetization vectors of the rotating permanent magnets
Mi. The point-dipole model (3.2) is provided with the desired magnetic
fields based on the orientation error of the screw. Therefore, the desired
orientation of the magnetic field is calculated using

∠B(p) = tan−1

(
| pref − p |y
| pref − p |x

)
, (3.10)

where | pref − p |x,y is the position error along x- and y-axis, respectively.

The angle of the desired magnetic field ∠B(p) and its unit vector B̂(p)
are used to construct B(p) and calculate Mi using (3.2). This calculation
is done by setting m × Bd ⇒ k2(ṗref − ṗ) to calculate the desired mag-
netic field Bd, where k2 is a positive-definite matrix. Fig. 3.4 shows the
implementation of the control system.

3.3 Closed-loop motion control

Control of the screw is achieved using a permanent magnet-based robotic
system inside agar gel tissue phantom.

3.3.1 System description

The magnetic control of the screw is done using two synchronized rotating
dipole fields. Two permanent magnets (NdFeB) with axial magnetization
are fixed to DC motors to generate rotating magnetic fields. The permanent
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3.3 Closed-loop motion control

magnets (R750F, Amazing Magnets LLC, California, U.S.A) with diameter
and height of 40 mm and 20 mm have a magnetization of 1.72×10−4 A.m2.
The orientation of the DC motors are controlled independently to change
the pitch and steering angles of the screws, as shown in Fig. 3.3. The
pitch (βi) and yaw (αi) angles of each motor are controlled independently
to control the pitch and steering angles of the screw, respectively. Each
of these configurations is fixed to a rotational motion stage with radius R
(rotates with angle ϕ), and the screw is allowed to swim between the rotat-
ing dipole fields. The screw is contained inside a reservoir (105 mm×105
mm× 40 mm) made of acrylic and is allowed to swim within the center of
the two rotating dipole fields. Its position and orientation are measured
by two cameras (Aviator GIGE, avA1000-100gm, Basler AG, Ahrensburg,
Germany) mounted above and in front of the reservoir. The length and
diameter of the screw are 6 mm and 2 mm, respectively. The helix angle
and the pitch are 45◦ and 2 mm, respectively. A cylindrical permanent
magnet with a diameter of 1 mm and a length of 1 mm is fixed to the
screw to provide a magnetic dipole moment along its radial direction. The
configuration of the permanent magnets yields the following homogenous
transformation:

0T3
i (q) =


cϕcαi − sϕsαi aicβi −bisβi Rcϕ
sϕcαi + cϕsαi cicβi disβi Rsϕ

0 sβi cβi 0
0 0 0 1

 (3.11)

where ai = −cϕsαi − sϕcαi, bi = −cϕsαi − sϕcαi, ci = −sϕsαi + cϕcαi,
and di = sϕsαi+ cϕcαi. This homogenous transformation is used to deter-
mine the desired angles of the the actuating magnets based on the desired
magnetization Md.

Frequency response and motion control experiments are done inside
agar gel at room temperature. Demineralized water and gelatine powder
(Ec Nnr: 232-554-6, Boom BV, Rabroekenweg, The Netherlands) with a
density of 0.68 g/ml are used to prepare the agar gel in three steps. The
first step is heating until the gelatine powder dissolves at 70◦. The second
step is dilution to a concentration of 0.8 wt.% agar gel. Finally, the mixture
is cooled for 12 hours in the reservoir.

69

3



i
i

“output” — 2024/8/18 — 19:35 — page 70 — #88 i
i

i
i

i
i
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Figure 3.5: Frequency response of a 6-mm-long screw is characterized in
0.8 wt.% agar gel at room temperature. The screw is allowed to swim
within the center of two rotating dipole fields inside a gelatin reservoir. The
distance between the two rotating dipole fields is 21 cm, and the magnitude
of the magnetic field at the position of the screw is 47 mT. The step-
out (ωso) of the screw is 19 Hz. Each data point represents the average
swimming speed U of five trials at each actuation frequency f .

3.3.2 Frequency response characterization

The screw swimming speed is measured against the actuation frequency
of the rotating dipole fields. The minimum and maximum magnitudes of
the magnetic field at the position of the screw are 47 mT and 80 mT,
respectively. The frequency response of the screw is shown in Fig. 3.5.
Each data point represents the average swimming speed of five trials at each
actuation frequency. The frequency response indicates that the screw does
not follow the magnetic field lines above the actuation frequency of 19 Hz.
Therefore, the step-out frequency of the screw is 19 Hz. At this frequency,
the swimming speed is measured as 22.3±2 mm/s. The frequency response
of the screw indicates that the analytical solution of the Stokes/Oldroyd-
B equations is in agreement with the measurements below the step-out
frequency. Therefore, equation (3.4) is incorporated into the closed-loop
control system and the actuation frequency is limited below 19 Hz.
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3.3 Closed-loop motion control

Figure 3.6: Open-loop control of a magnetically-guided screw is achieved
along a square trajectory with an edge length of 36 mm in 0.8 wt.% agar
gel at room temperature. Please refer to the accompanying video.

3.3.3 Open-loop control results

Fig. 3.1 shows superimposed still images demonstrating open-loop control
of the screw. In this experiment, the steering angle and pitch angle of the
permanent magnets are fixed and only the angular velocity of the rotating
motion stage is set to a constant speed. This control enables the screw
to swim along a circular trajectory. This result indicates that the screw
can swim controllably using a single degree of freedom (ϕ) of the perma-
nent magnet-based robotic system. Another representative open-loop trial
is shown in Fig. 3.6. In this case, the screw is controlled to swim along a
square trajectory with an edge length of 36 mm. Similarly to the circular
trajectory, the angle ϕ is used to control the screw. In both examples, the
magnets are synchronized, and the motion of the rotational stage is con-
trolled based on the desired trajectory. In practice, the pitch and steering
angles of the screw have to be controlled toward the reference position.
Please refer to the accompanying video.

3.3.4 Point-to-point control results

Fig. 3.7(a) shows a representative closed-loop control trial of the screw to-
ward three target positions. Small particles (red arrows) are added into the
agar gel and used as targets for the screw. The targets are positioned at
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Figure 3.7: A magnetically-driven screw swims controllably toward refer-
ence positions (indicated by the red arrows) under the influence of con-
trolled magnetic fields in 0.8 wt.% agar gel at room temperature. (a) The
screw swims toward three reference positions with a maximum position er-
ror of 1.25 mm. (b) The screw swims toward four reference positions with
a maximum position error of 1.82 mm. (c) The screw swims toward six
target positions in a hexagon configuration with maximum position error
of 1.69 mm. Please refer to the accompanying video.

random locations and separated with approximately 5-6 body length. In
contrast to the previous open-loop control experiments, the position and
orientation of the screw and the position of the targets are used in (3.9) and
(3.10) to calculate the control inputs ω and ∠B(p). This angle is used to
construct the desired direction of the magnetization vector of the actuating
magnet using the point-dipole approximation of the field (3.2). Finally,
the desired angles of the permanent magnet-based robotic system are cal-
culated based on the homogenous transformation (3.11) and the desired
magnetization vector Md. The desired angles (ϕ, α, and β) are controlled
and updated based on the reference position. In the case of Fig. 3.7(a), the
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3.4 Conclusions and future work

screw swims controllably toward three targets with a maximum position
error of 1.25 mm. Similarly to Fig. 3.7(a), four markers (targets) are ran-
domly inserted inside the agar gel, and the screw achieves point-to-point
control with a maximum position error of 1.82 mm, as shown in Fig. 3.7(b).
In Fig. 3.7(c), six particles are inserted in a hexagon configuration, and the
screw achieves closed-loop control with a maximum position error of 1.69
mm. Please refer to the accompanying video.

The positioning error of the closed-loop control trials depends on the
prescribed locations of the targets. Relatively small positioning error is
observed when the targets are located in the swimming direction of the
screw. The turning curvature of the screw depends on its swimming veloc-
ity, magnetic moment and magnetic field, geometry, and properties of the
agar gel [155]. Therefore, it is possible to enhance the performance of the
closed-loop control system by decreasing the turning curvature of the screw
using the swimming speed during experimental runs. It is also possible to
exert greater magnetic torque and decrease the turning radius by incorpo-
rating permanent magnets with relatively large magnetic moment during
fabrication.

3.4 Conclusions and future work

Open- and closed-loop motion control of magnetically-driven screws are
achieved using a permanent magnet-based robotic system in agar gel tissue
phantom. The frequency response of the screw is characterized, and a good
match is observed between measurements and calculated speeds based on
an analytical solution of the Stokes/Oldroyd-B equations. The analytical
solution and measurements are in agreement below the step-out frequency
of the screw. In the case of open-loop control, we demonstrate the ability to
swim along simple trajectories using single degree of freedom of the system.
In the case of closed-loop control, the screw is controlled toward arbitrary
targets with maximum position error of 1.82 mm.

As part of future studies, the magnetically-driven screw will be tested
in real tissue and bodily fluids. This ex vivo study is essential to test
the capability of our permanent magnet-based robotic system to actuate
the screw in conditions encountered in vivo such as the time-varying flow
rates, heterogenous and fibrous environments. The screw will also be fab-
ricated using biodegradable polymer and drug will be incorporated into
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Medium

its polymer matrix to deploy localized therapy in soft-tissue environment.
In addition, the Stokes/Oldroyd-B equations will be compared to screws
with different geometries (diameter, length, helical pitch, rim depth), dif-
ferent magnetic properties (magnetic moment and magnetic field), inside
fluids with different rheological properties (viscosities), and near to a solid
boundary. This comparison is essential to predict the speed of a wide range
of magnetically-driven screws in different conditions.
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Chapter Overview

In Chapter 3, we propose a control strategy that incorporates a swimming
speed prediction model for TMHD motion control. However, there is room
for further optimization of this control strategy.

Chapter 4 introduces an approach to reduce computational burden,
thereby enhancing the control strategy. First, we establish a relationship
model between the synchronized rotation of two identical permanent mag-
nets (characterized by the dipole-rotation axis) and the corresponding mag-
netic field (characterized by the field-rotation axis) using the point-dipole
model. Next, we explore the correlation between the actuation frequency of
the synchronized rotating permanent magnets and the TMHD swimming
speed in viscoelastic fluids, which includes validating the swimming speed
prediction model. Finally, we translate TMHD motion direction control
into orientation control of the field-rotation axis and TMHD motion speed
control into angular speed control of the dipole-rotation axis. Additionally,
we characterize the effect of TMHD geometric parameters on its swimming
speed, providing a reference for selecting the optimal TMHD to achieve the
fastest swimming performance.
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4
Hydrodynamic Behavior of Tetherless

Twist-Shaped Magnetic Devices in Vis-

coelastic Fluids Driven by a Synchro-

nized Rotating Magnetic Actuation Sys-

tem

Note: Following chapter is adapted from the article “Hydrodynamic Be-
havior of Tetherless Twist-Shaped Magnetic Devices in Viscoelastic Flu-
ids Driven by a Synchronized Rotating Magnetic Actuation System” by Z.
Zhang, A. Klingner, S. Misra, and I. S.M.Khalil (2024) under review in
“IEEE Transactions on Medical Robotics and Bionics”

Abstract

Tetherless magnetic helical devices, including helix-, screw-, and twist-
shaped variants, hold significant potential for biomedical applications such
as targeted drug delivery, cell transportation, and blood clot removal.
This paper focuses explicitly on tetherless twist-shaped magnetic devices
(TTMDs). Investigating the factors that influence the hydrodynamic per-
formance of TTMDs in bodily fluids, such as the vitreous humor of the
human eye, is essential for achieving the desired outcomes. We examine
key parameters of TTMD geometry, including the number of starts, ra-
dius, pitch, and amplitude, along with actuation frequency, to understand
their effects on TTMD swimming speed. Experiments are performed in
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a viscoelastic (Oldroyd-B) fluid environment (agar gel phantom) using a
synchronized rotating magnetic actuation system. The swimming speed of
each type of TTMD obtained from experiments was compared with that
predicted by an existing swimming speed prediction model under a specific
condition. Through this comparison, we discover the model’s effective pre-
diction capability for TTMD swimming speed at low actuation frequencies
(below the step-out frequency) yet note a decrease in accuracy at high ac-
tuation frequencies (near or above the step-out frequency). The swimming
speed prediction model is then applied in the context of TTMD motion
control experiments, revealing its suitability for TTMD motion control,
particularly in predicting TTMD swimming speed in viscoelastic fluids at
low actuation frequencies (below the step-out frequency). This capability
contributes to time savings when computing TTMD position information.

4.1 Introduction

Owing to the small size to access hard-to-reach regions of the biological
body and the safety of the applied actuation source (magnetic field) to bio-
logical tissue, tetherless magnetic helical devices have found a progressively
comprehensive utilization in biomedical applications such as targeted drug
delivery [109], [168], targeted gene transportation [114], [169], and blood
clots cleaning [111], [112]. In order to enable the magnetic helical devices
to move through the bodily fluids with high swimming performance, it is
necessary to investigate their swimming characteristics in that fluidic envi-
ronment.

In general, tetherless magnetic helical devices (TMHDs) can be catego-
rized into three subclasses according to their fundamental shapes: tetherless
helix-shaped magnetic devices (THMDs), tetherless screw-shaped magnetic
devices (TSMDs), and tetherless twist-shaped magnetic devices (TTMDs)
[170]. A THMD is distinguished by a slim filament enveloping an empty
core. A TSMD consists of a helical filament wrapped around a solid center.
A TTMD can be described as a ribbon undergoing torsion around its lon-
gitudinal axis. Due to the typical ‘helical’ structure, the three subtypes of
TMHDs share the same movement mechanism. That is, the translational
motion is converted by the rotation around their body axes. In addition
to the fundamental shapes of the TMHDs, researchers have found that nu-
merous factors can influence the swimming characteristics of the TMHDs
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in fluids, such as TMHD geometrical parameters, the viscosity of the fluids,
the strength of the applied magnetic field, and the surface hydrophobicity
of the TMHDs.

The swimming characteristics of THMDs have undergone extensive ex-
amination through theoretical and experimental approaches. In theoretical
studies, Purcell proposed a generalized propulsion model [44], [45], enabling
the calculation of non-fluidic applied torque and force on a THMD using
translational and angular speeds, represented by a propulsion matrix. Each
matrix element is a function of THMD geometrical parameters and fluid
viscosity based on the resistive force theory [46]. This model enables re-
searchers to systematically investigate how the geometry of THMDs and
fluid viscosity affect their swimming speed in a low-Reynolds-number en-
vironment. Such exploration lays the groundwork for optimizing THMD
design to improve their swimming performance. With this model, Wang et
al. optimized THMD design for maximum swimming speed by analyzing
the impact of geometrical parameters, such as wire radius, helix pitch, and
helix length, on swimming speed and propulsion efficiency [171]. Further,
Ullrich et al. observed enhanced propulsion of a THMD in the presence of
collagen fibers at a gelatin concentration of 1578 µg/mL by studying the
effect of collagen concentration on THMD swimming speed [172], aligning
with the experimental findings of Berg and Turner berg [173] and Maga-
riyama’s theory [174]. In addition, Ye et al. proposed a strategy to enhance
THMD swimming performance by increasing surface material hydrophobic-
ity [175].

The swimming characteristics of TSMDs have predominantly been ex-
plored through a combination of experimental and simulation methods.
Cai et al. utilized a TSMD as a magnetic capsule, demonstrating its abil-
ity to execute drug delivery tasks by simulating its motion characteristics
throughout the entire drug delivery process using Computational Fluid
Dynamics (CFD) [119]. Seeking optimal design, Zhou et al. investigated
a capsule-like TSMD geometrical parameters such as lead, number of spi-
rals, spiral height, and cross-section in fluidic and tubular environments to
quantify their impact on propulsion efficiency [176]. In another application,
Leclerc et al. employed a TSMD as a magnetic driller, determining the most
efficient design for removing human blood clots in vitro [177]. Additionally,
Nelson et al. explored the influence of driller-like TSMD geometry and fluid
viscosity on the turning radius within an agar gel phantom, developing an
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Devices in Viscoelastic Fluids Driven by a Synchronized Rotating
Magnetic Actuation System

empirical model [178].

The swimming characteristics of TTMDs have been studied in-depth
through theoretical methods. Li et al. have proposed a swimming speed
prediction model that can predict the swimming speed of a TTMD in vis-
coelastic fluids [40], [167]. The derivation of such a model occurs within
the framework of force-free swimming of a TTMD in viscoelastic fluids,
implying that the translational motion of the TTMD solely arises from its
self-rotation. The electromagnetic actuation systems (such as those based
on Helmholtz coils), which are capable of generating a rotating magnetic
field with zero gradient, can fulfill the requirement for actuating the TTMD
within that framework. Thus, this model can be employed to predict
TTMD swimming speed in viscoelastic fluids when the TTMD is actuated
by these electromagnetic actuation systems. In contrast, most permanent
magnet-based actuation systems are limited in providing such actuation
for the TTMDs within that framework due to the generation of gradient
fields. However, a permanent magnet-based actuation system using two
synchronized rotating permanent magnets can approximately generate a
rotating magnetic field with zero gradient within a limited region between
the two permanent magnets. Consequently, the applicability of this model
may be extended to cases where the TTMDs are actuated by permanent
magnet-based actuation systems.

In this paper, we investigate the TTMD swimming characteristics under
an actuation system utilizing two synchronized rotating permanent mag-
nets, and subsequently apply that to the TTMD motion control. The pro-
cess of a twist-shape magnetic microrobot from design, fabrication, propul-
sion to motion control is shown in Fig. 4.1. We conduct experiments to
quantify the swimming speed of TTMDs, each characterized by distinctive
geometrical features, including variations in length, number of starts, pitch,
diameter, and amplitude. These experiments are conducted over a range of
actuation frequencies within an agar gel phantom. Concurrently, the step-
out frequency of each type of TTMD is acquired. Moreover, we analyze the
swimming speed of TTMDs across different actuation frequencies, compar-
ing experimental observations with predictions from the swimming speed
prediction model. Our results reveal that the model accurately predicts
TTMD swimming speed at low actuation frequencies (below the step-out
frequency). However, its accuracy diminishes when applied to higher actu-
ation frequencies (close to or above the step-out frequency). The structure
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4.1 Introduction

Figure 4.1: Process of a tetherless twist-shape magnetic device (TTMD)
from design, fabrication, propulsion to motion control. The TTMD is
conceptualized with the radius of A, the length of Lr, the pitch of Pr,
the number of starts N , the amplitude ε, and the sectional profile of
ρ = A ∗ (1 + εf(Nθ)), then fabricated by a 3D printer, next propelled by a
rotating magnetic field generated by two synchronized rotating permanent
magnets, and finally controlled to move along predefined trajectories un-
der an actuation system comprising two synchronized rotating permanent
magnets.

of the remainder of this paper is as follows: Section 4.2 presents the de-
sign and fabrication of TTMDs. Section 4.3 comprehensively characterizes
the magnetic field at any position, generated by two synchronized rotating
permanent magnets. Section 4.4 introduces the existing swimming speed
prediction model and TTMD frequency response experiment. Section 4.5
demonstrates the practical implementation of the swimming speed predic-
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tion model within the context of TTMD motion control. Finally, Section
4.6 offers conclusions regarding the swimming characteristics of TTMDs.

4.2 Design of tetherless twist-shaped magnetic de-
vices

As depicted in Fig 4.1, a TTMD consists of a rigid body and a cylindrical
magnet, with the dipole moment of the cylindrical magnet being perpen-
dicular to the body axis of the TTMD. The sectional profile of a TTMD
body is given by ρ = A ∗ (1 + εf(Nθ)) where f(Nθ) is a periodic function
and N is the number of starts of the twist. Therefore, the geometry of the
twisted body is determined by several parameters, namely the number of
starts N , the radius A, the length Lr, the pitch Pr and the amplitude ε.

Figure 4.2: Group of tetherless twist-shaped magnetic devices. (a) Number-
of-Start group (1 ≤ N ≤ 3), Pr = 4 mm, Lr = 6 mm, A = 0.75 mm and
ε = 0.5; (b) Radius group (0.6 mm≤ A ≤ 0.8 mm), N = 2, Pr = 4 mm,
Lr = 6 mm and ε = 0.5; (c) Pitch group (2 mm≤ Pr ≤6 mm), N = 2,
Lr = 6 mm, A = 0.75 mm and ε = 0.5; (d) Amplitude group (0.5 ≤ ε ≤0.7
), N = 2, Pr = 4 mm and Lr = 6 mm and A = 0.75 mm.

The TTMD bodies are designed with four groups named Number-of-
Start group, Radius group, Pitch group, and Amplitude group, as shown
in Fig. 4.2. Each group has three types of TTMD. In the Number-of-
Start group, the TTMDs are designed with a different number of starts (
1 ≤ N ≤ 3), and the additional geometrical parameters of the TTMDs are
given as Lr = 6 mm, Pr = 4 mm, A = 0.75 mm and ε = 0.5. In the Radius
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group, the TTMDs are designed with different radii (0.6 mm≤ A ≤0.8 mm),
and the additional geometrical parameters are given as, Lr = 6 mm, N = 2,
Pr = 4 mm and ε = 0.5. In the Pitch group, the TTMDs are designed
with different pitches (2 mm≤ Pr ≤6 mm), and the additional geometrical
parameters of the TTMDs are given as Lr = 6 mm, N = 2, A = 0.75 mm
and ε = 0.5. Lastly, in the Amplitude group, the TTMDs are designed
with different amplitudes (0.5 ≤ ε ≤ 0.7), and the additional geometrical
parameters are given as, Lr = 6 mm, N = 2, Pr = 4 mm, and A = 0.75.
The TTMD bodies are fabricated by a 3D printer (FormlabsForm2), and the
printing material is Formlabs photopolymer resin (BLACK FLGPBK04).

4.3 Characterization of magnetic field

The orientation of the field-rotation axis and the angular velocity of the
magnetic field are crucial in the control of TTMD motion direction and
speed, respectively. Here, we characterize the magnetic field generated by
two synchronized rotating permanent magnets, as shown in Fig 4.3(a).

4.3.1 Rotation axis of magnetic field

The rotation axis of the magnetic field can be described by the unit vector
of the field-rotation axis. Assume two identical permanent magnets are
controlled to rotate in synchronization using a control system. Then the
superimposed magnetic field B at p can be expressed using the point-dipole
model, which is given by

B =

k∑
i=1

µ0

4π |pi|3
(3p̂ip̂

T
i − I)M =

k∑
i=1

µ0

4π |pi|3
HiM, (4.1)

where µ0 is the permeability of free space, I is the third-order identity
matrix, pi is a position vector which relates the position of ith actuator
magnet and position p such that pi = p − xi, and Hi = 3p̂ip̂

T
i − I. The

desired unit vector of field-rotation axis ω̂d is perpendicular to the plane
in which B lies such that BTω̂d = 0 for all M. Recognizing the matrix Hi

is symmetric and replacing B with (4.1) in BTω̂d = 0 yields

BTω̂d =
µ0

4π
MT

(
k∑

i=1

Hi

|pi|3

)
ω̂d = 0. (4.2)
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Figure 4.3: Two identical permanent magnets are synchronously rotating
around the dipole-rotation axis Ω with M perpendicular to Ω̂, resulting
in the generation of rotating magnetic field with a field-rotation axis of ω
at position p. (a) Two permanent magnets are symmetrically positioned
about the frame’s origin along the x-axis. The unit vector of field-rotation
axis ω̂ and unit vector of dipole-rotation axis Ω̂ are indicated by red and
green arrows, respectively. (b) The synchronous rotation angle θs of perma-
nent magnets and the field-rotation angle θf at the coordinate origin (O)
vary in time while the angular velocity of dipole-rotation axis is set to be
constant (|Ω| = 2π rad/s). (c) Variations in magnetic field strength (|B|) in
relation to θs and θf . (d, e, f and g) The components of the magnetic field
B are measured and predicted (black and red points) at arbitrary positions
p = [0 75 20]T, p = [5 50 45]T, p = [5 100 60]T and p = [10 125 40]T.
The measured ω̂ (black arrow) at positions p = [0 75 20]T, p = [5 50 45]T,
p = [5 100 60]T and p = [10 125 40]T differed from the predicted ω̂ (red
arrow) by 1.43◦, 1.73◦, 2.44◦ and 2.65◦, respectively. Please refer to the
accompanying video.
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Because
∑k

i=1(Hi/|pi|3)ω̂d is constant and MTΩ̂ = 0, the solution for the

desired dipole-rotation axis Ω̂d where Ω̂d is parallel to
∑k

i=1(Hi/|pi|3)ω̂d

is the only solution that satisfies (4.2) and is invariant to the rotation of
M. Therefore, the inverse problem of obtaining the desired dipole-rotation
axis Ω̂d based on given ω̂d and pi is solved, and Ω̂d can be found with

Ω̂d =
(
∑k

i=1Hi/|pi|3)ω̂d∣∣∣(∑k
i=1Hi/|pi|3)ω̂d

∣∣∣ . (4.3)

Equation (4.3) implies that the desired dipole-rotation axis varies in ac-
cordance with pi. Assuming the matrix

∑k
i=1Hi/|pi|3 is inverse, there

exists one dipole-rotation axis Ω̂ to generate a unit vector of field-rotation
axis ω̂ for any pi. The forward problem of acquiring the unit vector of
field-rotation axis ω̂ at position p based on the given unit vector of dipole-
rotation axis Ω̂ is tackled, and the unit vector of field-rotation axis ω̂ is
found with

ω̂ =
(
∑k

i=1Hi/|pi|3)−1Ω̂∣∣∣(∑k
i=1Hi/|pi|3)−1Ω̂

∣∣∣ . (4.4)

Therefore, the inverse and forward relationship models are established be-
tween the unit vector of the dipole-rotation axis and the unit vector of the
field-rotation axis, as presented in (4.3) and (4.4). It demonstrates that
these models are associated with pi (i = 1, 2), indicating their correlation
with the distance and direction of position p relative to the two perma-
nent magnets in the actuation system employing two synchronized rotating
permanent magnets. However, in the actuation system utilizing a single
rotating permanent magnet, as presented in [179], the inverse and forward
relationship models are exclusively associated with the direction of position
p relative to the permanent magnet.

4.3.2 Rotation velocity of magnetic field

A relationship model has been established between the instantaneous an-
gular velocity of the magnetic field (|ω|) and the instantaneous angular
velocity of the permanent magnet (|Ω|) in the context of a rotating single
permanent magnet, as detailed in [179]. However, a comparable model for
the situation involving two synchronous rotating permanent magnets has
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yet to be developed. Based on (4.1), the magnetic field strength at position
p is purely a function of relative position pi and M. Further, we define
L =

∑k
i=1(Hi/|pi|3). Substituting L into (4.1) yields

B =
µ0 |M|
4π

LM̂ (4.5)

Further, the magnetic field strength can be calculated as

|B| = µ0 |M|
4π

√∣∣∣LM̂∣∣∣2 = µ0 |M|
4π

√∣∣∣M̂TL2M̂
∣∣∣ (4.6)

where M̂ is the unit dipole moment M, which changes along with the
synchronous rotation angle θs. In the plane containing all M, we define an
unit orthogonal basis for expressing M, which are M̂0 and M̂1. Further
M̂1 = M̂0 × Ω̂. We set θs as the angle between M̂ and M̂0 and Θ =
[cos θs sin θs]

T, then M̂ can be expressed as

M̂ = [M̂0 M̂1]Θ (4.7)

Replacing M̂ with this in M̂TL2M̂ yields

M̂TL2M̂ = ΘT

[
M̂T

0

M̂T
1

]
L2[M̂0 M̂1]Θ

= ΘTAΘ

(4.8)

where A is a two-by-two positive definite matrix and is given by

A =

[
M̂T

0 L
2M̂0 M̂T

0 L
2M̂1

M̂T
1 L

2M̂0 M̂T
1 L

2M̂1

]
(4.9)

we define λ1 and λ2 as the eigenvalue of matrix A, and v1 and v2 as the
unit eigenvectors of matrix A in regard to λ1 and λ2 respectively. Further,
λ1 ≥ λ2. The magnetic field strength |B| varies in an elliptical pattern and
is given by

|B| = µ0 |M|
4π

√
|ΘTAΘ| (4.10)

and the maximum and minimum magnetic field strengths are

|B|max =
µ0 |M|
4π

√
λ1 (4.11)
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|B|min =
µ0 |M|
4π

√
λ2 (4.12)

Note that the maximum and minimum magnetic field strength is achieved
when Θ = v1 and Θ = v2 respectively. Thus, the synchronous angle θs

can be solved under the two situations. Because of
˙̂
M = Ω× M̂, on basis

of (4.5), it yields

Ḃ =
µ0 |M|
4π

L
˙̂
M =

µ0 |M|
4π

L(Ω× M̂) (4.13)

Further, the vector of field-rotation axis ω can be represented as

ω =
1

|B|2
B× Ḃ =

1

|B|2

(
µ0 |M|
4π

)2

LM̂× L(Ω× M̂) (4.14)

Let’s square both sides of this formula and replace Ω with |Ω| Ω̂ yields

|ω|2

|Ω|2
=

(
µ0 |M|
4π |B|

)4

(LM̂× L(Ω̂× M̂))2 (4.15)

Note that M̂ and Ω̂×M̂ constitute a set of orthogonal basis. For simplicity,
let’s use a and b to represent M̂ and Ω̂×M̂, respectively. Rewriting (4.15)
yields

|ω|2

|Ω|2
=

(
µ0 |M|
4π |B|

)4

(|La|2 |Lb|2 − |La · Lb|2)

=

(
µ0 |M|
4π |B|

)4

(aTL2a · bTL2b− aTL2b · bTL2a)

=

(
µ0 |M|
4π |B|

)4

det

[
aTL2a aTL2b
bTL2a bTL2b

] (4.16)

Because of detA = λ1λ2 according to (4.9), we found

|ω|2

|Ω|2
=

(
µ0 |M|
4π |B|

)4

λ1λ2 =

(
|B|max |B|min

|B|2

)2

(4.17)

Hence, the expression for the instantaneous angular velocity of the mag-
netic field (|ω|), with the magnetic field rotating around ω̂ at a position
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in the workspace, in relation to the instantaneous angular velocity of the
permanent magnets (|Ω|), with the permanent magnets rotating around Ω̂,
can be found as

|ω| =
(
|B|max |B|min

|B|2

)
|Ω| (4.18)

where the |ω| achieves maximum and minimum when the instant magnetic
field strength |B| reaches its minimum and maximum values, respectively.
Furthermore, the average angular velocity of the magnetic field ( ¯|ω|) at a
position in the workspace within a single rotation period (T) of permanent
magnets is given by

¯|ω| = 1

T

∫ T

0
|ω| dt = 1

T

∫ T

0

(
|B|max |B|min

|B|2

)
|Ω| dt

=
1

T

∫ 2π

0

(
|B|max |B|min

|B|2

)
dθs

. (4.19)

where T = 2π/ ¯|Ω| such that ¯|Ω| is the average angular velocity of perma-
nent magnets. By squaring both sides of (4.6), we obtain

|B|2 =
(
µ0 |M|
4π

)2 ∣∣∣M̂TL2M̂
∣∣∣

=

(
µ0 |M|
4π

)2

ΘTAΘ

=

(
µ0 |M|
4π

)2

[cos θs sin θs]

[
λ1

λ2

] [
cos θs
sin θs

]
= [cos θs sin θs]

[
|B|2max

|B|2min

] [
cos θs
sin θs

]
(4.20)

which yields
|B|2 = |B|2max cos

2(θs) + |B|2min sin
2(θs). (4.21)

Substituting (4.21) into (4.19), and we solve the integral in (4.19), which
yields

¯|ω| = ¯|Ω|. (4.22)

Therefore, within a single rotation period of the synchronized rotating per-
manent magnets, the average angular velocity of the magnetic field at any
position is equal to that of permanent magnets.
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In Fig. 4.3(b), we illustrate the changes over time in both the field-
rotation angle θf and the synchronous rotation angle θs at the coordinate
origin (O). These variations occur under the influence of a constant an-
gular velocity (|Ω| = 2π rad/s) of the synchronized rotating permanent
magnets. Once the permanent magnets commence synchronous rotation,
the θf and θs alternate in surpassing each other at each quarter-cycle mo-
ment, ultimately completing one full rotation simultaneously. In Fig. 4.3(c),
it indicates that the magnetic field strength |B| follows an elliptical pattern
with respect to θf . Due to the asynchrony between θf and θs, the variation
in |B| with respect to θf differs from that with respect to θs. Figs. 4.3(d),
4.3(e), 4.3(f) and 4.3(g) display the components of the measured (depicted
in black) and predicted (illustrated in red) magnetic field at arbitrary posi-
tions p = [0 75 20]T, p = [5 50 45]T, p = [5 100 60]T and p = [10 125 40]T.
At the respective positions, the observed direction ω̂ (indicated by black
arrows) exhibited variations of 1.43◦, 1.73◦, 2.44◦ and 2.65◦ in comparison
to the predicted direction ω̂ (shown by red arrows). These findings demon-
strate the accuracy of the presented theory in predicting the magnetic field
and the unit vector of the field-rotation axis.

4.3.3 Field-rotation axis along y-axis

Fig. 4.4(a) depicts the variation in the ratio of the angular velocity of
magnetic field, |ω|, to the angular velocity of the two synchronized rotating
permanent magnets, |Ω|, at positions along the y-axis from P1 to P8. We
observe that the ratio reaches its maximum magnitude at positions from
P1 to P4, while it reaches its minimum magnitude at positions from P6
to P8 when θs = 180◦. This observation highlights that when θs = 180◦,
the magnetic field (|B|) rotates most rapidly at positions from P1 to P4,
whereas the magnetic field rotates most slowly at positions from P6 to P8.
Further, Fig. 4.4(b) illustrates the variation of |B| with respect to the θf
and θs at these positions. From P1 to P8, it shows a gradual decrease
in both the maximum and minimum magnetic field strength (|B|max and
|B|min). From P1 to P5, the |B|max and |B|min gradually become equal,
while the trend reverses from P5 to P8.

Fig. 4.4(c) depicts the measured and predicted magnetic field as well as
the field-rotation axes, projected onto the x-z and x-y planes, at positions
from P1 to P8. The permanent magnets are synchronously rotated at a
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Figure 4.4: Characterization of the magnetic field at positions along the
middle line between two synchronized rotating permanent magnets. (a)
The simulation gives the change in the ratio of the angular velocity |ω| of
the magnetic field to the angular velocity |Ω| of the synchronized rotating
permanent magnets, at several positions on the middle line (which coin-
cides with the y-axis) from position P1 to P8, within a rotation period of
permanent magnets. The distance between any adjacent pair of positions is
25 mm. (b) The changes in magnetic field strength with respect to θs and
θf at these positions. Position P5 is a neutral position where the magnetic
field strength shows nearly circular variation with respect to both θs and
θf . (c) The varying magnetic field measured (black points) and predicted
(green, yellow, or purple points) at positions from P1 to P8 are indicated.
The measured ω̂ (black arrow) at positions from P1 to P8 differed from the
predicted ω̂ (green, yellow or purple arrow) by 2.02◦, 1.99◦, 1.83◦, 2.91◦,
3.00◦, 1.51◦, 3.81◦ and 2.74◦, respectively. Please refer to the accompanying
video.

90

4



i
i

“output” — 2024/8/18 — 19:35 — page 91 — #109 i
i

i
i

i
i
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constant angular velocity of 0.628 rad/s. The magnetic field components
are measured using a magnetic sensor (Go Direct 3-Axis Magnetic Field
Sensor) and predicted using (4.1). The measured ω̂ is derived from the
measured magnetic field using the least squares method, and the predicted
ω̂ is obtained using (4.4). The measured ω̂ at positions from P1 to P8
differed from the predicted ω̂ by 2.02◦, 1.99◦, 1.83◦, 2.91◦, 3.00◦, 1.51◦,
3.81◦ and 2.74◦ respectively. This finding illustrates that B and ω̂ are
closely predicted by the theory presented.

4.3.4 Neutral position

A neutral position is defined as a point where the magnetic field exhibits
a circular variation pattern. In simpler terms, at the neutral position, the
maximum and minimum magnetic field strengths are equal within a single
rotation period of the permanent magnets. Position P5 acts as a neutral
position where the magnetic field strength undergoes an almost circular
variation with respect to both θs and θf . Remarkably, this neutral position
remains unchanged regardless of the dipole moment’s magnitude.

4.3.5 Magnetic field strength and gradient along y-axis

The magnetic field strength and gradient play pivotal roles in determining
the magnetic torque and force exerted on a TTMD, consequently impacting
its swimming speed in fluids. Consider a scenario where a TTMD moves
along the y-axis under an actuation system of two synchronized rotating
permanent magnets, as depicted in Fig. 4.5. We aim to characterize the
magnetic field’s strength and gradient along this axis.

As shown in Fig. 4.6(a), the component of the magnetic field, By, re-
mains constant at zero. In contrast, the components Bx and Bz undergo
dynamic changes during a single rotation period of the permanent magnets.
This observation suggests that the magnetic field, B, rotates around the
y-axis, with the unit vector of the field-rotation axis (ω̂) aligned parallel to
the y-axis, as illustrated in Fig. 4.6(b). As a result, a TTMD on the y-axis
can move exclusively along the y-axis. As illustrated in Fig. 4.6(c), the com-
ponents of the magnetic gradient, ∂B/∂x and ∂B/∂z, remain consistently
at zero. Conversely, the component of the magnetic field gradient, ∂B/∂y,
undergoes dynamic changes during the rotation period of the permanent
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magnets. The component ∂B/∂y exhibits a positive magnitude at posi-
tions on the negative y-axis and a negative magnitude at positions on the
positive y-axis. This observation indicates that the magnetic field gradient
at positions on the y-axis is oriented parallel to the y-axis and consistently
points towards the coordinate origin (O), as depicted in Fig. 4.6(d). If we
place a TTMD along the negative y-axis and propel it towards a target
location on the positive y-axis, its motion would be enhanced as it moves
from its initial position to the origin, but dampened as it advances from
the origin to the desired position on the positive y-axis.

However, we observe a region characterized by y and θs (outlined by
the dashed box shown in Fig. 4.6(c)), where the magnetic field gradient
approaches zero. This observation suggests the presence of a gradient-
free line segment on the y-axis. Consequently, as a TTMD travels along
this line segment, the gradient force it encounters can be approximated as
zero. Therefore, when the TTMD moves along this line segment, it can
be approximated as force-free motion. Further, we conduct experiments to
verify the transnational motion of the TTMD under the actuation of two
synchronized rotating permanent magnets. For comparison, we also study
the curve motion of the TTMD under the actuation of a single rotating

Figure 4.5: The poses of permanent magnets with respect to the syn-
chronous rotation angle θs.
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Figure 4.6: Characterization of time-varying magnetic field strength and gradient
along y-axis under the actuation of two synchronized rotating permanent magnets.
(a) The changes in the components of magnetic field (Bx, By and Bz) at positions
on the y-axis are indicated within a rotation period of permanent magnets. (b) The
unit vector of field-rotation axis ω̂ at positions on y-axis is parallel to y-axis from
the analysis of (a). (c) The changes in the components of magnetic field gradient
(∂B/∂x, ∂B/∂y and ∂B/∂z) at positions on the y-axis are indicated within a
rotation period of permanent magnets. The magnetic field gradient within the area
outlined by the dashed box (characterized by y and θs) is close to zero, suggesting
the existence of a line segment on the y-axis where the magnetic field gradient is
nearly zero. (d) The unit vector of the magnetic field gradient (∇̂B) is parallel to
the y-axis, and its orientation consistently directs towards the coordinate origin
(O) at positions on the y-axis, resulting from the analysis of (c). (e and f) The
magnetic field lines and strength within the central square region (100 mm ×
100 mm) on the xOy plane are examined under two situations: employing a single
permanent magnet-driven system (e) and a dual permanent magnet-driven system
(f). The examination is conducted when the rotation angle of each permanent
magnet is set to 90◦. The square region (50 mm × 50 mm) indicated by the white
dashed box in (f) approximately exhibits zero gradient. (e1 and f1) A TTMD
undergoes actuation in both scenarios, resulting in curved motion (e1) and straight
motion (f1) of the TTMD, respectively. Please refer to the accompanying video.
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permanent magnet. In Fig. 4.6(e) and 4.6(f), both the magnetic field lines
and the strength within the central square area (100 mm × 100 mm) on the
xOy plane are displayed for the single-permanent magnet arrangement and
the dual-permanent magnet arrangement, respectively. This display is pro-
vided with each permanent magnet rotated at 90◦. In the dual-permanent
magnet arrangement, a 50 mm × 50 mm square area is identified where the
magnetic field lines are uniformly distributed. Additionally, there is mini-
mal color variation in this square area, indicating insignificant changes in
magnetic field strength. We refer to this area as the ”gradient-free” region,
outlined by the dashed box in Fig 4.6(f). However, this region is absent in
the single-permanent magnet arrangement. Consequently, the TTMD ex-
hibits curved and straight motion under the actuation of a single rotating
permanent magnet and dual synchronized rotating permanent magnets, as
depicted in Figs. 4.6(e1) and 4.6(f1)).

4.4 Characterization of swimming

To achieve the intended swimming behaviors of TTMDs within bodily fluids
such as the vitreous humor of the human eye, it is crucial to examine factors
such as fluid rheological parameters, TTMD geometrical parameters, and
actuation frequency that may influence the TTMD swimming behaviors in
this particular environment.

4.4.1 Swimming speed prediction model

The translating speed U of the TTMD at angular speed ω in viscoelastic
fluids is modeled using [40], [167],

U = 2Aωε2
∑
q≥1

(1 + βq2De2)
∣∣∣f̂ q∣∣∣2

1 + q2De2
Jq (4.23)

where β is the ratio of solvent viscosity to the total viscosity, De is the
Deborah number and is expressed as De = λω such that λ is the ratio of
the fluid relaxation timescale and ω is the angular velocity of the TTMD.

Jq =
q2Aq

2
(2Kq−1 − vKq +

vK2
q−1

Kq
) (4.24)
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where the symbol Aq is given by,

Aq =
2(q +

qvKq−1

Kq
)

qKq + qvKq−1 − 2(q−2)
v Kq−1 −

(3q−2)K2
q−1)

Kq
− qvK3

q−1

K2
q

(4.25)

Note that this model is employed when the TTMD rotates without being
attracted by external forces. According to the analysis in Section 4.3.5,
This model is applicable for predicting the swimming speed of a TTMD
when it moves within a gradient-free region, actuated by two synchronized
rotating permanent magnets.

4.4.2 Rheological properties of agar gel phantom

The agar gel phantom, functioning as a viscoelastic fluid, is used to mimic
the human bodily fluid environment. Consequently, the swimming charac-
teristics of the TTMD within it are investigated. The agar gel phantom is
prepared using gelatin powder (BOOM, EC 232-554-6, CAS/PREP 9000-
70-8) as the solute and demineralized water as the solvent, with a concen-
tration of 0.56 w.t.%. To evaluate its fluidic properties, we measure the
rheological parameters of the agar gel phantom using a rheometer (MCR
92, SN83786884). As depicted in Fig. 4.7(a) and 4.7(b), the viscosity of
the agar gel phantom decreases while the shear stress increases, along with
the rise in shear rate. As depicted in Fig. 4.7(c) and 4.7(d), the decrease
in storage modulus (G′) while the increase in loss modulus (G′′), and the
increase in loss factor tan(δ) are observed at a shear strain ranging from
1% to 1000%. The substantial increase in G′′ can be correlated with the
deterioration of the material structure in the agar gel phantom.

Note that the rheological property of the agar gel phantom with a low
concentration (e.g., 0.56 w.t.%) is easily changed if it is left at room tem-
perature. To prevent the agar gel phantom from changing its properties,
keeping the experimental temperature close to that at which it was formed
is significant. Besides, the rheological properties of the agar gel phantom
are changed by the movement of a TTMD within it. This is due to the fact
that the molecules of the agar gel phantom form a network with physical
bonds that are susceptible to disruption by the movement of the TTMD.
Thus, to ensure the accuracy of measuring the speed of a TTMD in an
agar gel phantom, it is necessary to take measures to prevent the reuse of
channels that the TTMD has already traversed.
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Figure 4.7: Rheological properties of agar gel phantom with a concentration
of 0.56% at a temperature of 3 ◦C. (a) Changes in viscosity of the agar gel
phantom in relation to its shear rate. (b) Changes in shear stress of the
agar gel phantom in relation to its shear rate. (c) Amplitude sweep profile.
Dependence of storage modulus (G′) and loss modulus (G′′) on strain at the
angular frequency of 1 Hz. (d) Loss factor tan(δ) of the agar gel phantom
as a function of its shear strain.

4.4.3 Frequency response characterization

To better understand the impact of TTMD geometry and actuation fre-
quency on the swimming performance of the device in viscoelastic fluids,
we conducted a series of experiments. In these experiments, we systemati-
cally varied the geometric designs of the TTMD and tested its performance
across different actuation frequencies within an agar gel phantom with a
concentration of 0.56 wt.%. By analyzing the results, we may identify the
optimal TTMD design and actuation parameters that maximize swimming
efficiency in viscoelastic fluids.
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Figure 4.8: Experimental actuation system. The system incorporates two
synchronized rotating permanent magnets, resulting in a rotating magnetic
field to actuate TTMDs. The motion of the TTMDs is captured by cameras.
(a) The TTMDs are arranged to move in an agar gel phantoms-filled cubical
container with a side length of 100 mm. The container is placed in the
central space between the two synchronized rotating permanent magnets.
(b) The simulation provides the variations in the distribution of magnetic
field strength across a 100 mm × 100 mm square area within the xOy plane,
at several fixed synchronous rotation angles (0◦, 30◦, 60◦ and 90◦).

4.4.3.1 Experimental method

The TTMDs are driven by a rotating magnetic field generated by an ac-
tuation system utilizing two identical permanent magnets, as shown in
Fig. 4.8(a). Each permanent magnet (S-45-30-N, NdFeB, N45, Nickel-
plated, Supermagnete) is actuated by a servo motor (Planetary Gearhead
GP 32 C ϕ32 mm, 1.0 - 6.0 Nm, Ceramic Version, Maxon). Utilizing a
positioning controller (EPOS2 50/5, Digital positioning controller, 5 A, 11
- 50 VDC, Maxon), the two identical permanent magnets are synchronized
to rotate around the dipole-rotation axis of Ω. Concurrently, the real-time
position of a TTMD is tracked by two cameras (Aviator GIGE, avA1000-
100gm, Basler AG, Ahrensburg, Germany). TTMDs are arranged to move
within a cubic container with side lengths of 100 mm, centrally located
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within the workspace of the actuation system. Throughout the experi-
ment, the container is submerged in a cold water reservoir and ice cubes
are added to maintain the experimental temperature at or around 3 ◦C,
ensuring stability of the properties of the phantom of agar gel.

TTMDs are anticipated to travel from positions A1 to A2, as illustrated
in Fig. 4.8(b). Positions A1 and A2 are situated on the y-axis and exhibit
symmetry about the coordinate origin O. The distance between positions
A1 and A2 is 40 mm. The maximum magnetic field strengths at positions
A1, O, and A2 are 3.61 mT, 3.35 mT, and 3.61 mT, respectively. The
minimum magnetic field strengths at these positions are 1.84 mT, 1.70
mT, and 1.84 mT, respectively. Based on the analysis in Fig. 4.6 in Section
(4.3.5), the TTMDs can move straight from position A1 to A2.

4.4.3.2 Experimental results

The TTMDs are categorized into four groups: Number-of-start group, Di-
ameter group, Pitch group, and Amplitude group. Fig. 4.9 illustrates the
results of frequency response experiments conducted on the TTMDs within
each group. In each subgraph, the lines represent a linear increase in the
TTMD swimming speed with the actuation frequency predicted by the
model. The data aligns closely with the model predictions at low actuation
frequencies. Furthermore, we experimentally determine the step-out fre-
quency for each TTMD, which serves as a reference for setting the actuation
frequency in TTMD motion control experiments. In the Number-of-start
group, the step-out frequencies for TTMDs with N = 2 and N = 3 are
27 Hz and 26 Hz, respectively. It is important to note that no significant
movement of the TTMD with N = 1 was observed when applying a rotat-
ing magnetic field frequency ranging from 1 to 30 Hz. In the Radius group,
the step-out frequencies for TTMDs with A = 0.75 mm, and A = 0.8 mm
are 27 Hz and 17 Hz, respectively. Note that the step-out frequency for
TTMD with A = 0.6 mm is over 30 Hz. In the Pitch group, the step-out
frequencies for TTMDs with Pr = 2 mm, Pr = 4 mm, and Pr = 6 mm
are 17 Hz, 27 Hz, and 24 Hz, respectively. In the Amplitude group, the
step-out frequencies for TTMDs with ε = 0.5, ε = 0.6, and ε = 0.7 are 27
Hz, 20 Hz, and 17 Hz, respectively.
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Figure 4.9: Frequency response results of TTMDs at each group in the agar
gel phantom with a concentration of 0.56% at a temperature of 3 degrees
Celsius. (a) Number-of-start group. (b) Radius group. (c) Pitch group. (d)
Amplitude group. Lines in each subgraph represent the predicted values
from the swimming speed prediction model.

4.5 Motion control

TTMD motion control includes motion speed control and motion direction
control. The motion control scheme of a TTMD is shown in Fig 4.10.
To achieve the desired swimming behavior in viscoelastic fluids, we can
change the TTMD motion speed by adjusting the parameters presented in
the swimming speed prediction model and manipulate the TTMD motion
direction by managing the field-rotation axis at predefined positions with
a permanent magnet-based robotic system. The robotic system has four
DOFs, and the desired vector of joint space variables is indicated as qd =
[q1 q2 q3 q4]

T. Initially, the TTMD is located at position p0. Based on the
predefined position pref and estimated current position p of the TTMD,

99

4



i
i

“output” — 2024/8/18 — 19:35 — page 100 — #118 i
i

i
i

i
i

4. Hydrodynamic Behavior of Tetherless Twist-Shaped Magnetic
Devices in Viscoelastic Fluids Driven by a Synchronized Rotating
Magnetic Actuation System

Figure 4.10: Motion control of TTMDs is accomplished through an ana-
lytical solution of the TTMD swimming speed and the theory presented in
Section 4.3.

the desired field-rotation axis at position p is updated by

ω̂d =
pref − p

|pref − p|
(4.26)

Following (4.3), the desired dipole-rotation axis Ω̂d is derived from the
desired field-rotation axis ω̂d. Subsequently, the desired vector of joint
space variables qd is obtained by solving the inverse kinematics of the per-
manent magnet-based robotic system. Then, the robotic system is executed
with the input qd, and the TTMD motion direction characterized by Û is
updated with the estimated current position p. Finally, the TTMD motion
control is achieved with the updated velocity vectorU, which is constructed
by the motion direction Û and the predicted swimming speed U . We in-
corporate the swimming speed prediction model into the TTMD motion
control experiments. Specifically, a TTMD with parameters Pr = 4 mm,
N = 2, Lr = 6 mm, A = 0.75 mm, and ε = 0.5 is selected to execute
predefined circular trajectories at different actuation frequencies within an
agar gel phantom with a concentration of 0.56 w.t.%. The TTMD is di-
rected to follow ’U’, ’M’, ’C’, ’G’, ’O’, and ’S’ trajectories at an actuation
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Figure 4.11: Motion control of a TTMD is achieved through utilization of
a swimming speed prediction model, enabling the execution of trajectories
labeled as ’U’, ’M’, ’C’, ’G’, ’O’, and ’S’. These trajectories are conducted
in 0.56 wt.% agar gel, maintained at a temperature of 3 degrees Celsius,
and driven by an actuation frequency of 2 Hz. The representative points
of predefined trajectories are indicated by white points, while the practical
trajectories are indicated by solid lines, respectively. Please refer to the
accompanying video.

frequency of 2 Hz. The experimental results of the TTMD motion control
are depicted in Fig. 4.11.

The prediction model assumes a constant swimming speed for a TTMD
at each point along the path in motion control experiments. However, in
practical experiments, the swimming speed of a TTMD is not constant.
Notably, during the execution of the ’S’ trajectory by the TTMD, we ob-
serve that the time taken for the lower half-circle matches that of the upper
half-circle, despite the lower half-circle having a larger radius. This suggests
a higher average swimming speed during counterclockwise circular motion,
leading to deviations from the predefined trajectory in the upper half-circle.
Consequently, a significant positioning error, with a maximum of 4.50 mm,
occurs in the later segment of trajectory ’M’. However, in trajectories with-
out clockwise turns, such as ’U’, ’C’, ’G’, and ’O’, the maximum positioning
error remains below 3.50 mm, indicating the controllability of the TTMD
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under our control scheme. The average swimming speeds of the TTMD for
’U’, ’M’, ’C’, ’G’, ’O’, and ’S’ trajectories are 0.388 mm/s, 0.398 mm/s,
0.429 mm/s, 0.439 mm/s, 0.375 mm/s, and 0.350 mm/s, respectively. To
mitigate positioning errors, one feasible approach is to allocate additional
time when the TTMD rotates clockwise.

4.6 Conclusion

The effectiveness and limitations of a swimming speed prediction model are
validated for predicting TTMD swimming speed in an agar gel phantom
under the influence of two synchronized rotating permanent magnets. The
practicality of the prediction model is confirmed in the context of TTMD
motion control utilizing a permanent magnet-based robotic system. We
discover an approximate gradient-free region between two synchronized ro-
tating permanent magnets. This discovery proves that the TTMD propul-
sion within the gradient-free region satisfies the condition of utilizing the
swimming speed prediction model. In addition, we observe that the swim-
ming prediction model accurately predicts TTMD swimming speed at low
actuation frequencies (below the step-out frequency). However, its accu-
racy diminishes at higher actuation frequencies (around or above the step-
out frequency). Therefore, the prediction model is suitable for predicting
the TTMD position information under low actuation frequencies (below
the step-out frequency) in the TTMD motion control experiments. The
implementation of the swimming speed prediction eliminates the need for
additional imaging equipment to locate the TTMD, leading to simplified
control strategies.
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TMHDs hold significant promise in the field of biomedical applications,
specifically in their ability to be remotely manipulated to navigate deep
tissues within the human body, a task that proves difficult with conventional
surgical instruments. Our ultimate goal is to utilize TMHDs for biomedical
purposes such as targeted drug delivery and material removal. The current
work serves as the foundation for achieving this ultimate goal. The goal of
this thesis is stated as achieving stable and efficient navigation of TMHDs in
physiological environments. To accomplish such a goal, the thesis explores
the design, actuation, swimming behaviors, and motion control of TMHDs
within physiological settings.

5.1 Discussions

5.1.1 Development of a permanent magnet-based robotic
system

The permanent magnet-based robotic system is developed to navigate the
TMHDs in physiological environments, as described in Chapter 2. In the
system design, the configuration-to-pose kinematics and the pose-to-field
mapping of the system are derived, which serves as the foundation for im-
plementing motion control of TMHDs in three-dimensional space. Further-
more, a significant innovation involves the implementation of a symmetric
configuration to physically constrain the positions of two permanent mag-
nets symmetrically, enabling the stable generation of a gradient-free space
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between two synchronized rotating permanent magnets. In this gradient-
free space, the influence of magnetic field gradients on the motion control
of the TMHDs can be disregarded. Instead, the focus is solely on the effect
of the field-rotation axis on the direction of TMHD motion. This char-
acteristic simplifies the motion control of a TMHD. Utilizing this setup,
3-D closed-loop motion control for a TMHD has been successfully imple-
mented. The existence of this gradient-free space provides possibilities for
applying a swimming speed prediction model in the TMHD motion control
in Chapters 3 and 4. Therefore, the question (RQ. 1) involves how to
build a permanent magnet-based robotic system with a large gradient-free
workspace enabling TMHDs to move controllably in physiological environ-
ments has been addressed.

5.1.2 Utilization of a swimming speed prediction model

The motion control of TMHDs involves both direction control and speed
control. The directional control of TMHDs can be achieved by manipu-
lating the orientation of the magnetic field with our permanent magnet-
based robotic system, as proposed in Chapter 2. To achieve speed control
of TSMDs (a subclass of TMHD), the correlation between actuation fre-
quency and swimming speed in agar gel phantom under the actuation of
two synchronized rotating permanent magnets is investigated. Such cor-
relation can be predicted using a swimming speed prediction model [40],
[167], at a low actuation frequency (below the step-out frequency). Then
the control of motion speed for a TSMD can be translated into the control
of actuation frequency for the synchronized rotating permanent magnets.

The establishment condition of the swimming speed prediction model is
that the translational motion of a TSMD is primarily attributed to its ro-
tation rather than being influenced by external forces. Chapter 2 demon-
strates that two synchronized rotating magnets can create an approximate
gradient-free space between them. This demonstration reveals that the
TSMD experiences almost zero gradient force, indicating the potential to
utilize this prediction model for motion control of the TSMD within our
permanent magnet-based robotic system. Finally, a control scheme for in-
tegrating the prediction model into the TSMD motion control is proposed
in Chapter 3. The application of this prediction model can reduce depen-
dence on image sensing devices. Here the question (RQ. 2) involves how
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to incorporate a swimming speed prediction model into the motion con-
trol of TMHDs in our permanent magnet-based robotic system has been
addressed.

5.1.3 Hydrodynamic behavior of tetherless twist-shaped mag-
netic devices in viscoelastic fluids

To attain the intended swimming performance of TMHDs in physiological
settings like the vitreous humor of the human eye (known as a viscoelastic
fluid), it is imperative to explore variables such as TMHD geometric param-
eters and actuation frequency, which impact their swimming speed within
such conditions. Li et al. introduced a prediction model incorporating the
geometric parameters of TTMDs (a subclass of TMHD) and actuation fre-
quency that can be utilized to predict the swimming speed of TTMDs in
viscoelastic fluids [40], [167]. In Chapter 4, experiments are conducted
to measure the TTMD swimming speed in an agar gel phantom (which
serves as a viscoelastic environment) under the actuation of two synchro-
nized rotating permanent magnets, aiming to validate the effectiveness of
the prediction model. The prediction model’s accuracy is confirmed at low
actuation frequencies (below the step-out frequency), although its accu-
racy diminishes at high actuation frequencies (near or above the step-out
frequency).

5.1.4 Correlation between the field-rotation axis and the
dipole-rotation axis

The correlation between the field-rotation axis and the dipole-rotation axis
is investigated under the influence of two synchronized rotating permanent
magnets. As presented in Table 5.1, a comparison of this correlation be-
tween the actuation system utilizing a single rotating permanent magnet,
as discussed in reference [179], and that employing two synchronized ro-
tating permanent magnets, as detailed in Chapter 4, is provided. Thus,
the question (RQ. 3) involves how to correlate the field-rotation axis with
the dipole-rotation axis under the actuation of two synchronized rotating
permanent magnets has been addressed.

In the actuation systems utilizing a single rotating permanent magnet,
it is observed that the forward model (from the unit vector of the dipole-
rotation axis to the unit vector of the field-rotation axis) and the inverse
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Table 5.1: Comparative analysis of magnetic fields generated by a single
rotating magnet and dual synchronized rotating magnets

Type Single Rotating Dual Synchronized Rotating
Permanent Magnet Permanent Magnets

Ω̂d Ω̂d = Ĥω̂ where H = 3p̂p̂T − I Equation (4.3)

ω̂ ω̂ = Ĥ−1Ω̂ Equation (4.4)

|B| |B| = |M|
4π|p|3

√
1 + 3(M̂Tp̂)2 Equation (4.10)

|B|max
|B|max = |M|

4π|p|3

√
1 + 3 |p̃|2

where p̃ = (I− Ω̂Ω̂T)p̂
Equation (4.11)

|B|min |B|min = |M|
4π|p|3 Equation (4.12)

|ω| , |Ω| |ω| =
(

|B|max|B|min

|B|2

)
|Ω| Equation (4.18)

model (from the desired unit vector of the field-rotation axis to the de-
sired unit vector of the dipole-rotation axis) at a position p are primarily
associated with the direction of the position p relative to the permanent
magnet. However, in the case of the actuation systems employing two syn-
chronized rotating permanent magnets, it is indicated that these models
are influenced by both the distance and direction of the position p relative
to the two permanent magnets. Further, in the context of these two ac-
tuation systems, it’s observed that the magnetic field strength, denoted as
|B|, exhibits similar behavior in both systems. More precisely, it fluctuates
following an elliptical pattern. Additionally, the relationship between the
instantaneous angular velocity of permanent magnets, |Ω|, and that of the
generated magnetic field, |ω|, remains consistent, as presented in Equation
(4.18).

5.1.5 Development of control strategy

In Chapter 2, an exact magnetic model is employed (Please refer to Ap-
pendix A.1), capable of accurately expressing the superimposed magnetic
field at any position. This model is particularly useful to express the mag-
netic field at the position of a TMHD when it is in close proximity to the
actuator magnets aiming for higher magnetic field strength to propel it ef-
fectively. However, due to the nonlinearity of this model, solving the inverse
problem from the desired field-rotation axis to the desired dipole-rotation
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axis is usually achieved using iterative algorithms, demanding substantial
computational power when applied to TMHD motion control. To address
this challenge, a control scheme based on the point-dipole model is devel-
oped in Chapter 4, which can directly solve the inverse problem with a
mathematical equation (Please refer to Equation (4.3)). Thereby, it sim-
plifies the real-time motion control of TMHDs.

5.2 Future directions

Future research endeavors may concentrate on enhancing the system’s ca-
pability to effectively navigate TMHDs within physiological environments,
such as biological fluids or tissues, and further exploring the application
of TMHDs in biomedical contexts. These efforts could involve improving
the permanent magnet-based robotic system, enhancing its precision and
adaptability for navigating TMHDs in complex biological environments.
Additionally, investigating the TMHD control strategy with consideration
of position and pose uncertainty under the influence of two synchronized
rotating permanent magnets could be a focus area. Exploring magnetic lo-
calization techniques for TMHDs under the actuation of two synchronized
rotating permanent magnets may also be pursued to improve navigation ac-
curacy. Furthermore, miniaturizing TMHDs to expand their utility within
confined biological environments is another potential avenue for future re-
search.

5.2.1 Improvement of the robotic system

The permanent magnet-based robotic system has been developed for stably
navigating TMHDs in physiological environments. There’s still room for
improvement in this system. The system possesses four DOFs, allowing for
directional manipulation of a TMHD in 3-D space. However, this number
of DOFs is insufficient to meet the requirements for both directional con-
trol and gradient force control simultaneously, especially when a TMHD is
controlled beyond gradient-free spaces.

Maintaining a symmetric configuration is crucial for reliably establish-
ing gradient-free spaces. Combining a symmetric configuration with ad-
equate DOFs would greatly enhance the system’s ability to manipulate
TMHDs. One practical approach is to integrate two additional linear mo-
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Figure 5.1: An approach to improve the current permanent magnet-based
robotic system for minimally invasive surgery. The symmetric configuration
to exert gradient-free space between two permanent magnets is attached to
the end-effector of an industrial robot.

tion stages, allowing for the symmetric configuration to move linearly in the
x-, y-, and z-directions in 3-D space. Another strategy could involve incor-
porating this symmetric configuration into the end-effector of an industrial
robot, as illustrated in Fig. 5.1.

5.2.2 Optimal design of symmetric configuration

Our system utilizes a symmetric configuration with the objective of estab-
lishing a gradient-free space between the two synchronized rotating perma-
nent magnets to streamline the motion control of TMHDs. Furthermore,
efforts are made to achieve a robust magnetic field strength to provide suf-
ficient propulsion for the TMHDs to overcome potential resistance while
navigating complex environments. In Fig. 5.2(a), the poses of the two syn-
chronized rotating permanent magnets relative to the synchronous rotation
angle (θs) are illustrated. According to Figs. 2.6 and 2.7 in Chapter 2,
both the magnetic field gradient and strength reach their highest magni-
tudes when θs is at 90◦ or 270◦ during one rotation period of the perma-
nent magnets within a spherical space. The highest magnetic gradient and
strength are denoted as |∇B|hig and |B|hig, respectively.
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Figure 5.2: The changes in the highest magnitudes of the field strength
and gradient within a spherical space between two synchronized rotating
permanent magnets. (a) Poses of two synchronized rotating permanent
magnets with a synchronous rotation angle of θs. (b and c) The high-
est magnetic field gradient and strength ( |∇B|hig and |B|hig) vary with
changes in the distance (Lmag) between two permanent magnets. The dis-
tributions of magnetic field strength and gradient across the surface of the
spherical space are depicted when θs and Lmag are set to 90◦ and 40 mm,
respectively.

Assume a spherical space with the radius (r) of 40 mm, and setting θs
to 90◦. In Fig. 5.2(b), it’s demonstrated that the highest magnitude of the
magnetic field gradient (|∇B|hig) decreases as the distance between two
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permanent magnets (Lmag) increases from 350 mm to 450 mm. This de-
crease is indicated by a gradual color change on the surface of the spherical
space from red and yellow to green. These findings suggest that increasing
the distance between the two permanent magnets can expand the gradient-
free space. Similarly, Fig. 5.2(c) illustrates that the highest magnitude of
the magnetic field (|B|hig) decreases as Lmag increases from 350 mm to
450 mm. This decrease is reflected in the color change from red to yellow
on the surface of the spherical space. These results imply that increasing
the distance between the two permanent magnets leads to a decrease in
the average magnetic field strength within the spherical space. Therefore,
increasing the distance between the two magnets enlarges the gradient-free
space but decreases the magnetic field strength within it. Consequently,
the optimal design of the symmetric configuration, which determines the
optimal distance between the two permanent magnets, is crucial for mini-
mizing the gradient force acting on a TMHD while maximizing the torque
applied to it.

5.2.3 Control strategy with position and pose uncertainty
of two synchronized rotating permanent magnets

In our assumptions, there is no deviation in the position and pose of the two
synchronized rotating permanent magnets. However, real-world factors like
vibrations can disrupt these ideal conditions. The positional inaccuracies of
the permanent magnets and angular deviations of their magnetic moments
relative to their rotation axis can result in deviations of the field-rotation
axis at the position of a TMHD. As the field-rotation axis governs the mo-
tion direction of the TMHD, any angular deviation from the expected field-
rotation axis can significantly affect the TMHD motion control. Therefore,
enhancing the system’s capability to control a TMHD in the presence of
position and pose uncertainty of the two synchronized rotating permanent
magnets is of utmost importance.

5.2.4 Magnetic localization of magnetic helical devices

Localizing TMHDs is crucial for their applications in biomedical fields such
as targeted drug delivery. The model for the localization of TMHDs under
the actuation of a single rotating permanent magnet has been well studied.
However, such a model under the actuation of two synchronized rotating
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permanent magnets has not received extensive study. In Appendix B,
A magnetic device consisting of a magnet and a body is assumed, with
a magnetic sensor embedded in the body. The magnetic field detected
by the magnetic sensor is solely attributable to the influence of the two
synchronized rotating permanent magnets. Based on these assumptions, a
non-iterative approach for localizing a magnetic device under the actuation
of two synchronized rotating permanent magnets is proposed. This model’s
functionality is not contingent upon the exact correlation between the in-
stantaneous poses of synchronized rotating permanent magnets, character-
ized by their instantaneous dipole moments, and the generated magnetic
field at the location of the magnetic device. This feature ensures that the
accuracy of localization remains undisturbed even during the rapid rotation
of synchronized rotating permanent magnets. Such a model can be utilized
to localize a TMHD in future research.

5.2.5 Miniaturization and integration

Continued endeavors aimed at miniaturizing and integrating components
can result in the creation of smaller, more compact TMHDs. This advance-
ment would enable smoother integration into minimally invasive procedures
and expand their utility within the body’s confined spaces.
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[97] G. Géron, C. Prelle, H. Al Hajjar, J. Terrien, and M. U. Khan, “Char-
acterization of a magnetic localization method based on hall effect
sensor array for microrobot position tracking,” Journal of Micro and
Bio Robotics, vol. 18, no. 1, pp. 1–13, 2022.

[98] K. Li, Y. Xu, Z. Zhao, and M. Q.-H. Meng, “External and internal
sensor fusion based localization strategy for 6-dof pose estimation of
a magnetic capsule robot,” IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 6878–6885, 2022.

[99] Q. Shi, T. Liu, S. Song, J. Wang, and M. Q.-H. Meng, “An optically
aided magnetic tracking approach for magnetically actuated capsule
robot,” IEEE Transactions on Instrumentation and Measurement,
vol. 70, pp. 1–9, 2021.

[100] F. Gao, X. Feng, and Y. Zheng, “Coherent photoacoustic-ultrasound
correlation and imaging,” IEEE Transactions on Biomedical Engi-
neering, vol. 61, no. 9, pp. 2507–2512, 2014.

[101] D. Son, S. Yim, and M. Sitti, “A 5-d localization method for a mag-
netically manipulated untethered robot using a 2-d array of hall-effect
sensors,” IEEE/ASME transactions on mechatronics, vol. 21, no. 2,
pp. 708–716, 2015.

124



i
i

“output” — 2024/8/18 — 19:35 — page 125 — #143 i
i

i
i

i
i

Bibliography

[102] C. Vergne, J. Inácio, T. Quirin, D. Sargent, M. Madec, and J. Pascal,
“Tracking of a magnetically navigated millirobot with a magnetic
field camera,” IEEE Sensors Journal, 2023.

[103] S. S. Vedaei and K. A. Wahid, “A localization method for wireless
capsule endoscopy using side wall cameras and imu sensor,” Scientific
reports, vol. 11, no. 1, p. 11204, 2021.

[104] M. Turan, Y. Almalioglu, H. B. Gilbert, A. E. Sari, U. Soylu, and
M. Sitti, “Endo-vmfusenet: A deep visual-magnetic sensor fusion ap-
proach for endoscopic capsule robots,” in 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, 2018, pp.
5386–5392.

[105] Y. Yan, W. Jing, and M. Mehrmohammadi, “Submillimeter mag-
netic microrobot tracking using an integrated ultrasound and pho-
toacoustic imaging system,” in 2019 IEEE International Ultrasonics
Symposium (IUS). IEEE, 2019, pp. 1057–1060.

[106] G. Bao, K. Pahlavan, and L. Mi, “Hybrid localization of microrobotic
endoscopic capsule inside small intestine by data fusion of vision and
rf sensors,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2669–2678,
2014.

[107] A. Denasi, F. Khan, K. J. Boskma, M. Kaya, C. Hennersperger,
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A
Development of the permanent magnet-

based robotic system

A.1 Exact expression for the magnetic field gen-
erated by a cylindrical permanent magnet

Figure A.1: The schematic diagram of a cylindrical permanent magnet with
a semi-height of hm and a radius of Rm with a longitudinal magnetization
vector M is located in a cylindrical coordinate frame (ρm, θm, z) and a
cartesian coordinate frame {E}.

139



i
i

“output” — 2024/8/18 — 19:35 — page 140 — #158 i
i

i
i

i
i

A. Development of the permanent magnet-based robotic system

We consider a cylindrical permanent magnet, with its centroid at the origin
of both cylindrical coordinate frame (ρm, θm, z) and cartesian coordinate
frame {E}, as shown in Fig. A.1. The actuator magnet is longitudinally
magnetized with the magnetization vector (M), then the generated mag-
netic flux density in frame {E} can be modeled by using [116],

Bx =
µ0 |M|Rm

π
(a+P1(k+)− a−P1(k−)) cos θm (A.1)

By =
µ0 |M|Rm

π
(a+P1(k+)− a−P1(k−)) sin θm (A.2)

Bz =
µ0 |M|Rm

π(ρm +Rm)
(b+P2(k+)− b−P2(k−)) (A.3)

where µ0 = 4π × 10−7 N.A−2 is the permeability of free space, Rm is the
semi-height of the permanent magnet, Bx, By and Bz are the x−, y− and z−
axial components of the magnetic flux density, respectively. Two auxiliary
functions are calculated as follows,

P1(k) = K − 2

1− k2
(K − c) (A.4)

P2(k) = −
f

1− f2
(G−K)− 1

1− f2
(f2G−K) (A.5)

and the following notations will be employed:

g± = z ± hm (A.6)

f =
ρm −Rm

ρm +Rm
(A.7)

a± =
1√

g2± + (ρm +Rm)2
(A.8)

b± = g±a± (A.9)

k2± =
g2± + (ρm −Rm)2

g2± + (ρm +Rm)2
(A.10)

The symbols K, c, G are expressed as,
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A.2 Frame parameters of the permanent magnet-based robotic system

K =

∫ π
2

0

dδm√
1− (1− k2) sin2 δm

(A.11)

c =

∫ π
2

0
dδm

√
1− (1− k2) sin2 δm (A.12)

G =

∫ π
2

0

dδm√
1− (1− f2) sin2 δm

√
1− (1− k2) sin2 δm

(A.13)

A.2 Frame parameters of the permanent magnet-
based robotic system

The parameters corresponding to each frame shown in Fig. 2.2 are demon-
strated as below. In which, for i = 1, d4x = l5 and d4y = −l6, and for i = 2,
d4x = −l5 and d4y = l6.

Table A.1: Frame Parameters of the Permanent
Magnet-Based Robotic System

j qj djx djy djz qmin qmax

1 q1 [mm] - - - −150 150

2 q2 [◦] - - l2 −720 720

3 q3 [◦] - - l3 −90 90

4 q4 [◦] ±l5 ∓l6 l4 −180 180

A.3 Characterization of magnetic field

The highest and lowest magnitudes of magnetic field strength, along with
the highest magnitude of magnetic field gradient, observed within the cen-
tral spherical space at various radii under the influence of two synchronized
rotating permanent magnets, are presented below.

141



i
i

“output” — 2024/8/18 — 19:35 — page 142 — #160 i
i

i
i

i
i

A. Development of the permanent magnet-based robotic system

Table A.2: Characterization of Magnetic Field

r [mm] 20 30 40 50

|B|hig [mT] 3.615 3.973 4.526 5.337

|B|low [mT] 1.605 1.489 1.340 1.167

|∇B|hig [T/m] 0.028 0.045 0.067 0.097

|∇B|low [T/m] 0 0 0 0

A.4 Algorithm to obtain the distance between two
synchronized rotating permanent magnets for
a desired size gradient-free space

The algorithm to obtain the distance between two synchronized rotating
permanent magnets based on a desired size gradient-free space and a given
threshold is demonstrated below.

Table A.3: Solving the Desired Distance Between Two Synchronized
Rotating Permanent Magnets

Input: Desired radius of gradient-free spherical space rdg
Output: Desired distance between two actuator magnets Ld

mag

01: Define Pn∈ spherical space S(rd) and threshold ϱ

02: |∇B|hig = 0; θs = 90◦;

03: Lmag ∈ [ L0
mag, L

1
mag ]

04: for Lmag = L0
mag : L1

mag

05: Pn = [Lmag/2, 0, 0]

06: |∇B|hig = |∇B| (Pn)

07: if |∇B|hig ≤ ϱ

08: Ld
mag = Lmag

09: break;

10: end

11: end

12: Return Ld
mag
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B
Modeling for the Localization of Mag-

netic Devices Using a Synchronized Ro-

tating Magnetic Actuation System

B.1 Introduction

Magnetic devices hold significant promise in biomedical applications, span-
ning magnetic labeling [180], [181], magnetic drug delivery [182], [183], and
magnetic prosthetics and implants [184], [185]. Accurate localization of
these devices is paramount for the success of such endeavors. While image
tracking technologies, leveraging image sensing devices [186], [187], are com-
monly employed for motion control in various scenarios, magnetic tracking
technology becomes indispensable in low-light or no-light conditions, when
the appearance of objects hinders imaging, or when information cannot be
obtained through visual means.

The configuration of actuator magnets, including the actuation mode
and the quantity of actuator magnets, can impact the localization strategy
of a magnetic device. Three main actuation modes are utilized for driv-
ing magnetic devices: torque-driven mode, force-driven mode, and torque-
force-driven mode. Torque-driven mode involves the rotation of magnetic
devices induced by magnetic torque from a rotating magnetic field [188],
[189]. Force-driven mode involves dragging movement of magnetic devices
induced by gradient force from a gradient magnetic field [190], [191]. In
contrast, the torque-force-driven mode involves both rotation and dragging
movement of magnetic devices induced by magnetic torque and gradient,
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B. Modeling for the Localization of Magnetic Devices Using a
Synchronized Rotating Magnetic Actuation System

respectively [145], [146]. This consideration also applies to whether the
actuator magnets must maintain rotational motion around their own axes.
Moreover, the number of actuator magnets is a critical factor in determin-
ing the localization strategy. Regardless of the configuration of actuator
magnets, the most commonly employed method for calculating the posi-
tion and orientation of a magnetic device from the magnetic sensor data is
through iterative methods [192], [193]. Nonetheless, magnetic localization
using iterative methods is susceptible to drift caused by magnetic noise and
uncertain initial guesses during optimization. Researchers have explored
numerous approaches to mitigate this issue and enhance localization accu-
racy, yet have not achieved a complete resolution [194], [195]. Developing
a non-iterative method may potentially offer a complete solution to this
problem.

Most research focused on localizing magnetic devices under the actua-
tion of a single actuator magnet. Using one single actuator magnet with
torque-driven mode, Popek et al. have offered a non-iterative approach for
determining the six degree-of-freedom (6-DOF) position and orientation of
a magnetic capsule endoscope. Thus, the localization of a magnetic device
under the actuation of a single rotating actuator magnet has been solved
[196], [197]. Using one single actuator magnet with force-driven mode, Na-
tali et al. have introduced a novel method for localizing a wireless capsule
endoscopy through the utilization of an iterative Jacobian-based approach
[198]. Using one single actuator magnet with torque-force-driven mode,
Xu et al. have presented an innovative system incorporating a rotating
magnetic actuator alongside an external sensor array to enable closed-loop
simultaneous magnetic actuation and localization of wireless-capsule en-
doscopy [199]. The localization is achieved by optimizing the error func-
tions. Using multiple actuator magnets with force-driven mode, Veigaet
al. have proposed a method to estimate the localization of a magnetically
actuated medical robot without any prior pose information using an iter-
ative method, with the assistance of a millimeter-scale three-dimensional
accelerometer and a three-dimensional magnetic field sensor [73]. To the
best of our knowledge, non-iterative methods for localizing magnetic de-
vices under the actuation of two synchronized rotating actuator magnets
have not been reported in prior works.

In this appendix, the objective is to localize a magnetic device equipped
with an embedded magnetic sensor within its body. A schematic diagram
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B.1 Introduction

Figure B.1: A schematic diagram demonstrating the assembly, actuation,
and localization of a magnetic device, with the magnetic sensor integrated
within its body. Localization of the magnetic device is accomplished
through a derived model.

demonstrating the assembly, actuation, and localization of a magnetic de-
vice is shown in Fig B.1. To achieve this objective, a model designed for the
magnetic localization of a magnetic device under the influence of two syn-
chronized rotating permanent magnets is developed. The structure of this
paper is as follows: Section B.2 presents the synchronized rotating mag-
netic actuation system. Section B.3 explores the fundamental properties
of the linear map Hp, which correlates the instantaneous dipole moment
of synchronized rotating permanent magnets to the instantaneous corre-
sponding magnetic field (magnetic flux density). Section B.4 investigates
the interrelations among variables within the synchronized rotating mag-
netic actuation system. Sections B.5 and B.6 derive the linear map Hp

under two conditions: when the dipole-rotation axis and the field-rotation
axis are perpendicular to each other, and when they are not perpendicular
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to each other, respectively. Section B.7 involves inferring the position of the
magnetic device using the linear map Hp. Finally, Section B.8 concludes
the main findings and outlines future directions for research.

B.2 Synchronized Rotating Magnetic Actuation
System

Two identical permanent magnets are rotating synchronously, resulting in a
time-varying magnetic field B (magnetic flux density), as shown in Fig B.2.
Assume the magnetic device is at the position p between two permanent
magnets, and θ ∈ [0, π] is the angle such that ⟨p̄+, p̄−⟩ = cos θ. During
a single rotation period of permanent magnets, when |B| reaches its max-
imum and minimum magnitudes at point p, the corresponding vectors of
the magnetic field are denoted as Bmax and Bmin, respectively. Similarly,
the vectors of dipole moment are denoted as Max and Min for the maxi-
mum and minimum magnitudes of |B| at point p, respectively. The Bmax

and Bmin can be measured in experiments. The vector of field-rotation
axis ω = Bmax × Bmin can always be calculated directly, and hence it is
also treated as something known from the very beginning. Since the ro-
tation of the magnets is under control, the vector of dipole-rotation axis
Ω (which is the rotation-axis of dipole moment Mt) is also known. Sup-
pose that |Mt| = M. However, it is hard to measure the corresponding
dipole moments Max and Min with accuracy, and hence they are assumed
to be unknown. We consider the following question: Deduce the position
p ∈ R3 − {o±} of the magnetic device from the data Bmax, Bmin, M and
Ω (which are measured or directly controlled in the experiment).

We denote by ⟨u,v⟩ or u · v the standard inner product of the vectors
u,v ∈ R3. That is,⟨u,v⟩ = u1v1+u2v2+u3v3. For a non-zero vector u, we
adopt the notation û = u

|u| . Two synchronized rotating permanent magnets

are placed at the positions o+ = (+a, 0, 0) and o− = (−a, 0, 0) respectively.
Given a position p = (x, y, z) in R3, let p+ = p − o+ = (x − a, y, z) and
p− = p − o− = (x + a, y, z). Then the time-varying magnetic field Bt at
p generated by the synchronized rotating permanent magnets at positions
o+ and o− based on point-dipole model is

Bt = Hp ·Mt. (B.1)
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B.3 Basic Properties of the Linear Map

Figure B.2: Two identical magnetic dipoles are synchronously rotating
around the dipole-rotation axis Ω with time-varying Mt perpendicular to
Ω, resulting in time-varying magnetic field B which rotates around the
field-rotation axis ω at position p.

where H is a 3× 3 matrix defined as follows

Hp =
1

|p+|3
(3p̂+p̂T

+ − I) +
1

|p−|3
(3p̂−p̂T

− − I), (B.2)

where p̂± =
p±
|p±| and I is the 3 × 3 identity matrix. Note that Hp is a

symmetric matrix.

B.3 Basic Properties of the Linear Map

The matrix Hp maps the instantaneous dipole moment Mt to the instanta-
neous magnetic field Mt. In order to investigate the relationship between
the input Ω and output magnetic field variables such as ω, Bmax and Bmin

at a position p, it is essential to explore the basic properties of the linear
map Hp.

B.3.1 Eigenvalues, invariant subspaces, and trace

Since Hp is real and symmetric, all its eigenvalues are real numbers. It is
straightforward to check that span{p̂±} is invariant under the action of Hp.
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Hp is symmetric, the normal space Np̂± of span{p̂±} is also an invariant
subspace of Hp. Therefore, the eigenvectors of Hp reside in these invariant
subspaces: Np̂± and span{p̂±}. Also, directly from Equation (B.2) we can
verify that the trace of Hp is zero, i.e., trHp = 0.

B.3.2 Eigenvalues of the linear map

When span{p̂±} is 1-dimensional (note that this happens iff p is on the
x-axis), span{p̂±} = {(r, 0, 0)

∣∣r ∈ R} is an eigenspace of Hp and it holds
that

Hp

 1
0
0

 =
( 2

|p+|3
+

2

|p−|3
) 1

0
0

 , (B.3)

i.e.,
(

2
|p+|3 + 2

|p−|3
)
is a (positive) eigenvalue. In the meantime, Np̂± is

the yOz plane and it is straightforward to check that it is an eigenspace
with eigenvalue −

(
1

|p+|3 + 1
|p−|3

)
. When span{p̂±} is a plane, Np̂± is 1

dimensional, and then n = p̂+ × p̂− is an eigenvector of Hp. Again, it
holds

Hpn = −
( 1

|p+|3
+

1

|p−|3
)
n, (B.4)

which means that −
(

1
|p+|3 + 1

|p−|3
)
is a (negative) eigenvalue of Hp. From

the discussion up to this point we can draw the following conclusion: For
all p ∈ R3 − {±o}, σ = −

(
1

|p+|3 + 1
|p−|3

)
is a (negative) eigenvalue of

Hp. Moreover, if the space span{p̂±} is 1-dimensional, then the other two
eigenvalues are

(
2

|p+|3 + 2
|p−|3

)
and −

(
1

|p+|3 + 1
|p−|3

)
. Let’s first consider

the case where span{p̂±} is 2 dimensional. It is easy to observe from the
definition of Hp (Equation B.2) that if v ∈ R3 is an eigenvector of Hp then
it is also an eigenvector of the operator

Hp =
1

|p+|3
p̂+p̂T

+ +
1

|p−|3
p̂−p̂T

−. (B.5)

With n = p̂+ × p̂−, it is easy to see that Hpn = 0. To see the other two
eigenvalues of Hp, we only need to see its restriction as an endomorphism
on the space span{p̂±}. Let H be the matrix representation of Hp (as a
linear map on span{p̂±}) with respect to the basis {p̂±}. Then
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H =

[
1

|p+|3
1

|p+|3 cos θ
1

|p−|3 cos θ
1

|p−|3

]
, (B.6)

and hence

det
(
tI−H

)
= t2 + σt+

sin2 θ

|p+|3|p−|3
. (B.7)

The eigenvalues of Hp are the roots of Equation (B.7)

σ± =
1

2
·
(
− σ ±

√
σ2 − 4 sin2 θ

|p+|3|p−|3

)
, (B.8)

and then the two eigenvalues of Hp other than σ are

σ± = 3σ± + σ =
3

2
·
(
− σ ±

√
σ2 − 4 sin2 θ

|p+|3|p−|3

)
+ σ. (B.9)

Combining with Section B.3.2, we have the following results. For all
p ∈ R3 − {o±}, it holds that (see Proof 1)

σ ≤ σ− ≤
|σ|
2
≤ σ+ ≤ 2|σ|. (B.10)

Equation (B.9) holds for the eigenvalues σ± all the time, including the
case where dim span{p̂±} = 1.

Proof 1: Note that

( 1

|p+|3
− 1

|p−|3
)2 ≤ σ2− 4 sin2 θ

|p+|3|p−|3
=
( 1

|p+|3
+

1

|p−|3
)2− 4 sin2 θ

|p+|3|p−|3
≤ σ2

and hence

−|σ| ≤ σ− =
|σ|
2
− 3

2
·

√
σ2 − 4 sin2 θ

|p+|3|p−|3

)
≤ |σ|

2
.

Then from trHp = σ+ + σ− + σ = 0 we deduce

|σ|
2
≤ σ+ ≤ 2|σ|.
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Moreover, the space span{p̂±} is of dimension 1 if and only if σ− = σ
(see Proof 2).

Proof 2: From σ− = |σ|
2 −

3
2 ·
√

σ2 − 4 sin2 θ
|p+|3|p−|3

)
we know that σ− =

σ = −|σ| if and only if √
σ2 − 4 sin2 θ

|p+|3|p−|3
= |σ|,

i.e., 4 sin2 θ
|p+|3|p−|3 = 0, which is equivalent to ⟨p̂+, p̂−⟩2 = cos2 θ = 1, or, say,

span{p̂±} is of dimension 1.

B.3.3 The singular set

Directly from Section B.3.2, we know that detHp = 0 iff σ− = 0 iff

2(1 + λ)2 = 9λ sin2 θ. (B.11)

with λ = |p+|3
|p−|3 (see Proof 3).

Proof 3: σ− = 0 gives

|σ|
2

=
3

2
·

√
σ2 − 4 sin2 θ

|p+|3|p−|3
,

and then

9
sin2 θ

|p+|3|p−|3
= 2σ2 = 2

( 1

|p+|3
+

1

|p−|3
)2
,

and finally

2(1 + λ)2 = 9λ sin2 θ.

Equation (B.11) can be re-expressed in terms of |p±| as

2
( 1

|p+|3
+

1

|p−|3
)(
|p+|3 + |p−|3

)
= 9 sin2 θ, (B.12)

demonstrating certain symmetry for being viewed as an equation on S3.
We define the singular set S to be

S = {p ∈ R3 − {±o}
∣∣detHp = 0}.
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To see “how large´´ this set is, we first observe that the mapping p 7→
detHp is invariant under the rotation of p around the x-axis. Therefore,
we can first discuss the subset S

⋂
xOy, and then whole set S is obtained

by rotating S
⋂
xOy around the x-axis. The points in S

⋂
xOy can be

obtained by first fixing the value sin2 θ = c0 and then solving the Equation
(B.11) for the positive number λ. Telling from the form of Equation (B.11)
(with the value of sin2 θ fixed) we know that if λ = s0 > 0 is a solution so
is λ = 1

s0
. The equation sin2 θ = c0 determines two circles C±0 on xOy with

the segment o−o+ being a chord with the central angle θ on each of these
circles. The relation

λ ∈ {s0,
1

s0
}

gives two circles Ls0 and L 1
s0

on xOy with the centers on the x-axis. To-

gether it gives a subset in xOy(
C+0 ∪ C

−
0

)⋂(
Ls0 ∪ L 1

s0

)
⊂ S

consisting of no more than 8 points. Rewrite the Equation (B.11) as

λ2 + (2− cθ)λ+ 1 = 0 (B.13)

with cθ = 9
2 sin

2 θ. Section B.3.3 implies that, if p ∈ S, then with cθ =
9
2 −

9
2(p̂+ · p̂−)2, the equation above should have positive solutions (equal

to
|p+|3
|p−|3 and

|p−|3
|p+|3 ). Solving the Equation (B.13) for λ we get

λ± =
(cθ − 2)±

√
(cθ − 2)2 − 4

2
. (B.14)

It is straightforward to check from Equation (B.14) that λ± > 0 if and only
if cθ − 2 ≥ 2. That is

sin2 θ ≥ 8

9
. (B.15)

This means that if sin2 θ < 8
9 , then the Equation (B.13) has no positive

solutions, and hence p /∈ S.
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B.4 Relationships among variables within the mag-
netic actuation system

With the notation Ω̂ = [Ω1 Ω2 Ω3]
T, we have Ω̂×

(
·
)
= JΩ̂

(
·
)
for

JΩ̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (B.16)

JΩ̂ maps R3 to the space NΩ̂ = {u ∈ R3
∣∣u · Ω̂ = 0} = span{Mt} with

ker JΩ̂ = span{Ω̂}, and it is restricted to an isomorphism on NΩ̂.

B.4.1 Relationships among variables of magnetic dipoles

The operator A = JT
Ω̂
H2

pJΩ̂ is symmetric and non-negative with respective
to the standard inner product ⟨ , ⟩, and it has invariant subspaces NΩ̂
and ker JΩ̂. Note that when restricted to NΩ̂, A is also symmetric and
non-negative with respective to ⟨ , ⟩, and hence the quadratic form

NΩ̂ ∩ S2 ∋ u 7→ ⟨u,Au⟩ ∈ R+

takes the maximum and the minimum at the unit eigenvectors of A, with
the maximum and the minimum being the corresponding eigenvalues. In
the meantime, for any instant t, there is another instant t′ such that Mt′ =
JΩ̂Mt (since JΩ̂Mt is merely a rotation of Mt around the axis Ω̂ for 90◦),
and hence

⟨Mt,AMt⟩ = |Bt′ |2. (B.17)

Therefore, A has eigenvalues |Bmax|2 and |Bmin|2, with ±Min and
±Max being the corresponding unit eigenvectors. Considering the sym-
metry of A, we know that Min and Max are perpendicular to each other.
While the vectors Min and Max are still not explicitly known, by choosing
the vectors Bmax and Bmin properly from the data measured, we can still
fix the orientation of (Max,Min, Ω̂) such that

Min = JΩ̂Max, (B.18)

and then it holds

Ω̂ =
Max ×Min

M2
. (B.19)
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B.4.2 Relationships among variables of magnetic field

We first explain the relation

Hpω = (M2 · detHp)Ω̂. (B.20)

Due to the symmetry of Hp, it holds for any u ∈ R3 that

⟨Hpω,u⟩ =⟨ω,Hpu⟩
=detHp⟨M2Ω̂,u⟩
=(M2 · detHp)⟨Ω̂,u⟩,

(B.21)

where from the first line to the second line, it is due to

det
[
Hpu; HpMax; HpMin

]
= detHp · det

[
u; Max; Min

]
.

(B.22)
The relation Hpω = (M2 · detHp)Ω̂ is then implied by the arbitrariness of
u. Next we check that Bmax is perpendicular to Bmin.

⟨Bmax,Bmin⟩ =⟨HpMax,HpMin⟩
=⟨−JΩ̂Min,H2

p(JΩ̂Max)⟩
=⟨Min,AMax⟩
=0.

(B.23)

B.4.3 Relationships among the eigenvalue of the linear map,
dipole moment and magnetic field

Given any vector u ∈ R3, from the definition of Hp in Equation (B.2) we
know that

Hpu− σ · u ∈ span{p̂±}. (B.24)

Also, o−o+ ∈ span{p̂±}. As a result, for any u,v,w ∈ R3, the following
equations hold:

det[Hpu− σ · u,Hpv − σ · v,o−o+] = 0; (B.25)

det[Hpu− σ · u,Hpv − σ · v,Hpw − σ ·w] = 0. (B.26)

In particular, by taking u = Max, v = Min and w = ω, we have:
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det
[
Bmax − σMax, Bmin − σMin, o−o+

]
= 0 (B.27)

and

det
[
Bmax − σMax, Bmin − σMin, (M2 · detHp)Ω̂− σω

]
= 0.
(B.28)

B.4.4 A fundamental lemma for calculating dipole moments

As mentioned at the beginning, the vectors Max,Min are not directly mea-
sured in the experiments. We now give a lemma (Lemma 1) showing how
Max,Min can be calculated from Bmax,Bmin (and Ω̂, M) under certain
conditions. This lemma will play an important role in later discussion.
From the symmetry of Hp and the skew-symmetry of JΩ̂ we have:

⟨Min,HpJΩ̂Min⟩ = ⟨JT
Ω̂
HpMin,Min⟩ = −⟨Min, JΩ̂HpMin⟩ (B.29)

and

⟨Max,HpJΩ̂Max⟩ = ⟨JT
Ω̂
HpMax,Max⟩ = −⟨Max, JΩ̂HpMax⟩. (B.30)

Note that HpJΩMin = −Bmax and JΩ̂HpMin = Ω̂ × Bmin, and then
Equation (B.29) yields

⟨Min,Bmax − Ω̂×Bmin⟩ = 0. (B.31)

Similarly, HpJΩ̂Max = Bmin and JΩ̂HpMax = Ω̂×Bmax, and then Equa-
tion (B.30) gives

⟨Max,Bmin + Ω̂×Bmax⟩ = 0. (B.32)

Define

V = Bmax − Ω̂×Bmin (B.33)

and

W = Bmin + Ω̂×Bmax. (B.34)

The discussion above leads to the following lemma.
Lemma 1: If Ω̂×V ̸= 0, then

Min = ±M Ω̂×V

|Ω̂×V|
.
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Similarly, if Ω̂×W ̸= 0, then

Max = ±M Ω̂×W

|Ω̂×W|
.

Lemma 2: If Ω̂×V = 0, then Ω̂ ·Bmin = 0 and W = 0.

Lemma 1 follows directly from that fact that Min ⊥ V, Ω̂ and Max ⊥
W, Ω̂. While the Lemma 1 guarantees the calculation of Min and Max

when specific conditions hold. Lemma 2 tells the implication of the fail-
ure(s) of these conditions, which will also be exploited in later discussion
(see Proof 4).

Proof 4: Note that Ω̂ ×V = Ω̂ × Bmax − Ω̂ × (Ω̂ × Bmin) = Ω̂ ×
Bmax − (Ω̂ ·Bmin)Ω̂+Bmin = W − (Ω̂ ·Bmin)Ω̂. If Ω̂×V = 0, then

0 = ⟨Ω̂×V,Bmax⟩ = (Ω̂ ·Bmin)(Ω̂ ·Bmax),

implying either Ω̂·Bmin = 0 or Ω̂·Bmax = 0. We show that when Ω̂·Bmax =
0, Ω̂ ·Bmin = 0 also holds. In this case, |Ω̂ ×Bmax|2 = |Bmax|2 > 0, and
then

0 = ⟨Ω̂×V, Ω̂×Bmax⟩ = |Bmax|2 + ⟨Bmin, Ω̂×Bmax⟩.

Since |⟨Bmin,Bmax × Ω̂⟩| ≤ |Bmin| · |Bmax × Ω̂| ≤ |Bmax|2, the equation
above implies

|⟨Bmin,Bmax × Ω̂⟩| = |Bmin| · |Bmax × Ω̂|,

which only holds when Bmin is parallel to the nonzero vector Bmax × Ω̂,
yielding Ω̂ ·Bmin = 0. From the equation at the beginning we get: W =
Ω̂×V + (Ω̂ ·Bmin)Ω̂ = 0.

B.5 Deducing the linear map at the case that the
field-rotation axis is not perpendicular to the
dipole-rotation axis

In this section, we discuss how to deduce the matrices of Hp in certain
coordinate systems from the data Bmax, Bmin, Ω̂ and M. In this section,
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we work on the case Ω · ω ̸= 0. Note that in this case, Bmin ̸= 0. Note
that we always have the following relation

Hp

[
Max; Min; ω

]
=
[
Bmax; Bmin; (M2 · detHp)Ω̂

]
. (B.35)

When Ω · ω ̸= 0, the matrix
[
Max; Min; ω

]
(with respect to the

orthonormal basis (B̂max, B̂min, ω̂) is invertible. Since Min = JΩ̂Max, the
inverse matrix

[
C1; C2; C3

]T
=

 CT
1

CT
2

CT
3

 :=
[
Max; Min; ω

]−1
(B.36)

is determined by Max, where Ci are column vectors. Then

Hp =
[
Bmax; Bmin; (M2 · detHp)Ω̂

]
·
[
Max; Min; ω

]−1
(B.37)

is determined by Max (or M̂ax := Max
M equivalently) and detHp.

B.5.1 Dimensionality/Degrees of freedom

Note that we always have the following relation

Hp

[
Max; Min; ω

]
=
[
Bmax; Bmin; (M2 · detHp)Ω̂

]
. (B.38)

When Ω · ω ̸= 0, the matrix
[
Max; Min; ω

]
(with respect to the

orthonormal basis (B̂max, B̂min, ω̂) is invertible. Since Min = JΩ̂Max, the
inverse matrix

[
C1; C2; C3

]T
=

 CT
1

CT
2

CT
3

 =
[
Max; Min; ω

]−1
(B.39)

is determined by Max, where Ci are column vectors. Then

Hp =
[
Bmax; Bmin; (M2 · detHp)Ω̂

]
·
[
Max; Min; ω

]−1
(B.40)

is determined by Max (or M̂ax = Max
M equivalently) and detHp. Note

that M̂ax ∈ S1
Ω̂

:= S2
⋂
NΩ̂ and detHp ∈ R. Since S1

Ω̂
× R is a two

dimensional space, we need at least two equations to determine the pair
(Max,detHp) (or (M̂ax, detHp)). As we will see, these equations come
from the properties that the trace of Hp is zero and that Hp is symmetric.

156



i
i

“output” — 2024/8/18 — 19:35 — page 157 — #175 i
i

i
i

i
i

B.5 Deducing the linear map at the case that the field-rotation axis is not
perpendicular to the dipole-rotation axis

B.5.2 Calculation of the inverse matrix

From C1 ·Max = 1 and C1 ·Min = 0 we know that C1 takes the form

C1 =
Max

M2
+ aΩ̂, (B.41)

where a is a real number satisfying the relation

⟨C1,ω⟩ =
ω ·Max

M2
+ aΩ̂ · ω = 0. (B.42)

Similarly, we have

C2 =
Min

M2
+ bΩ̂ (B.43)

for some real number b with

⟨C2,ω⟩ =
ω ·Min

M2
+ bΩ̂ · ω = 0. (B.44)

From C3 ·Max = C3 ·Min = 0 we know that C3 = kΩ̂, and then from
C3 · ω = 1 we know

C3 =
1

Ω̂ · ω
Ω̂. (B.45)

Although the vectors C1, C2 and C3 seems to be defined in the first
place in a certain coordinate system w.r.t. some specific orthonormal ba-
sis, they are actually the Riez representations (w.r.t. ⟨ , ⟩) of the func-
tionals fax, fin, fom which form the dual basis (fax, fin, fom) to the basis
(Max,Min,ω).

B.5.3 The trace and the determinant of the linear map

In this subsection we exploit the property trHp = 0 to represent detHp

as a function of Max. We first derive and express such a relation in the
coordinate system with respect to the orthonormal basis (B̂max, B̂min, ω̂)
as Equation (B.49), and then re-derive and re-express the relation as Equa-
tions (B.57) (and (B.58), equivalently) in a coordinate-independent way.
In (B̂max, B̂min, ω̂)-coordinate system, the matrix of Hp is

Hp =

 |Bmax| 0 hΩ1

0 |Bmin| hΩ2

0 0 hΩ3

 ·
 CT

1

CT
2

CT
3

 (B.46)

157



i
i

“output” — 2024/8/18 — 19:35 — page 158 — #176 i
i

i
i

i
i

B. Modeling for the Localization of Magnetic Devices Using a
Synchronized Rotating Magnetic Actuation System

with h=M2 · detHp. Then,

trace

 |Bmax| 0 hΩ1

0 |Bmin| hΩ2

0 0 hΩ3

 ·
 CT

1

CT
2

CT
3

 =

trace

 CT
1

CT
2

CT
3

 ·
 |Bmax| 0 hΩ1

0 |Bmin| hΩ2

0 0 hΩ3

 = 0

(B.47)

yields

|Bmax|(
m1

M2
+ aΩ1) + |Bmin|(

Ω3m1 − Ω1m3

M2
+ bΩ2) +

M2 · detHp

Ω̂ · ω
= 0.

(B.48)
Since a and b are both functions of Max = (m1,m2,m3)

T (Equations
(B.42) and (B.44)), Equation (B.48) realizes detHp as a function of Max

in the (B̂max, B̂min, ω̂)-coordinate system. Multiplying both of its sides by
Ω̂ · ω = Ω3|ω| (which is not 0), Equation (B.48) gives

detHp =
|ω|
M4
⟨Ω̂× U ,Max⟩ (B.49)

with
U = (0, |Bmax|+Ω3|Bmin|,−|Bmin|Ω2)

T. (B.50)

Recall that (M̄ax,detHp) ∈ S1
Ω̂
×R determines the matrix of Hp, and then

Equation (B.48) just reduces our question to 1 degree of freedom. That
is, with Equation (B.48), [Hp] is a (matrix-value) function of Max. Now
we re-derive and re-express the relation Equation (B.48) in a coordinate-
independent way. Let (fax, fin, fom) be the dual basis to the basis
(Max,Min,ω). Then

trHp = fax
(
HpMax

)
+ fin

(
HpMin

)
+ fom

(
Hpω

)
= fax

(
Bmax

)
+ fin

(
Bmin

)
+ fom

(
hΩ̂
)
= 0.

(B.51)

Note that the Riez representations of the linear functions fax, fin, fom
with respect to the standard Euclidean form ⟨ , ⟩ are exactly Max + aΩ̂,
Min + bΩ̂ and 1

Ω̂·ω Ω̂, respectively, where a = −ω·Max

M2Ω̂·ω and b = − ω·Min

M2Ω̂·ω .
As a result, we get

Bmax ·Max

M2
+aΩ̂·Bmax+

Bmin ·Min

M2
+bΩ̂·Bmin+

M2 · detHp

Ω̂ · ω
= 0. (B.52)
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perpendicular to the dipole-rotation axis

Plugging the expressions for a and b above into Equation (B.52) gives

(Ω̂ · ω)⟨Bmax,Max⟩
M2(Ω̂ · ω)

− (Ω̂ ·Bmax)⟨ω,Max⟩
M2(Ω̂ · ω)

+
(Ω̂ · ω)⟨Bmin,Min⟩

M2(Ω̂ · ω)

− (Ω̂ ·Bmin)⟨ω,Min⟩
M2(Ω̂ · ω)

+
M4 · detHp

M2(Ω̂ · ω)
= 0.

(B.53)
Using the following formula for cross-products

Ω̂× (ω ×B) = (Ω̂ ·B)ω − (Ω̂ · ω)B, (B.54)

we obtain from Equation (B.53) the following equation

−⟨Ω̂×(ω×Bmax),Max⟩−⟨Ω̂×(ω×Bmin),Min⟩+M4 ·detHp = 0, (B.55)

or, equivalently,

⟨ω ×Bmax, Ω̂×Max⟩+ ⟨ω ×Bmin, Ω̂×Min⟩+M4 · detHp = 0. (B.56)

Therefore,

detHp = −⟨ω ×Bmax, Ω̂×Max⟩+ ⟨ω ×Bmin, Ω̂×Min⟩
M4

. (B.57)

Or, with ω ×Bmax = |Bmax|2Bmin and ω ×Bmin = −|Bmin|2Bmax,

detHp =
⟨Ω̂× |Bmax|2Bmin − |Bmin|2Bmax,Max⟩

M4
. (B.58)

It is straightforward to check that in (B̂max, B̂min, ω̂)-coordinate sys-
tem, Equation (B.58) (and Equation (B.57) as well) becomes Equation
B.49). Note that for Equation (B.51) to be valid, (Max,Min,ω) should be
a basis, for which the condition that Ω̂ · ω ̸= 0 is sufficient and necessary.

B.5.4 The mag-det system and a brief discussion

Combining Equation (B.58) with the magnetic Equations (B.27) and (B.28),
we get the following system of 3 equations for 3 variables, Max, σ and
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detHp:
det
[
Bmax − σMax, Bmin − σMin, o−o+

]
= 0,

det
[
Bmax − σMax, Bmin − σMin, (M2 · detHp)Ω̂− σω

]
= 0,

detHp = ⟨Ω̂×|Bmax|2Bmin−|Bmin|2Bmax,Max⟩
M4 .

(B.59)
Hopefully, these equations will be sufficient to determine the values of Max

(or Min, equivalently), σ and detHp in general cases, by which we can
write down the matrix of Hp. However, the nonlinearity of Equations
(B.27) and (B.28) might complicate the computation. Therefore, we would
avoid dealing with the geo-det system (B.59) directly unless necessary. For-
tunately, by Lemma B.4.4, in the case Ω̂ ×V ̸= 0, we immediately solve

Min = ±M Ω̂×V
|Ω̂×V| , then calculate the value detHp by Equation (B.58), and

eventually, obtain the matrix [Hp] by Equation(B.46).

B.6 Deducing the linear map at the case that
the field-rotation axis is perpendicular to the
dipole-rotation axis

In this section, further work in deducing the linear map must take into
account whether the field-rotation axis vector is the zero vector in the case
that the field-rotation axis is perpendicular to the dipole-rotation axis.

B.6.1 The field-rotation axis vector is not equivalent to the
zero vector

Now we deal with the case where Ω · ω = 0 with ω ̸= 0. Let u = Ω̂ ×
ω̂, and then (ω̂,u, Ω̂) constitutes an orthonormal frame of

(
R3, ⟨ , ⟩

)
.

Note that in this case, (ω̂,u) constitutes an orthonormal basis of the plane
NΩ̂ = span{Mt}. Since (Max,Min) is also an orthonormal basis of NΩ̂

and Max ×Min = Ω̂ = ω̂ × u, there exists a rotation

Rθ =

[
cosβ0 − sinβ0
sinβ0 cosβ0

]
(B.60)
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B.6 Deducing the linear map at the case that the field-rotation axis is
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on NΩ̂ such that

(ω̂,u)

[
cosβ0 − sinβ0
sinβ0 cosβ0

]
= (Max,Min), (B.61)

or, equivalently,

(ω̂,u) = (Max,Min)

[
cosβ0 sinβ0
− sinβ0 cosβ0

]
. (B.62)

Therefore, we have

ω̂ = cosβ0 ·Max − sinβ0 ·Min. (B.63)

Since Hpω̂ =
M2 detHp

|ω| Ω̂ is perpendicular to u, we have

0 = ⟨Hpω̂,u⟩ = cosβ0 · ⟨Bmax,u⟩ − sinβ0 · ⟨Bmin,u⟩, (B.64)

which means [
cosβ0
sinβ0

]
= k ·

[
⟨Bmin,u⟩
⟨Bmax,u⟩

]
(B.65)

with k = ± 1√
⟨Bmin,u⟩2+⟨Bmax,u⟩2

. (note that the sign ± needs to be deter-

mined by experimental data). With Equation (B.65), Max and Min can be
calculated by Equation (B.61). To calculate detHp, we exploit the inner
product

⟨Hpω̂, Ω̂⟩ = M2 detHp

|ω|
,

which, together with Equation (B.65), gives

M2 detHp

|ω|
= ±⟨Bmin,u⟩ · ⟨Bmax, Ω̂⟩ − ⟨Bmax,u⟩ · ⟨Bmin, Ω̂⟩√

⟨Bmin,u⟩2 + ⟨Bmax,u⟩2
. (B.66)

Since Ω̂, ω, u, Bmax, Bmin, M are either measured or calculated from the
data obtained in the experiments, Equation (B.66) indeed gives the value
of detHp. Now we proceed to calculate the linear map Hp. With respect
to the orthonormal basis (ω̂,u, Ω̂), the matrix representation [Hp] of Hp is
symmetric and has trace 0. We have

Hp

[
ω̂;u; Ω̂

]
=

[
M2 detHp

|ω|
Ω̂;Hpu;HpΩ̂

]
. (B.67)
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The matrix [ω̂;u; Ω̂] with respect to (ω̂,u, Ω̂) is just

[
ω̂;u; Ω̂

]
=

 1 0 0
0 1 0
0 0 1

 , (B.68)

and hence the 0-trace symmetric matrix [Hp] has the form

[Hp] =

[
(M2 · detHp)

Ω̂

|ω|
;Hpu;HpΩ̂

]
=

 0 0
M2·detHp

|ω|
0 −b c

M2·detHp

|ω| c b

 .

(B.69)
The matrix representation for the linear map A = JT

Ω̂
H2

pJΩ̂ with respect

to (ω̂,u, Ω̂ is then

[A] =

 b2 + c2 −cD 0
−cD D2 0
0 0 0

 (B.70)

with D =
M2·detHp

|ω| . From Equation (B.69) we get the following equation

detHp = b ·
(
M2 · detHp

|ω|

)2

= b ·D2. (B.71)

Meanwhile, as is discussed in Section B.4, the restriction of A to the plane
pl{Mt} = span{ω̂,u} has eigenvalue |Bmax|2 and |Bmin|2, and hence from
Equation (B.69) we have

detA = b2D2 = |Bmax|2|Bmin|2 (B.72)

and
traceA = b2 + c2 +D2 = |Bmax|2 + |Bmin|2. (B.73)

Now we are ready to compute b and c, by which we will have complete
information about the matrix [Hp]. Since ω = Bmax ×Bmin, ω ̸= 0 if and
only if Bmax and Bmin are both non-zero, and then with Equation (B.72)
it implies that b,D ̸= 0. Combining Equations (B.72) with (B.71) gives

b =
|Bmax|2|Bmin|2

detHp
. (B.74)
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To calculate c, note that c = ⟨Hpu, Ω̂⟩, and then from Equation (B.62), we
get

c =⟨Hpu, Ω̂⟩
=sin θ · ⟨Bmax, Ω̂⟩+ cos θ · ⟨Bmin, Ω̂⟩

=± ⟨Bmax,u⟩ · ⟨Bmax, Ω̂⟩+ ⟨Bmin,u⟩ · ⟨Bmin, Ω̂⟩√
⟨Bmax,u⟩2 + ⟨Bmin,u⟩2

.

(B.75)

The calculation of [Hp] is thus completed.

B.6.2 The field-rotation axis vector is equivalent to the zero
vector

Now we deal with the case where Ω·ω = 0 with the case ω = 0. Recall that
Bmin is always perpendicular to Bmax (Section B.4) and |Bmin| ≤ |Bmax|.
Therefore, ω = Bmax ×Bmin = 0 if and only if

Bmin = HpMin = 0. (B.76)

In this case, Min is an eigenvector corresponding to the eigenvalue σ− = 0.
As a consequence,

NMin = {u ∈ R3
∣∣u ·Min = 0} = span{Max,Ω}

is an invariant subspace of the linear operator Hp, which contains the
eigenspaces of σ+ and σ. Thus Bmax = HpMax is then contained in NMin .
Note that since the rank of Hp is at least 2, Bmax is always non-zero.

Although the vectors M̂ax and M̂in are still to be determined, we can
still write down the form of the matrix representation [Hp] with respect to

the orthonormal basis (M̂ax, M̂in, Ω̂). Representing the vectors with their
coordinates w.r.t. the basis (M̂ax, M̂in, Ω̂) and considering that Bmin = 0,
we have

[Hp][M̂ax; M̂in; Ω̂] = [
Bmax

M
;
Bmin

M
;HpΩ̂] = [

Bmax

M
;0;HpΩ̂]. (B.77)

Note that w.r.t. (M̂ax, M̂in, Ω̂), Bmax = [k1 0 k3]
T . Because M̂ax, M̂in, Ω̂

is an orthonormal frame, the matrix [Hp] is symmetry with 0 trace, and
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the relations |Bmax|2 = k21 + k23 and k3 = ⟨Bmax, Ω̂⟩ holds. Therefore,

[Hp] =

 k1 0 k3
0 0 0
k3 0 −k1

 . (B.78)

Since σ+σ = −
(

1
|p+|3 + 1

|p−|3
)2

is the determinant of the restriction of Hp

to NMin = span{Max, Ω̂}, and hence

−
( 1

|p+|3
+

1

|p−|3
)2

= det

[
k1 k3
k3 −k1

]
= −k21 − k23 = −|Bmax|2, (B.79)

yielding

|Bmax| =
1

|p+|3
+

1

|p−|3
. (B.80)

In the case Ω̂×Bmax ̸= 0, the vector V in Section(B.4.4) becomes

V = Bmax − Ω̂×Bmin = Bmax. (B.81)

Then by Lemma 1 in Section(B.4.4), we deduce that If Ω̂×Bmax ̸= 0, or,
equivalently, |Bmax|2 ̸= ⟨Bmax, Ω̂⟩2, then

Min = ±M Ω̂×Bmax

|Ω̂×Bmax|
. (B.82)

In the case Ω̂×Bmax = 0, it holds Bmax = ⟨Bmax, Ω̂⟩Ω̂, and then

[Hp] =

 0 0 ⟨Bmax, Ω̂⟩
0 0 0

⟨Bmax, Ω̂⟩ 0 0

 . (B.83)

The linear map [Hp] has a negative eigenvalue σ = −|⟨Bmax, Ω̂⟩|. If
⟨Bmax, Ω̂⟩ > 0, then w = [1 0 − 1]T is an eigenvector with eigenvector
σ. If ⟨Bmax, Ω̂⟩ < 0, then w can be taken as [1 0 1]T. Note that from the
definition of Hp in Equation (B.2), the vector o−o+ should be perpendic-
ular to the eigenvector w. That is,{

(M̂ax − Ω̂) · o−o+ = 0 when ⟨Bmax, Ω̂⟩ > 0,

(M̂ax + Ω̂) · o−o+ = 0 when ⟨Bmax, Ω̂⟩ < 0.
(B.84)
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B.7 Deducing the position of the magnetic device from the linear map

From the geometric point of view, Equation (B.84) gives the intersection
of the plane

No−o+=0} := {u ∈ R3
∣∣u · o−o+ = 0}

with the circle S1
Ω̂
− Ω̂ in the case ⟨Bmax, Ω̂⟩ > 0, and with S1

Ω̂
+ Ω̂ in the

case ⟨Bmax, Ω̂⟩ < 0. Such an intersection in both cases consists of at most
two points on S1

Ω̂
, one of which is M̂ax. To solve M̂ax algebraically, note

that it also satisfies Ω̂ ·M̂ax = 0. Combined with Equation (B.84) it yields

the following linear equations for M̂ax with
∣∣∣M̂ax

∣∣∣ = 1


Ω̂ · M̂ax = 0,

o−o+ · M̂ax = Ω̂ · o−o+ when ⟨Bmax, Ω̂⟩ > 0,

o−o+ · M̂ax = −Ω̂ · o−o+ when ⟨Bmax, Ω̂⟩ < 0.

(B.85)

To be more clear, let A be the 2 × 3 matrix with A =

[
Ω̂T

o−o+
T

]
and Y±

be 2 × 1 matrix with Y± =

[
0

±Ω̂ · o−o+

]
. Then, M̂ax is a unit vector in

the solution space of the linear equation

AX = Y±. (B.86)

When Ω̂ and o−o+ are linearly independent, the kernel of the operator A
is 1 dimensional, and then the solution space of Equation (B.86) is a line
(not necessarily passing through the origin O). When Ω̂ and o−o+ are
linearly dependent, then it should hold Ω̂ · M̂ax and o−o+ · M̂ax can only
be either both zero or both non-zero, and then in the case Equation (B.86)
has no solution. Upon solving Equation (B.86), M̂ax can be determined.
Equivalently, once M̂ax (or M̂in) is known, Hp is also known.

B.7 Deducing the position of the magnetic device
from the linear map

In this section, we assume that the linear operator Hp is already known,
and we deduce equations for calculating the field point p.
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Figure B.3: Definition of an orthonormal frame. In the corresponding
coordinate system, ẑ = [0 0 1]T is an eigenvector of Hp with eigenvalue σ,
and span{p̂±} is the x′oy′-plane.

For convenience, we choose such an orthonormal frame x′oy′, as shown
in Fig B.3. In the corresponding coordinate system, ẑ = [0 0 1]T is an
eigenvector of Hp with eigenvalue σ, and then span{p̂±} is the x′oy′-
plane. As a consequence, there exists ϕ+, ϕ− ∈ [0, 2π] such that p̂± =
[cosϕ± sinϕ± 0]T, and the restriction of H̄p = 1

3(Hp − σI) to the xOy-
plane is

[H̄p] =
1

|p+|3

[
cos2 ϕ+ sinϕ+ cosϕ+

sinϕ+ cosϕ+ sin2 ϕ+

]
+

1

|p−|3

[
cos2 ϕ− sinϕ+ cosϕ−

sinϕ− cosϕ− sin2 ϕ−

]
.

(B.87)

Then with the notations a+ = 1
|p+|3 and a− = 1

|p−|3 we have the following

equations[
cos 2ϕ+ cos 2ϕ−
sin 2ϕ+ sin 2ϕ−

] [
a+
a−

]
=

[
[H̄p]11 − [H̄p]22
[H̄p]12 + [H̄p]21

]
. (B.88)

Moreover, note that the eigenvalues σ+, σ− and σ are all known, and from
Equation (B.7) we have

σ+σ−+2σ2 = 9a+a− sin2 θ = 9a+a−
1− cos 2ϕ+ cos 2ϕ+ + sin 2ϕ+ sin 2ϕ−

2
.

(B.89)
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Finally, we have the last constraint:

a+ + a− = |σ| . (B.90)

Equations (B.88), (B.89) and (B.90) offer 4 equations for 4 variables,
a+, a−, ϕ+ and ϕ−, we can calculate the position of the magnetic device
by solving for p relative to frame x′oy′, and thus relative to the world
coordinate frame. Finally, we can locate the magnetic device under the
actuation of two synchronized rotating actuator magnets.

B.8 Conclusion

The model for determining the position of magnetic devices under the actu-
ation of two synchronized rotating permanent magnets has been developed
and validated with experimental data. This model for localizing magnetic
devices does not rely on an exact match between the immediate poses of the
synchronized rotating permanent magnets (characterized by their instan-
taneous dipole moments) and the magnetic field produced at the magnetic
device’s location. Consequently, localization of a magnetic device can be
achieved under various actuation frequencies. In future work, we will use
this model to track a moving magnetic device under the actuation of two
synchronized rotating actuator magnets, and we will assess the localization
accuracy across different actuation frequencies.



i
i

“output” — 2024/8/18 — 19:35 — page 168 — #186 i
i

i
i

i
i



i
i

“output” — 2024/8/18 — 19:35 — page 169 — #187 i
i

i
i

i
i

Acknowledgements

The time has come to write the acknowledgments. At this moment, in the
quiet of the night, I stand up from my seat and gaze through the window at
the distant neon lights flickering on the streets. As I reflect on the journey
of my PhD study, my heart is filled with deep reflections and emotions.
Through my PhD journey, I have gained valuable insights that will become
a significant asset in my life.

First of all, I would like to express my deepest gratitude to my doctoral
promoter, Prof. Sarthak Misra, for giving me the opportunity to join the
Surgical Robotics Lab. You have not only imparted academic knowledge
to me but also shared your methods of work and life wisdom, which have
benefited me immensely. I will keep that in my mind, “Do things in the right
way”. Your mentorship has made a profound impact on my life. I would
also like to express my sincere appreciation to my doctoral supervisor, Dr.
Islam S. M. Khalil, for patiently guiding me through experiments and paper
writing during our weekly progress meetings. You have not only shared
your knowledge and skills but also motivated me to develop both personally
and professionally. Your wisdom, patience, and encouragement have been
immensely valuable to me. Additionally, I want to express my sincere
gratitude to my master supervisor, Prof. Fengping Li, for his comprehensive
support, including academic guidance, job recommendations, and financial
assistance throughout my master’s and PhD studies.

I would like to express my appreciation to the members of my read-
ing committee: Prof. Minghui Hong from Xiamen University, Prof. Wei
Xue from Wenzhou University, and Dr. Prashant Sharma from University
Medical Center Groningen. I am grateful for the time and effort you have
dedicated to reviewing my thesis. Your thorough and insightful feedback
is invaluable in enhancing the quality of my work. Additionally, I want to
thank Dr. Brandon Peterson from University Medical Center Groningen
and Dr. Bohuan Lin from Xi’an Jiaotong-Liverpool University for accept-
ing our invitation to serve as members of my thesis committee.

I would like to extend my gratitude to the staff at BBT: Hélder, Henk,
Henny, Patrick, Romana, Inge, Theo, Jelmer and Mohammad-Ali Shahbazi.
The insightful discussions you contributed during the lunch meetings and

169



i
i

“output” — 2024/8/18 — 19:35 — page 170 — #188 i
i

i
i

i
i

Kolff days have been inspiring. Special thanks to Ed for assisting in fabri-
cating parts for my experimental setup and reviewing the Dutch summary
of my thesis. Every time you come to SRL to help us solve problems and
talk with us, I am always inspired by your optimistic and cheerful spirit.
I’m grateful to Ina for handling orders when I first arrived, unfamiliar with
the purchasing process, and to Besty for her assistance in ordering items.
Thanks also to Wytse for aiding in processing the necessary documents for
my visa application to return to the Netherlands. I also extend my appre-
ciation to other staff of the BBT: Wya, Willy, Willem, Hans, Joop, Jelly,
Reinier, Gésinda, Sonja and Marja. Thank you for your assistance during
my stay at BBT.

Special thanks to Zihan and Zhuoyue for being my Paranimfens. Zi-
han, thank you for sharing your image tracking code with me. You are
not only outstanding academically but also socially adept. I am confident
that you are becoming a rising star in the field of soft robotics research.
Zhuoyue, thank you for teaching me photography techniques. Your in-
sightful perspectives on electronics, cars, and photography are impressive.
I believe your future life will be colorful and full of achievements. Next, I
would like to thank the members at SRL. Jeanine, thank you for coordi-
nating the daily meeting arrangements. Venkat, I appreciate you sharing
your academic PowerPoint with me. Fouzia, thank you for teaching me the
correct pronunciation of every lab member’s name during my initial visit
to SRL at the University of Twente. Jakub, your informative tour of the
laboratory and patient explanations of the experimental equipment left a
lasting impression on me. Chuang, I am grateful for our collaboration in
building our experimental platform. Mert, your essential support in print-
ing parts significantly contributed to the development of my experimental
setup. Kaixuan, I benefited greatly from your guidance on operating the
rheometer. Chen, thank you for instructing me on how to operate your
electromagnetic coil device. My thanks also go out to the other members
of SRL: Alper Denasi, Christoff M. Heunis, Sumit Mohanty, Federico On-
garo, Theodosia Lourdes Thomas, Morteza Mojarradi, Mina M. M. Farag,
Guilherme Phillips Furtado, Luigi Capuano, Michiel Richter, Juan Julian
Jesus Huaroto Sevilla, Yu-Hsiang Lin, Simon Frieler, Lukas Masjosthus-
mann, Yuxin Jin, Fragkiskos Fourlas, Yiyang Li, Adriana Vasi, and Antonio
Lobosco. Thank you for your help during my time at SRL.

I would like to show my appreciation to my colleagues. Jeroen, Hong-



i
i

“output” — 2024/8/18 — 19:35 — page 171 — #189 i
i

i
i

i
i

ping, Zhiwei and Aldona, my office mates. Thank you for your generous
assistance when I initially joined the office. Yuanlong, it’s been a plea-
sure meeting you in Groningen. Thank you for inviting me to your home
for meals several times; your cooking skills are excellent. Through our
conversations, I’ve discovered that we have many similar life experiences,
which has created a lot of resonance between us. I wish you achieve your
desired goals in your career in the future. Yong Chen, you are modest,
cautious, and helpful. Thank you for helping me store items temporarily.
Ke Ren, thank you for the sincere conversation and advice. Chengxiong
and Kaiqi, looking back on our first journey together to the Netherlands
brings forth delightful memories. Captain Yuan (Lu), thank you for your
assistance with photography during Kolff Day. To all my other colleagues
at BBT—Yong Liu, Yuanfeng, Liangliang, Lu Ge, Huaiying, Xiaoxiang,
Ruifang, Kecheng, Weihao, Dayuan, Shuang Tian, Sidi, Guimei, Jie Gao,
Siran, Fenghua, Tianqi, and Zhuoyi—your help and support made my time
in Groningen enjoyable.

I’d also like to extend my gratitude to the friends I met in Groningen.
Dr. Bohuan, we met under very coincidental circumstances, and I feel so
fortunate to have met you. During many weekends in Groningen, our dis-
cussions on various interesting topics were highly enriching for me. What
deeply impressed me was your profound mathematical expertise in explain-
ing mathematical conclusions from multiple perspectives. I believe you will
achieve great success in your professional field. Ting He, thank you for tak-
ing me to your laboratory to collect ultrapure water for my experiments.
Dr. Qinghong, I happened to meet you on the 11th floor of Building 3215,
and your warm smile made you come across as very friendly. Thank you
for providing me with timely and valuable information, which has helped
me make the right decisions.

Lastly, my deepest gratitude goes to my family. To my grandparents
for their attentive care throughout my childhood, to my parents for their
decades of dedication that supported my educational journey, and to my
sister, brother-in-law, and niece for their encouragement during challenging
times.

Zhengya Zhang
Wenzhou, July 2024


	Introduction
	Design principles of tetherless magnetic helical devices
	Magnetic actuation systems
	Electromagnetic coil-based actuation systems
	Permanent magnet-based actuation systems

	Position sensing
	Biomedical applications
	Challenges and prospects
	Research objective of the thesis
	Scientific output
	Peer-reviewed international conference article
	Peer-reviewed journal articles
	Abstracts


	Design and Control of a Permanent Magnet-Based Robotic System for Navigating Tetherless Magnetic Devices in Viscous Environments
	Introduction
	Magnetic-based robotic system
	Magnetic actuation using multiple magnetic source
	Robotic configuration
	Mapping dipole-rotation axis to field-rotation axis
	Inverse kinematics
	Control of a tetherless magnetic device 

	Orienting field-rotation axis
	Yawing and pitching motion of field-rotation axis 
	Motion space of actuator magnets 
	Difficulty level of orienting the field-rotation axis

	Characterization of the magnetic field
	Magnetic field strength 
	Synchronous rotation angle 
	Radius of the center spherical space
	Distance between two actuator magnets

	Magnetic field gradient 
	Synchronous rotation angle 
	Radius of the center spherical space
	Distance between two actuator magnets 
	Gradient-free space

	Joint space variables 

	Closed-loop motion control
	Two-dimensional motion control
	Three-dimensional motion control

	Conclusion

	Closed-Loop Control of Magnetically-Driven Screws in a Viscoelastic Medium
	Introduction
	Modeling and control of magnetically-driven screws
	Magnetically-driven screws
	Swimming speed in viscoelastic fluid
	Control system design

	Closed-loop motion control
	System description
	Frequency response characterization
	Open-loop control results
	Point-to-point control results

	Conclusions and future work

	Hydrodynamic Behavior of Tetherless Twist-Shaped Magnetic Devices in Viscoelastic Fluids Driven by a Synchronized Rotating Magnetic Actuation System
	Introduction
	Design of tetherless twist-shaped magnetic devices
	Characterization of magnetic field 
	Rotation axis of magnetic field 
	Rotation velocity of magnetic field
	Field-rotation axis along y-axis
	Neutral position
	Magnetic field strength and gradient along y-axis

	 Characterization of swimming
	 Swimming speed prediction model
	 Rheological properties of agar gel phantom
	Frequency response characterization
	Experimental method
	Experimental results


	Motion control 
	Conclusion

	Conclusion
	Discussions
	Development of a permanent magnet-based robotic system
	Utilization of a swimming speed prediction model
	Hydrodynamic behavior of tetherless twist-shaped magnetic devices in viscoelastic fluids
	Correlation between the field-rotation axis and the dipole-rotation axis
	Development of control strategy

	Future directions
	Improvement of the robotic system
	Optimal design of symmetric configuration
	Control strategy with position and pose uncertainty of two synchronized rotating permanent magnets
	Magnetic localization of magnetic helical devices
	Miniaturization and integration


	References
	Appendices
	Development of the permanent magnet-based robotic system
	Exact expression for the magnetic field generated by a cylindrical permanent magnet
	Frame parameters of the permanent magnet-based robotic system
	Characterization of magnetic field
	Algorithm to obtain the distance between two synchronized rotating permanent magnets for a desired size gradient-free space

	Modeling for the Localization of Magnetic Devices Using a Synchronized Rotating Magnetic Actuation System
	Introduction
	Synchronized Rotating Magnetic Actuation System 
	 Basic Properties of the Linear Map 
	Eigenvalues, invariant subspaces, and trace
	Eigenvalues of the linear map 
	The singular set 

	Relationships among variables within the magnetic actuation system
	Relationships among variables of magnetic dipoles
	Relationships among variables of magnetic field
	Relationships among the eigenvalue of the linear map, dipole moment and magnetic field
	A fundamental lemma for calculating dipole moments

	Deducing the linear map at the case that the field-rotation axis is not perpendicular to the dipole-rotation axis 
	Dimensionality/Degrees of freedom
	Calculation of the inverse matrix
	The trace and the determinant of the linear map
	The mag-det system and a brief discussion

	Deducing the linear map at the case that the field-rotation axis is perpendicular to the dipole-rotation axis 
	The field-rotation axis vector is not equivalent to the zero vector
	The field-rotation axis vector is equivalent to the zero vector

	Deducing the position of the magnetic device from the linear map
	Conclusion

	Acknowledgements

	Cover.pdf
	幻灯片 7


