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Size and Illumination Matters: Local Magnetic 
Actuation and Fluorescence Imaging 
for Microrobotics

Juan J. Huaroto1* and Sarthak Misra1,2

Abstract | Combining local magnetic actuation with fluorescence imag-
ing modalities promises to introduce significant advances in microrobotic-
guided procedures. This review presents the advantages and challenges 
of this approach, emphasizing the need for careful design considerations 
to optimize performance and compatibility. Traditional microrobotic actua-
tion systems rely on bulky electromagnets, which are unsuitable for clinical 
use due to high power requirements and limited operational workspace. 
In contrast, miniaturized electromagnets can be integrated into surgical 
instruments, offering low power consumption and high actuation forces 
at the target site. Fluorescence imaging modalities have been explored in 
microrobotics, showcasing spatiotemporal resolution and the capability to 
provide information from biological entities. However, limitations, such as 
shallow penetration depth and out-of-focus fluorescence, have motivated 
the development of advanced techniques such as two-photon microscopy. 
The potential of two-photon microscopy to overcome these limitations is 
highlighted, with supporting evidence from previous studies on rat tissue 
samples. Current challenges in optical penetration depth, temporal resolu-
tion, and field of view are also addressed in this review. While integrating 
miniaturized electromagnets with fluorescence imaging modalities holds 
the potential for microrobotic-guided procedures, ongoing research and 
technological advancements are essential to translating this approach into 
clinical practice.
Keywords: Microrobotics, Surgical instruments, Miniaturized electromagnets, Fluorescence imaging, 
Two-photon microscopy.

1 Introduction
In recent years, the field of microrobotics has 
witnessed significant advancements driven by 
the demand for precise manipulation and imag-
ing at the  microscale1–5. Microrobots or micro-
agents serve as essential tools for navigating 
through intricate media, facilitating applications 
across various domains, including targeted drug 
 delivery6, cell  manipulation7, and minimally 
invasive  surgery8. With the ongoing progress 
in microrobotic fabrication and functionaliza-
tion, efficient actuation methods and imaging 

modalities are crucial to unlocking novel appli-
cations and expanding the application domain 
toward clinically relevant scenarios.

Micro-agents can be engineered to respond 
to external stimuli such as magnetic  fields9–11, 
acoustic  waves12–14, and  light15–17. In particular, 
magnetic actuation has emerged as a promis-
ing approach for propelling and maneuvering 
micro-agents in a contactless  fashion18. Due to 
their transparency and biocompatibility, mag-
netic actuation has been utilized for micro-agent 
navigation in complex environments, achieving 

1 Surgical Robotics 
Laboratory, Department 
of Biomechanical 
Engineering, University 
of Twente, 7522 
NB, Enschede, The 
Netherlands. 
2 Surgical Robotics 
Laboratory, Department 
of Biomaterials 
and Biomedical 
Technology, University 
Medical Centre 
Groningen and University 
of Groningen, 9713 GZ, 
Groningen, The 
Netherlands. 
*j.j.j.huarotosevilla@
utwente.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-024-00453-5&domain=pdf


2

J.J. Huaroto, S. Misra

J. Indian Inst. Sci.| VOL xxx:x | xxx–xxx xxx 2025 | journal.iisc.ernet.in

groundbreaking applications under ex vivo and 
in vivo  conditions19. By leveraging magnetic fields 
and gradients, magnetic actuation systems allow 
precise control without needing onboard power 
sources or complex mechanical components. In 
the present-day context, several magnetic actua-
tion platforms have emerged following the use of 
bulky structures assembled to permanent mag-
nets, electromagnets, and robotic  platforms20–22. 
Motivated by the need to reduce the size and 
power consumption of magnetic systems, prior 
research has introduced the concept of local 
actuation via miniaturized  magnets23–29. Minia-
turized magnets provide direct access to target 
regions due to their size and potential integration 
into surgical instruments  for in  situ actuation of 
micro-agents.

In parallel with advancements in magnetic 
actuation, visualizing and tracking micro-agents 
in real-time is essential for understanding their 
dynamics and validating their interaction with 
biological  entities30–33. Various imaging modali-
ties have been proposed and adapted to visual-
ize micro-agents to optimize spatiotemporal 
resolution, penetration depth, and the capabil-
ity to obtain molecular information from liv-
ing  cells34–36. Among non-ionizing standard 
modalities such as magnetic resonance, pho-
toacoustics, and ultrasound, fluorescence-based 
imaging techniques provide a powerful means 
of monitoring micro-agents with a relatively 
high spatiotemporal resolution but limited pen-
etration  depth37,38. Fluorescence imaging is an 
appealing modality for visualizing micro-agents 
alongside biological entities, permitting the 
study of the response to external stimuli with 
remarkable  sensitivity7,39,40. Advanced fluores-
cence modalities such as two-photon micros-
copy are available in the literature to overcome 
the limited penetration depth of traditional 
fluorescence  imaging41. However, additional 
efforts are required to bridge the gap between 
two-photon microscopy and  microrobotics42,43. 
Other techniques, using higher-order photon 
absorption (e.g., three-photon microscopy)44 
and actively adjusting phase and amplitude of 
light wavefront (i.e., wavefront shaping)45, are 
promising for breaking the scattering limits of 
light in biological media. Nevertheless, the lit-
erature has not explored their integration into 
the microrobotics field.

The convergence of local magnetic  actuation 
and fluorescence imaging in microrobotics pre-
sents an opportunity to unlock clinical advance-
ments. The unique capabilities of fluorescence 

imaging can be used for precise micro-agent 
tracking while offering insights into biological 
environments. Moreover, miniaturized magnets 
facilitate their integration into minimally invasive 
surgical instruments, enabling in situ micro-agent 
control. Merging both technologies represents an 
advancement in microrobotics, accelerating pro-
gress in research and clinical applications.

1.1  Scope and Outline
This review presents the current progress on mag-
netic actuation and fluorescence-based imaging 
to control and monitor micro-agents. Throughout 
the review, we present the types of magnetic actu-
ation systems, emphasizing miniaturized electro-
magnets for local actuation of micro-agents. We 
discuss the need for advanced imaging modali-
ties to achieve micro-agent in-tissue control. We 
highlight the principles of fluorescence imaging, 
its application to the microrobotics field, and cur-
rent challenges in minimally invasive surgery. By 
combining local magnetic actuation and fluores-
cence imaging, we seek to address fundamental 
challenges in microrobotics, including precise 
manipulation in confined spaces and tracking 
within biological environments.

The remainder part of the review is divided 
into four sections. First, we summarize the 
current magnetic actuation systems, intro-
duce the concept of local actuation, and pre-
sent the equations governing microrobotic 
actuation  using  miniaturized electromagnets 
integrated into  two types of minimally invasive 
surgical instruments. Second, we introduce fluo-
rescence imaging for microrobotics, discuss the 
limitations of traditional modalities, and pro-
pose advanced techniques, such as two-photon 
microscopy, to address these shortcomings. 
Third, we explore the integration of miniaturized 
electromagnets and two-photon microscopy to 
enable fluorescence-guided micro-agent manip-
ulation. Finally, we summarize and discuss the 
concepts presented throughout the review.

2  Electromagnetic Actuation 
in Microrobotics

2.1  Background
Magnetic actuation has been studied to ena-
ble contactless manipulation of micro/milli-
robotic structures and advanced catheters to 
access hard-to-reach regions of the human 
 body9,21. In particular, the apparatus used in 
microrobotics has constantly evolved to address 



3

Size and Illumination Matters: Local

J. Indian Inst. Sci. | VOL xxx:x | xxx–xxx xxx 2025 | journal.iisc.ernet.in

application-oriented  requirements20,22,46,47. Per-
manent magnets and electromagnets are stand-
ard devices used in magnetic actuation systems 
to generate magnetic fields and gradients. Per-
manent magnets allow for the precise genera-
tion of magnetic fields at a defined distance from 
the magnet. However, the generation of time-
varying magnetic fields is limited, necessitating 
robotic platforms to position or spin the perma-
nent magnet with respect to a target region or 
 workspace48–53. Unlike permanent magnets, elec-
tromagnets or electromagnetic coils can generate 
magnetic fields and gradients by powering them 
with electrical currents. In electromagnetic actua-
tion systems, electromagnets can be arranged in 
stationary mechanical  structures54–59 (Fig.  1A) 
and robotic  structures59–62 to span a desired 
workspace (Fig. 1B).

In clinically relevant scenarios, electro-
magnetic systems are typically designed to be 
positioned externally, enabling non-invasive 
actuation of micro-agents inside the body. Tra-
ditional electromagnetic systems have success-
fully demonstrated medical applications using 
in vivo animal samples or human  cadavers63–66. 
However, these systems are accompanied by vari-
ous challenges that must be addressed to advance 
their translation to clinical settings. The magnetic 
field required to propel micro-agents within ves-
sels must overcome physiological fluids to reach 
a desired  region67. In practice, addressing the 
generation of relatively high magnetic fields and 
gradients often involves increasing the electro-
magnet size, adjusting electrical currents, or add-
ing additional electromagnets to the actuation 
 system68. However, the power consumption and 
space limitations of surgical rooms slow down the 
standardization of electromagnetic systems for 
human trials.

2.2  Miniaturized Systems
A different approach to addressing the challenges 
of traditional electromagnetic systems for micro-
robotics involves the integration of miniaturized 
electromagnets into surgical instruments such as 
 endoscopes25 and laparoscopy  probes26 (Fig.  2). 
This integration offers the advantage of minimal 
invasiveness, making it a promising alternative 
in microsurgery where precise manipulation is 
 required6. Compared with traditional electro-
magnetic systems, miniaturized electromagnets 
can significantly reduce power consumption (by 
three orders of magnitude) and provide direct 
access to biological workspaces while maintaining 
biologically compatible temperatures. Moreover, 
the magnetic field gradients near miniaturized 
electromagnets are comparable to the values reg-
istered at the workspace center of electromagnetic 
systems (Table 1).

Integrating miniaturized electromagnets 
into surgical instruments can revolutionize sur-
gical procedures and introduce new treatments 
using magnetic micro-agents25,26. Previous 
studies have proposed such integration to pro-
vide basic functionalities, such as gripping small 
 objects27,29. However, local actuation of micro-
agents using miniaturized electromagnets 
presents challenges, requiring careful consid-
eration of electric and thermal insulation. Addi-
tionally, unique strategies for  the deployment 
and retrieval of  miniaturized electromagnets 
need to be developed and tailored to surgical 
instruments.

For endoscopes, miniaturized electromag-
nets can be delivered through an internal chan-
nel and positioned around a target region using 
a deployment mechanism (Fig. 2A). This mech-
anism is deactivated when micro-agents reach a 
target region, permitting retrieval through the 

(A) (B)Stationary Electromagnets

Robotic Platform
Electromagnet

Fixed Platform

Figure 1: Electromagnetic systems located outside the human body: Traditional arrangements. A Elec-
tromagnets assembled in a fixed platform. B Electromagnets assembled at the end effector of a robotic 
platform.
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endoscope  channel25. Typically, the deployment 
mechanism must be a small apparatus acti-
vated/deactivated using external stimuli such as 
mechanical force transmitted through  cables72, 
magnetic  fields73, or temperature gradients to 
trigger the shape memory effect of advanced 
 materials74,75.

For laparoscopy probes, miniaturized electro-
magnets can be designed in the shape of needles 
to facilitate their  assembly26. Unlike endoscopes, 
electromagnet deployment and retrieval are 
achieved using standard pivot points, such as 
 trocars76. The advantage of using these pivots is 
that the spatial configuration of the probes can be 
actively modified to change the workspace  con-
figuration (Fig.  2B). Furthermore, laparoscopy 
probes with assembled electromagnets can be 
attached to robotic platforms to enable object 
avoidance and image-guided  procedures77,78.

2.3  Fundamentals
In order to understand the local actuation of 
micro-agents using miniaturized electromagnets, 
we present the fundamentals of actuation through 
mathematical formulation. We utilize three minia-
turized electromagnets throughout the analysis to 
achieve 3D  manipulation79. However, the formula-
tion can be extended to include more electromag-
nets, creating an overactuated system.

In general, the magnetic field generated by an 
electromagnet (B(p, I)) powered with an electrical 
current ( I ∈ R ) exerts a wrench ( W ∈ R

6 ) over 
a micro-agent with magnetic moment ( µ ∈ R

3 ) 
located at a point ( p ∈ R

3 ). The magnetic wrench 
includes the magnetic force ( F ∈ R

3 ) and magnetic 
torque ( T ∈ R

3 ) and is defined as

Local frames ({Nk}, for k = 1, 2, 3) are con-
structed for three miniaturized electromagnets 
with respect to a global reference frame ({G}) 
(Fig.  3). At a point, 

(

Gp ∈ R
3
)

 in the global ref-
erence frame, the magnetic field 

(

GB(Gp)
)

 is 
the sum of the magnetic field generated by each 
electromagnet 

(

GBk(
Gp)

)

 . The unitary magnetic 
field 

(

Nkβk(
Nkp)

)

 is generated in the local frame 
of the corresponding electromagnet. The min-
iaturized electromagnets operate in their linear 
regions (i.e., the magnitude and components 
of the magnetic field vary linearly with the cur-
rent)80. Hence, the magnetic field in local frames 
is defined as

(1)W(p) =

[

F(p)
T(p)

]

=

[

∇(µ · B(p, I))
µ× B(p, I)

]

.

(2)NkBk(
Nkp) = Nkβk(

Nkp)Ik ,

Table 1. Magnetic field (||B||) and gradient-to-field ratio 
(

||∇B||

||B||

)

 of external and local electromagnetic 

actuation systems. Table adapted  from28

Configuration
Actuation
system

Moving
electromagnets

||B||

[mT]

||∇B||/||B||

[m−1]

External Open Configuration 57 No 15 35

Antiprism 55 No 30 40

OctoMag 54 No 30 25

Toroidal 69 No 50 5

Maxwell 70 No 100 15

BatMag 58 No 100 20

CGCI 68 No 100 8

Orthogonally Aligned 56 No 40 6

DeltaMag 62 Yes 23 –

BigMag 60 Yes 40 25

ARMM 61 Yes 80 7

Local MiniMag 71 No 20 100

MILiMAC 25 No 8 370

MagNeed 26 No 9 380

µMAZE 24 No 0.15 8000
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where Ik ∈ R , is the current through 
the kth electromagnet. In order to com-
pute the vectors GBk(

Gp) , we define the rota-
tion matrices 

(

G
RNk

∈ SO(3)
)

 . This way, 
Nkp = NkRG

Gp+ Nk ℓG , where Nk ℓG ∈ R
3 are 

the distance vectors between local and global 
frames (Fig.  3). Hence, GBk(

Gp) is computed as 
follows:

Substituting (3) into (1), we obtain the magnetic 
wrench 

(

GW(Gp)
)

 composed of force 
(

GF(Gp)
)

 
and torque 

(

GT(Gp)
)

 exerted on a micro-agent 
located at Gp:

The presented formulation utilizes the spatial 
configuration of local frames ({Nk}) and the set 
of currents ( Ik ) as inputs to compute equations 
(2)–(4) in every actuation period. Considering 
the characteristics of instruments integrating 
miniaturized electromagnets, constraints can be 
applied to local frames to reduce computational 
complexity. In the case of an endoscope inte-
grating such electromagnets, it is reasonable to 
assume that the deployment mechanism will fix 
the electromagnets around a target region. Con-
sequently, local frames remain approximately 
stationary, and the magnetic field and gradients 
at point 

(

Gp
)

 are solely determined by the cur-
rents (Fig. 3A). For laparoscopy instruments inte-
grating miniaturized electromagnets, the local 
frames can change their pose according to the 
instrument’s motion (Fig.  3B). Hence, rotation 
matrices 

(

G
RNk

)

 and vector distances 
(

Nk ℓG
)

 are 
updated in every actuation period. In order to 
ensure accuracy and robustness and account for 
external disturbances, various algorithm schemes 
for micro-agent control can be implemented for 
miniaturized  electromagnets81. Hence, the devel-
opment of clinical imaging modalities is neces-
sary to ensure the required feedback for precise 
manipulation of micro-agents.

(3)GBk(
Gp) = G

RNk

Nkβk(
Nkp)Ik .

(4)
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GT(Gp) = µ×

3
∑

k=1

(

GBk (Gp)
)

3  Fluorescence Imaging 
for Microrobotics

3.1  Background
Visualization or imaging is essential in microro-
botics because current sensor technology cannot 
be incorporated into micro-agents due to size 
limitations. Imaging modalities serve as external 
sensors to validate micro-agent functionalities 
and provide feedback during procedures. Recent 
research in the field of microrobotics underscores 
the significance of advanced methods in broad-
ening the scope of microrobotics into clinically 
relevant  scenarios82–85. Microrobotics imaging 
requires three main components to detect and 
track micro-agents under in vivo conditions.

•   Spatiotemporal resolution and penetration 
depth: Imaging modalities in microrobotics 
must enable micrometer resolution, video-rate 
tracking, and sufficient penetration depths to 
achieve in-tissue  visualization35. Generally, 
a trade-off exists between spatial resolution 
and penetration depth due to tissue scattering. 
Therefore, an optimal balance between spati-
otemporal resolution and penetration depth is 
essential for in-tissue microrobotic imaging.

•   Molecular imaging: Visualization modalities 
must ensure the detection of micro-agents 
and the surrounding physical environment, 
including tissue and biological  samples38. 
Studying living cells, biological processes, and 
tissue interacting with functionalized micro-
agents requires addressing molecular imaging 
 techniques36.

•   Non-ionizing modalities: Prolonged expo-
sition to ionizing ration risks side effects 
on patients and  clinicians86. Non-ionizing 
modalities can enable safe procedures using 
micro-agents.

Current imaging modalities for microrobotics 
partially address all three components. Various 
ionizing techniques such as X-ray computerized 
 tomography65, positron emission  tomography87, 
 fluoroscopy88, and single-photon emission com-
puted  tomography89 have been proven under ex 
vivo and in vivo conditions. Yet, the risk of side 
effects from long-term exposure motivates the 
use of non-ionizing techniques. Among non-
ionizing modalities, fluorescence  imaging38, 
 ultrasound31, magnetic resonance  imaging90, 
photoacoustic  imaging84,91, and magnetic particle 
 imaging92 provide molecular information, reveal-
ing details about the interaction between micro-
agents, biological entities, and living tissue. This 
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review focuses on fluorescence imaging modali-
ties and their application in microrobotics. Com-
pared to other non-ionizing imaging techniques, 
the relatively high spatiotemporal resolution 
of fluorescence imaging makes it attractive for 
studying biological processes in clinical settings 
using  microrobots35. However, a major limita-
tion of fluorescence imaging is the restricted 
optical penetration depth caused by tissue scat-
tering. Advanced fluorescence imaging modali-
ties using high order absorption such as two- and 
three-photon  microscopy93 and tuning the phase 
and amplitude of the light wavefront (i.e., wave-
front shaping)94 represent state-of-the-art tech-
niques for overcoming the scattering limits of 
tissue. Nonetheless, further efforts are required 
to integrate these techniques into the field of 
microrobotics.

3.2  Fluorescence
Fluorescence is a phenomenon in which a sub-
stance (fluorescent dye or fluorophore) absorbs 
electromagnetic radiation at one wavelength 
and then emits light at a longer  wavelength95. 
This shift between wavelengths is called Stokes 
shift and represents the difference in wavelength 
between the maximum excitation ( �ex ) and maxi-
mum emission ( �em ) of a fluorophore:

In fluorescence, the emission occurs promptly 
after excitation, often within nanoseconds to 
 microseconds96. This property distinguishes fluo-
rescence from other types of photoluminescence, 
such as phosphorescence, where the emission 
persists for a longer duration after excitation. 
Spectrum analysis using spectrofluorometers 
provides intensity-wavelength plots to study the 
excitation and emission light characteristics of 
 fluorophores97. The fluorescence quantum yield 
( � ) measures the efficiency of a fluorophore to 
emit fluorescence upon excitation:

The value of � depends on the fluorophore and 
solvents  utilized98. Besides, the intensity of emit-
ted fluorescence light is proportional to the num-
ber of fluorophores in the sample and quantum 
yield.

Fluorescence is widely utilized in various 
fields, including biology, chemistry, and surgery, 
for diagnostics and microscopy  applications99,100. 
Due to their specificity, sensitivity, and versatility, 

(5)Stokes Shift = �ex − �em.

(6)� =
Number of photons emitted

Number of photons absorbed
.

fluorophores are commonly employed to label 
biological samples, track molecular processes, 
and functionalize micro-agents40. In microscopy, 
the excitation light is focused onto the sample, 
and the emitted light is collected through lenses 
and a series of dichroic mirrors, which redirect 
the light for image formation through detectors 
(e.g., complementary metal-oxide semiconductor 
cameras and photomultipliers)93,101. Figure  4A 
depicts a fluorescent micro-agent emitting fluo-
rescence with a wavelength of 600 nm under exci-
tation by a continuous light source of 530 nm. The 
energy diagram, including ground and excited 
energy states, represents a fluorescence event in 
which a single photon at 530 nm is absorbed to 
generate one photon of emitted light at 600 nm. 
This energy representation corresponds to one-
photon absorption and is the functioning prin-
ciple of many fluorescence microscopes used in 
biology. Fluorescence imaging modalities are the 
gold standard for color-coded imaging using dif-
ferent fluorophores to label biological samples 
and micro-agents7,38. However, the limited opti-
cal penetration depth, scattering, and background 
noise reduce the capability of using conventional 
fluorescence microscopes to visualize micro-
agent in-tissue.

3.3  Two‑Photon Microscopy
An advanced fluorescence modality to over-
come the limited penetration depth of fluo-
rescence imaging techniques is two-photon 
 microscopy41,102. Unlike conventional fluo-
rescence microscopy, two-photon microscopy 
utilizes the simultaneous absorption of two lower-
energy photons to excite fluorophores within a 
specimen (Fig.  4B). In two-photon microscopy, 
an ultrashort-pulsed laser emits near-infrared 
(NIR) light photons, typically within 700–1100 
nanometers of wavelength. This longer wave-
length light can penetrate deeper into biological 
tissues with minimal scattering and absorption, 
allowing imaging of thicker samples or even 
intact living  organisms103.

When two photons of NIR light coincide in 
space and time, their combined energy excites 
a fluorophore to its higher energy  state104. This 
excitation occurs only at the focal point of the 
microscope, where the intensity of the laser light 
is highest, resulting in precise spatial localization 
of fluorescence  emission105,106. Because fluores-
cence is generated only at the focal point, out-
of-focus fluorescence (i.e., background noise) is 
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minimized, improving image contrast and reso-
lution, especially in thick samples. Two-photon 
microscopy offers three essential advantages over 
traditional fluorescence microscopy techniques, 
including:

•   Deep tissue imaging: The longer wavelength 
of NIR light allows deeper penetration into 
biological specimens, enabling imaging of 
structures located several hundred microm-
eters below the tissue surface.

•   Reduced photodamage: Because fluorescence 
excitation occurs only at the focal point, pho-
todamage to the specimen outside the focal 
plane is minimized, making two-photon 
microscopy suitable for imaging living tis-
sues over extended periods without significant 
damage.

•   Increased image contrast and resolution: By 
minimizing out-of-focus fluorescence, two-
photon microscopy provides improved image 
contrast and resolution, particularly in thick 
or densely labeled samples.

•   Fluorophore-free imaging: The ultrashort-
pulsed laser used in two-photon micros-
copy can trigger autofluorescence and 
second-harmonic generation in biological 
tissue  samples107. This way, fluorophore-
free imaging is enabled, eliminating pho-
tobleaching effects associated with standard 
 fluorophores108.

Two-photon microscopy is widely used in neuro-
science, cell biology, and other fields where high-
resolution imaging of living tissues or organisms 
is  essential109,110. In addition, various endomi-
croscopy probes have been developed to diagnose 
and study cellular processes in freely behaving 
 animals111. In microrobotics, the principle of 
two-photon absorption has mainly been used to 
fabricate sub-micrometer resolution structures 
such as  lenses112,  sensors113, micro-agents114, 
and  metamaterials115. Two-photon microscopy 
recently garners attention using benchtop micro-
scopes to visualize micro-agents through ex vivo 
and in vivo rat  tissue42,43.

3.4  Open Challenges
Although fluorescence imaging can provide 
information from biological samples and tissue, 
the optical penetration depth remains a challenge 
due to tissue scattering. Two-photon microscopy 
has demonstrated clinical applications for diag-
nosis and revolutionized our understanding of 
biological processes by enabling the visualization 

of cellular dynamics and interactions with 
unprecedented  detail93,116. However, the opti-
cal penetration depth cannot exceed hundreds 
of micrometers. Using three-photon absorption 
has opened up new avenues for imaging tissue 
at penetration depths on the order of 1  mm in 
brain  tissue117,118. Increasing the order of photon 
absorption enables greater penetration depth due 
to the longer wavelength used to trigger fluores-
cence. However, additional challenges must be 
addressed, such as the limited field of view, tem-
poral resolution, and chromatic  dispersion111.

On the other hand, wavefront shaping offers 
an innovative approach to overcoming the scat-
tering limits of tissue. This technique modifies 
the phase and amplitude of light, enabling deep 
focusing through scattering media up to tens of 
 centimeters94,119–121. The convergence of high-
order photon absorption and wavefront shaping 
can alleviate the limited penetration depth of flu-
orescence microscopy. However, fluorescence col-
lection at relatively high penetration depths is an 
open challenge due to the absorption probability 
of emitted photons in scattering media. A com-
prehensive study of the algorithms to reconstruct 
images from fluorescence-emitted light in deep 
tissue is  required45,122.

4  Toward Fluorescence‑Guided 
Manipulation

The convergence of surgical instruments inte-
grating miniaturized electromagnets and fluo-
rescence imaging modalities can improve the 
precision and efficiency of targeted drug delivery 
procedures via functionalized micro-agents. By 
overcoming physiological fluid flows and scatter-
ing, fluorescence-guided manipulation of mag-
netic micro-agents represents a groundbreaking 
approach to advancing the application of micro-
robotics in clinically relevant scenarios. Figure 5 
depicts a tissue segment containing vasculature. 
The micro-agents previously perfused within the 
vasculature are actuated and visualized through 
tissue using miniature electromagnets and two-
photon microscopy, respectively. Our previous 
study demonstrates this approach using forma-
lin-fixed rat intestinal tissue (ileal wall)42. Fig-
ure 6A shows a close-up view of the experimental 
setup, including a miniaturized  electromagnet26. 
Magnetic electrospun fibers stained with a fluo-
rophore (Coumarin 6) are fabricated as the 
micro-agents used in the  experiments38. Micro-
agents are perfused within a microfluidic channel 
to visualize their interactions through two-pho-
ton microscopy. For comparison, we used two 
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types of samples: a plain microfluidic channel 
(Fig. 6B) and a microfluidic channel containing a 
slice of rat tissue (thickness ≈ 600 µm) (Fig. 6C).

Using the first sample enables clear visuali-
zation of the orientation and motion of micro-
agents in response to the magnetic field and 
gradients produced by the miniaturized elec-
tromagnet (Fig.  6B). The experiment utilizing 
formalin-fixed rat tissue intensifies scattering, 
augmenting the complexity of visualizing micro-
agents. Despite the scattering challenges, our 
results show that two-photon microscopy facili-
tates the identification of morphology and track-
ing of micro-agents’ motion while enabling 
continuous image acquisition.

It is worth noting that the experiments were 
achieved using a relatively low frame acquisi-
tion rate (1  fps), which can limit the analysis of 
micro-agents moving at high dynamics. Previ-
ous in vivo studies demonstrate that micro-agents 
can move at relatively low velocities (< 10 µm/s) 
under magnetic  guidance83,123. Furthermore, 
incorporating optical and optomechanical tech-
nologies, such as polygonal mirrors and resonant 
scanners coupled with optical fibers, can drasti-
cally improve the scan rate by compromising the 
spatial  resolution116,124. On the other hand, the 
field of view used for image acquisition is 135 
µm, which can be challenging for imaging big-
ger micro-agents. Visual servoing techniques can 
alleviate this shortcoming by moving the field 
of view according to the micro-agent  motion125. 
Furthermore, a multimodal imaging approach 
can complement two-photon microscopy and 
provide additional information on the physical 
 surroundings126.

5  Discussion
Integrating miniaturized electromagnets into 
surgical instruments for fluorescence-guided 
micro-agent manipulation represents a significant 
advancement in microrobotics. This approach 
can address the limitations of current electro-
magnetic systems, particularly in terms of power 
consumption and spatial constraints. The key 
strength of this approach is the potential for min-
imally invasive procedures (e.g., targeted drug 
delivery and microsurgery) using functionalized 
micro-agents. However, integrating miniaturized 
electromagnets into surgical instruments requires 
careful design and engineering to ensure opti-
mal performance and compatibility. Factors such 
as electric and thermal insulation and deploy-
ment/retrieval mechanisms must be carefully 

considered to minimize the risk of complications 
during procedures.

We introduce fluorescence imaging modali-
ties for magnetic micro-agent control, highlight-
ing the micrometer resolution and the capability 
of obtaining feedback to study biological enti-
ties. Fluorescence imaging modalities permit 
color-coded image acquisition, which is appeal-
ing for visualization of micro-agents and physical 
surroundings without segmentation algorithms. 
The main drawbacks of conventional fluorescence 
modalities are the limited penetration depth (< 
100 µm) and out-of-focus fluorescence (i.e., back-
ground noise).

Two-photon microscopy alleviates the current 
drawbacks of conventional fluorescence micros-
copy. However, several challenges remain to be 
addressed to realize this technology’s potential. 
One limitation is the penetration depth, which may 
be insufficient for specific applications when light 
needs to be focused through thick tissue samples 
(> 1  mm). Three-photon absorption can improve 
the penetration depth up to a few millimeters, 
but the tissue scattering limits the application for 
thicker samples. An alternative approach involves 
actively changing the phase and amplitude of the 
light wavefront (i.e., wavefront shaping). This tech-
nique can correct distortions caused by scattering, 
permitting light to focus through samples up to 
tens of centimeters. Yet, the triggered fluorescence 
risks being absorbed by the tissue, hindering its 
collection for image formation. This motivates the 
study of fluorescence acquisition in thick samples. 
Furthermore, the development of endomicroscopy 
probes integrating high-order photon absorption 
and wavefront shaping technology holds poten-
tial for in situ visualization of internal tissues (e.g., 
mucosa) where required penetration depths are in 
the order of a few millimeters.

Recognizing the potential of miniaturized 
electromagnets and two-photon microscopy, we 
present previous results for fluorescence-guided 
manipulation of functionalized micro-agents. The 
results of this synergy showcase the visualization 
through a rat tissue sample of 600 µm thick. How-
ever, further improvements are needed to over-
come the scattering effects, relatively low-frame 
acquisition, and limited field of view. Multimodal 
imaging strategies, novel scanning techniques, vis-
ual servoing, and graphics processing unit parallel 
computing can optimize the current two-photon 
microscopy apparatus to be used along with surgi-
cal instruments.
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