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Abstract—Over the recent years, miniature medical robots
(MMRs) have garnered increasing attention from the research
community due to their capability for precise therapeutic delivery
and diagnostic procedures. Their compact form and exceptional
agility allow them to access internal anatomical regions that
traditional surgical tools cannot reach. To achieve effective
control over MMR navigation, it is essential to accurately
determine their position and movement, necessitating precise pose
estimation. Consequently, unlocking the full clinical potential of
MMRs hinges on the development of accurate and real-time
tracking systems for these small-scale devices. Several imaging
modalities have been investigated for this purpose, including
magnetic resonance imaging (MRI) [1], [2], X-ray computed
tomography (CT) [3], and clinical ultrasound [4], [5]. Each of
these techniques provides distinct benefits while also presenting
inherent drawbacks. While MRI offers excellent spatial resolu-
tion, it relies on a static and intense magnetic field, which is
unsuitable for patients with metallic implants. CT imaging can
achieve sub-millimeter resolution but raises concerns due to the
ionizing radiation involved, affecting both patients and healthcare
providers [6]. Ultrasound imaging stands out as a non-invasive
and temporally precise method; however, it often suffers from
image artifacts, particularly in complex and heterogeneous tissue
environments. These limitations highlight the ongoing demand for
alternative methods to track MMRs effectively.

Electrical impedance tomography (EIT) presents a safe, non-
invasive imaging solution capable of producing maps that reflect
the conductivity distribution inside a medium. These impedance
maps are reconstructed from voltage readings obtained through
surface electrodes, while controlled currents are injected sequen-
tially using selected electrode pairs. EIT has demonstrated its
utility across a range of physiological monitoring applications,
such as tracking respiration [7], brain function [8], and car-
diopulmonary dynamics [9]. It has also shown potential in early
breast cancer diagnosis by detecting electrical impedance changes
associated with altered tissue structures [10]. These examples
underscore EIT’s capability to capture dynamic and non-uniform
biological states, offering a promising alternative for localization
in medical robotic systems. However, several engineering chal-

lenges remain before EIT can be broadly implemented for real-
time tracking of MMRs.

A key limitation of EIT is its temporal resolution, which
is constrained by both the rate of data acquisition and the
efficiency of processing algorithms. The data collection rate is
governed by how many current injection combinations are used
and the sampling speed of the acquisition system. Meanwhile,
processing speed depends on how effectively the inverse prob-
lem—estimating conductivity distributions from current injection
patterns—is solved. In our system, each current injection pattern
uses a pair of surface electrodes for current input and output.
While increasing the number of such patterns improves spatial
resolution through additional data, it also lengthens acquisition
time. This creates a trade-off between spatial and temporal
resolution. In the context of MMR tracking—where a small
object moves within a much larger domain like the human
torso—a method is needed that offers high spatial precision
without compromising on frame rate.

In this work, we developed an integrated platform combining
a custom-built EIT system and a robotic setup to autonomously
acquire raw data for training a graph neural network (GNN)-
based tracking model. The EIT configuration includes 16 evenly
spaced electrodes, labeled ET0 to ET15, placed around the edge
of an 80 mm diameter 3D-printed cylindrical workspace. Mag-
netically responsive objects are positioned inside the workspace
and maneuvered using a permanent magnet mounted on a robotic
arm. This movement is driven by magnetic attraction, which is
generated by the spatial gradient in magnetic flux as the magnet
is repositioned relative to the test object.

Electric current is delivered through chosen pairs of elec-
trodes—referred to as stimulation patterns and denoted as pi,j ,
where ETi and ETj represent the electrodes involved. The
complete stimulation strategy, denoted ST , is defined as the
collection of all such patterns necessary to map the impedance
distribution:

ST = {pi,j | ∀i, j ∈ [0, 15]}. (1)

Voltage signals from all 16 electrodes are recorded while sys-
tematically varying the current injection pattern based on the



strategy ST , producing raw data used for accurately tracking
the test object. This data is annotated using ground truth
locations determined through a vision-based tracking system. The
procedure is repeated at multiple workspace positions to build a
diverse dataset for training the GNN model.

The raw data is initially formatted as a 3D matrix Xt ∈
RN×n×t, where N is the total number of stimulation patterns
in ST , n is the electrode count, and t is the number of samples
per electrode per pattern. Given a sampling rate of 500 Hz and
a 50 Hz sinusoidal input signal lasting four cycles, t equals
40. Due to the complexity of this dataset, a dimensionality
reduction is carried out before input to the GNN. First, the
data is segmented based on stimulation pattern, and a Fast
Fourier Transform (FFT) is applied. Then, for each group,
the five frequency components with the highest amplitude are
extracted to represent the dominant signal characteristics. These
selected features preserve signal fidelity while reducing input
complexity. All values are normalized to the range [−1, 1] to
minimize noise impact. These processed segments are treated as
”nodes” within a graph, where ”edges” connect nodes that share
physical proximity—specifically, when their associated electrodes
are adjacent and part of the same stimulation strategy.

This structured graph data is then processed using a graph
neural network designed to learn the correlation between voltage
signals and object position. The model starts with a multilayer
perceptron (MLP) that adjusts the input vector from its initial
80 dimensions (derived from 16 electrodes × 5 FFT features) to
fit the Graph Attention Network (GAT) input size. The data then
flows through two GAT layers, which apply attention mechanisms
to highlight the most relevant nodes for spatial learning. This
structure improves the model’s ability to detect spatial patterns
within the graph. To balance feature expressiveness and gen-
eralization, we select 128 hidden units per layer—enough to
capture complexity without risking overfitting due to excessive
parameters. After feature extraction through GAT, a global
max pooling operation condenses the learned graph features by
selecting maximum activations across nodes and edges, ensuring
salient spatial features are retained. The output is then passed
to a final MLP, which converts the global representation into a
2D coordinate prediction for the micro-robot (128 × 2 output
size). This architecture effectively combines spatial and temporal
features for high-accuracy tracking.

The dataset comprises over 1000 labeled positions across the
workspace for object with four different sizes respectively (6 mm,
8 mm, 10 mm, 12 mm), with a data split of 80% training, 10%
validation, and 10% testing. The model’s performance is assessed
on the test set to evaluate its ability to generalize and precisely
estimate the object’s position, validating the effectiveness of
the proposed tracking framework. The evaluation of the model
performance is based on how well the model predicts the position
of a given measurement in the test dataset. Using this method,
we achieve accurate localization of a test object with a diameter
down to 6 mm, which cannot be visualized using our current
hardware and EIDORS solver. The proposed approach attains a
median localization error of 2.88 mm with the 6 mm diameter
object. Moreover, it takes 0.64 seconds to generate one frame
with our approach (when the opposite strategy applies), which
is significantly faster than using the EIDORS solver.

Index Terms—graph neural network, electrical impedance
tomography (EIT), microrobotics, trajectory tracking
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Fig. 1. Schematic of the model training process (a) The developed electrical
impedance tomography (EIT) system consists of 16 electrodes (Et0– Et15)
and a workspace. A stimulation signal is injected through a pair of selected
electrodes. This pair of electrodes is termed a current injection pattern (pi,j),
denoting the case when the electrode Eti and electrode Etj are selected. A
current stimulation strategy (ST ) is defined as a group of patterns required
to reconstruct the impedance distribution of the workspace. Mathematically,
a strategy can be expressed as ST = {pi,j | i, j ∈ [0, 15]}. The data of one
object position contains voltage measurements of all 16 electrodes (Uk, k ∈
[0, 15]) while sweeping all the current injection patterns in a chosen strategy.
The raw data is labeled with the ground truth coordinates obtained from the
vision-based image processing. (b) Restructuring the raw data into a graph
gives syntax to the unorganized time series data. The shape of the initial
data is 16 × 40N . This dimension is obtained from the measurements of
16 electrodes, each containing 40 data points per pattern, where N is the
number of patterns in the strategy set, defined as N = |ST |. To reduce the
dimension of the dataset, we first group the data points by the patterns and
apply the Fast Fourier Transform (FFT) to each data group. Next, the first
five components in the frequency domain are extracted for each group as new
data. Next, we connect the data groups (“nodes”) with “edges” if they fulfill
the relationship we predefined. Hence, the raw data matrix can be restructured
into a graphed dataset. (c) Once the graphed data structure is established, we
feed the data into the graph neural network so that the relationship between
the dataset and the ground truth location of the test object can be learned.
The proposed neural network architecture consists of the following building
blocks: an MLP layer to match the data dimensions, graph attention layers
to learn the important features in a graphed dataset, and global max pooling
to summarize the features so that they can represent the entire dataset and
another MLP layer to predict the 2D locations.
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